
Open Journal of Statistics, 2018, 8, 603-613 
http://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2018.83039  Jun. 25, 2018 603 Open Journal of Statistics 
 

 
 
 

Joint Modelling of Efficacy and Toxicity in the 
Dose Escalation Phase I Studies 

Mounir Aout, Abdelkader Seroutou 

Early Clinical Biostatistics, Translational Clinical Oncology, Novartis Oncology, Basel, Switzerland 

 
 
 

Abstract 
Most Phase I oncology trials are primarily concerned with establishing the 
safety profile of a new treatment and focus on toxicity alone to determine the 
maximum tolerated dose (MTD) defined as the highest dose with the proba-
bility of toxicity less than a pre-specified target toxicity rate. When additional 
data are available, there is an interest in selecting a recommended dose based 
on PK, PD, efficacy data, etc. We propose a method that uses modeling of 
both toxicity and efficacy to further guide the estimation of the recommended 
dose(s) by finding an optimal dose or range of doses that maximizes the effi-
cacy while safety is controlled. The toxicity model is a Bayesian Logistic Re-
gression Model (BLRM) assessing the dose-toxicity relationships. The efficacy 
model is a polynomial logistic regression model describing the dose-response 
relationships. This model generalizes the monotonic dose-response relation-
ship and allows for different dose-response shapes. In addition, the associa-
tion between toxicity and efficacy is included in the modelling using global 
cross-ratio method. All analyses are performed in the Bayesian framework. 
The proposed method is evaluated by intensive simulation analyses and oper-
ating characteristics are provided. The design identifies adequately the range 
of the recommended doses while safety is controlled and potentially shortens 
the duration of a trial by enrolling fewer patients. 
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1. Introduction 

Most Phase I oncology trials are primarily intended to establish the safety profile 
of a new treatment. They usually focus on toxicity alone to determine the maxi-
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mum tolerated dose (MTD) defined as the highest dose with the probability of 
toxicity less than a pre-specified target toxicity rate or a recommended dose 
(RD) for use in later phase clinical trials. Methods for oncology dose-escalation 
clinical trials fall into two broad classes: the rule-based designs including the 
traditional 3 + 3 design and the model-based designs [1]. 

Model-based designs assume some model for the dose-toxicity relationship, 
and enable defining the MTD as the dose with a given probability of causing a 
dose limiting toxicity (DLT) in a patient. A DLT is a pre-defined toxicity that is 
serious enough to raise concern about that dose level. An overview of sin-
gle-agent trial designs and the advantages of model-based designs over other 
available options are given by [2]. 

An example of model-based designs is the Bayesian dose toxicity model 
(BDTM) which is a Bayesian logistic regression model (BLRM) described in [3] 
and [4]. In this model, the statistical focus is on the inference for DLT rates, 
which is model-based and uses the actual trial data as well as other relevant tri-
al-external (historical) data as prior distributions.  

When additional PK, PD and efficacy data are available, there is an interest in 
finding a RD which is selected based on dose-toxicity models as well as the 
available additional data. An example of independent modelling dose-exposure 
and dose toxicity data to further support decision making during dose escala-
tions is given in [5]. Many statistical methods modelling simultaneously toxicity 
and efficacy outcomes have also been developed in the literature [6] [7] [8] [9] 
and references therein.  

In standard phase I design, it is assumed that both the probabilities of toxicity 
and efficacy of a new drug increase as dose level increases. This assumption 
could hold for cytotoxic agents. However, recent development of molecularly 
targeted agents (MTA’s) challenges this assumption [10], particularly, in im-
munotherapy trials, where the dose-efficacy relationship may be bell-shaped: at 
low dose levels there is no efficacy; at some optimal dose levels, the maximal ac-
tivity is reached, but at dose levels that exceed the optimal levels, the efficacy 
starts to diminish and the drug likely causes an over-stimulation, with either no 
efficacy, or even life-threatening toxicity [8]. 

In this paper, we present a simple method of incorporating toxicity and effi-
cacy data using bivariate modelling to improve dose escalation decisions and to 
further guide the determination of the RD. In Section 2, the dose-toxicity and 
dose-efficacy models are presented. In Section 3, the proposed method of 
dose-escalation, which is practical and utilizes both dose-toxicity and 
dose-efficacy models as well as the bivariate model combining both models, is 
presented. In addition, the operating characteristics of the models are presented 
using several scenarios of dose-response and dose-toxicity shapes. The paper 
concludes with a discussion in Section 4. 

2. Materials and Methods 

In this section, we propose a bivariate model which describes both the toxicity 
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and efficacy response of a new treatment. The two univariate models are de-
scribed first, and a joint probability is derived to allow for association between 
dose-toxicity and dose-efficacy relationships using global cross-ratio method. 

2.1. Toxicity Model 

The toxicity model used in this paper will be called Bayesian Dose Toxicity 
Model (BDTM), which is a two-parameter logistic Regression Model, introduced 
by [3], assessing the dose-toxicity relationship and given as: 

( )( ) ( ) ( )*
1 1logit log logp d d dα β= +  

where p(d) is the probability that a patient has a DLT at dose d, α1 and β1 are the 
model parameters, and d* is a scaling dose allowing for the interpretation of α1 
as the odds of a DLT at d*. The logit function is defined as  

( )logit log
1

xx
x

 =  − 
. 

It is assumed that the probability of toxicity increases monotonically with dose 
and therefore β1 is assumed to take non-negative values. 

2.2. Efficacy Model 

The Efficacy Model is a Bayesian Dose Efficacy Model (BDEM) which is a poly-
nomial logistic regression model describing the tumor-response and dose level 
relationship and is given below: 

( )( ) ( )
2

2 2 * *logit log log log logd dr d
d d

α β γ     = + +        
 

where r(d) is the probability that a patient has a response at dose d, α2 β2 and γ 
are the model parameters, and d* is a scaling dose allowing for the interpretation 
of α2 as the odds of a response at d*. Here the response is assumed to be a binary 
outcome as an efficacy response or a surrogate biomarker endpoint. 

This model generalizes the monotonic relationship observed for cytotoxic 
therapies and can handle several scenarios of dose-response curves observed for 
both cytotoxic and cytostatic therapies. For illustrative purpose, Figure 1 pro-
vides some dose-response shapes supported by the model. Indeed, the quadratic 
term in the model is included to allow model flexibility should the probability of 
efficacy levels off or diminishes after a certain dose level [11]. This is the case 
when γ < 0. However, γ > 0 corresponds to an unrealistic scenario with a 
U-shaped curve (i.e. high efficacy at lower and higher doses, and small efficacy at 
intermediate doses). Therefore, in the remainder of this paper, it is assumed that 
γ < 0. 

Black curve corresponds to monotonic models (γ = 0, and β2 > 0). Red and 
blue curves correspond to models with non-positive quadratic parameter 

2.3. Modelling Association Structure 

Several methods have been proposed in the literature to describe association  
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Figure 1. Examples of dose-response models. 

 
between two outcomes. Here, we propose to use the global cross-ratio model 
[12] to characterize the association structure between toxicity and efficacy. 

The joint probability P11 of efficacy and toxicity for each dose level j is defined 
as: 
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where ( )( )1 1j j j ja p r θ= + + −  and ( )4 1j j j j jb p rθ θ= − − . 

jθ  is the odds ratio describing the association between the toxicity and the 
efficacy. 

Once 11
jP are obtained, the other three joint probabilities can be recovered 

easily from the margin. 
The bivariate logistic model is specified by modelling the marginal distribu-

tions and the odds ratio [13] [14] [15]. 

2.4. Bayesian Framework 

Bayesian methods for dose finding trials are attractive due to the sequential na-
ture of the data collection in dose escalation trials. To perform a Bayesian analy-
sis, we must specify a prior distribution for each parameter as well as the associ-
ation parameter. In this paper and without loss of generality, non-informative 
priors are assumed for the bivariate logistic model parameters and for the odds 
ratios. Readers are encouraged to use different assumptions when prior know-
ledge is available. 

For efficacy, toxicity as well as association model (using odds ratio), posterior 
distributions are obtained by MCMC using JAGS Software, and rjags package (R 
software) [16]. 

After having specified priors, the Bayesian approach updates information on 
model parameters based on observed data. The posterior distributions of the 
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model parameters are derived and used for decision making. These distributions 
are summarized by their mean and credible intervals. For the toxicity model, we 
are interested in finding a dose with a corresponding probability of DLT in the 
targeted toxicity interval. In general, the following classifications of the probabil-
ity of DLT rate are used: 

[0, 16%] corresponds to an under-dosing; 
[16%, 33%] corresponds to a targeted toxicity; 
[33%, 100%] corresponds to an excessive toxicity. 
The following classifications of the probability of efficacy as well as the joint 

probability of efficacy and no toxicity are used:  
[0, 30%] corresponds to an unacceptable activity; 
[30%, 60%] corresponds to moderate activity; 
[60%, 100%] corresponds to strong activity. 
The efficacy’s thresholds above were chosen for illustration purpose and may 

be tuned to the specific study. 

3. Simulation Study Set-Up 
3.1. Dose-Finding Procedure 

For dose escalation decisions, each new cohort will consist of 3 to 6 patients who 
will be treated at the specific dose level, but additional patients could be enrolled 
at any dose level to collect more data. The first cohort will be treated with the 
starting dose. Patients must have a minimum drug exposure and safety evalua-
tion to be considered evaluable for dose escalation decisions. The adaptive Baye-
sian models described in the previous Sections incorporate all DLT and efficacy 
information to provide an estimate of all dose levels that do not exceed the MTD 
and satisfy a maximum activity. Indeed, after each cohort of patients was com-
pleted at a given dose level, the posterior distributions for the DLT rates and the 
posterior distributions of the activity rates as well as their joint distributions at 
all dose levels are calculated. However, in some situations when the efficacy data 
are not available for a given dose level, the efficacy model as well as the 
cross-ratio model could be run using only available efficacy data from previous 
dose levels. The outputs from modeling of dose-DLT and dose-efficacy relation-
ships are combined to calculate the joint probability of efficacy and no toxicity, 
and the Bayesian inference provides a set of dose levels considered safe and ac-
tive for future administration. Indeed, the next dose is selected using the follow-
ing algorithm:  

1) Select the dose or the doses which satisfy the Escalation with Over-dose 
Control (EWOC) criteria (less than 25% chance of excessive toxicity) using 
BDTM [4] among the possible doses. 

2) Among the previously selected doses, choose the one with the highest joint 
probability of activity and no toxicity P01 using the cross-ratio model according 
the classification described above. 

Dose escalation will continue until identification of the MTD/RD. This will 

https://doi.org/10.4236/ojs.2018.83039


M. Aout, A. Seroutou 
 

 

DOI: 10.4236/ojs.2018.83039 608 Open Journal of Statistics 
 

occur when the following conditions are met: 
1) At least 6 patients have been treated at this dose; 
2) This dose satisfies one of the following conditions: 

a) The posterior probability of targeted toxicity at this dose exceeds 50% 
and is the highest among potential doses (BDTM only). 

b) The posterior joint probability of unacceptable activity is less than 10% 
and the posterior mean of Activity and no Toxicity rate is larger than 
60% (BDEM+BDTM). 

c) Aminimum of 21 patients have already been treated. 
The thresholds above (10% and 60%) used to reject the doses with low activity 

and to select the doses with an acceptable activity without toxicity were chosen 
for illustration purpose and may be tuned to the specific study. 

The example below illustrates dose escalation part of a phase I study. For each 
cohort, numbers of DLTs and tumor responses were evaluated. At each dose es-
calation meeting, the dose-finding procedure described above was used to guide 
dose recommendation. Tables below show the summary of the data used to 
guide the dose escalation for the first 3 cohorts (Table 1(a)), and a hypothetical 
scenario of the data that could be collected for the future cohorts (Table 1(b)). 

Based on the results of the univariate models BDTM and BDEM as well as the 
bivariate model shown in Table 2, all the doses presented meet EWOC and 
maximal activity with no toxicity can be reached at 5 and 10 mg/kg dose levels. 
The RD could be declared at this range although the BDTM allows escalation to 
20 mg/kg. 

3.2. Operating characteristics  

In order to show how the design performs, 5 hypothetical and relevant scenarios 
are investigated. We consider 5 dose levels ranging from 75 mg to 1200 mg, and  
 
Table 1. (a) Data used for the dose escalation for the first 3 cohorts; (b) Hypothetical 
scenario for the future cohorts. 

(a) 

Cohort Doses(mg/kg) Number of patients Number of DLT 
Activity  

(Number of response) 

1 1 5 0 0 

2 3 10 0 3 

3 5 12 0 8 

(b) 

Cohort Doses(mg/kg) Number of patients Number of DLT 
Activity  

(Number of response) 

4 10 16 1 12 

5 15 12 1 1 

6 15 12 1 1 
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Table 2. Bayesian inference. 

 BDTM BDEM and bivariate model 

Doses 
(mg/kg) 

Posterior  
probability of  
target toxicity 

[16%, 33%] 
using BDTM 

Posterior probability 
of excessive toxicity 

[33%, 100%] 
using BDTM 

Posterior probability of 
unacceptable activity 

[0%, 30%] 
using BDEM 

Posterior mean of 
(no toxicity,  
activity) rate 

using bivariate  
model 

1 0.002 0.000 0.998 0.021 

3 0.010 0.000 0.239 0.393 

5 0.019 0.000 0.000 0.620 

10 0.215 0.000 0.000 0.618 

15 0.467 0.041 0.088 0.460 

20 0.508 0.151 0.548 0.296 

 
we assign different probabilities of toxicity and activity: 

Scenario 1: Peak of Activity occurs inside the excessive toxicity set; 
Scenario 2: Peak of Activity occurs at edge of acceptable set (close to 33% 

threshold); 
Scenario 3: Peak of Activity occurs inside targeted toxicity set; 
Scenario 4: Peak of Activity occurs inside under-dosing set; 
Scenario 5: All the doses but the starting dose is too toxic. 
For each scenario, data for 1000 trials were generated, with randomly chosen 

cohorts of size 3 to 6. The starting and maximal doses were chosen as 75 mg and 
1200 mg respectively. The maximum number of patients per trial was set to 60. 
The trial was stopped using the same rules described in Section 3.1. 

The parameter settings and simulation results for each scenario are respec-
tively presented in Tables 3-7. 

For each scenario, the proportion of patients allocated at each dose as well the 
percentage of selected dose as MTD were reported for the bivariate model 
(BDTM + BDEM) as well as when using BDTM alone. The last column in each 
table provides the average sample size as well as the percentage of trials stopped 
without determination of the MTD/RD. 

The simulated operating characteristics show that the bivariate (BDEM + 
BDTM) model performs well and has good operating characteristics under the 
five hypothetical profiles investigated. The results from the bivariate model and 
the BDTM model are consistent and the former model performs better with 
higher proportion of selecting the MTD/RD within the expected interval. In 
Scenario 1, the simulations show that there is 71% of chance for identifying the 
RD within the targeted toxicity and strong activity interval, compared to only 
36% when using the BDTM alone. While in Scenario 5, all the doses are too toxic 
except the starting dose, the simulations show that BDTM + BDEM and BDTM 
alone are consistent in enrolling only small proportion of patients to toxic doses. 
This outcome is expected as per the algorithm used which gives the priority to  

https://doi.org/10.4236/ojs.2018.83039


M. Aout, A. Seroutou 
 

 

DOI: 10.4236/ojs.2018.83039 610 Open Journal of Statistics 
 

Table 3. Scenario 1: Peak of Activity occurs inside the excessive toxicity set. 

Doses 75 150 300 600 1200 
Average sample 

size/% Stop. Trials 

Prob. True Toxicity 0.05 0.10 0.25 0.45 0.6  

Prob. True Activity 0.20 0.40 0.60 0.8 0.55  

BDTM: % allocation 23.8 38.0 33.5 4.6 0.1 N = 23 

BDTM: % selection 1.3 37.8 52.4 2.4 0 6.1 

BDEM + BDTM: % allocation 30.7 33.5 35.8 0 0 N = 24 

BDEM + BDTM: % selection 0.9 25.9 70.7 0 0 2.5 

 
Table 4. Scenario 2: Peak of activity occurs at edge of acceptable set. 

Doses 75 150 300 600 1200 Average sample 
size/% Stop. Trials 

Prob. True Toxicity 0.08 0.12 0.20 0.30 0.42  

Prob. True Activity 0.20 0.40 0.60 0.80 0.55  

BDTM: % allocation 24.6 31.7 31.6 10.4 1.7 N = 23 

BDTM: % selection 2.3 25.3 47.3 13.5 1.5 10.1 

BDEM + BDTM: % allocation 30.2 23.5 41.8 4.5 0 N = 24 

BDEM + BDTM: % selection 1.0 7.9 82.1 7.5 0 1.5 

 
Table 5. Scenario 3: Peak of activity occurs inside targeted toxicity set. 

Doses 75 150 300 600 1200 
Average sample 

size/% Stop. Trials 

Prob. True Toxicity 0.06 0.08 0.14 0.20 0.30  

Prob. True Activity 0.20 0.40 0.60 0.80 0.55  

BDTM: % allocation 20.5 3.6 30.1 18.6 7.2 N = 25 

BDTM: % selection 0.5 9.6 37.2 33.1 14.5 5.1 

BDEM + BDTM: % allocation 22.6 19.9 39.4 18.1 0 N = 24 

BDEM + BDTM: % selection 0.2 1.2 54.4 44.1 0.1 0 

 
Table 6. Scenario 4: Peak of activity occurs inside under-dosing set. 

Doses 75 150 300 600 1200 
Average sample 

size/% Stop. Trials 

Prob. True Toxicity 0.02 0.05 0.09 0.18 0.30  

Prob. True Activity 0.4 0.6 0.8 0.65 0.40  

BDTM: % allocation 19.7 19.7 19.8 36.7 4.1 N = 23 

BDTM: % selection 0.0 0.0 0.5 91.7 7.8 0 

BDEM + BDTM: % allocation 20.9 23.5 49.0 6.5 0.1 N = 23 

BDEM + BDTM: % selection 0.9 5.3 82.7 11.1 0.0 0 

 

the safety. The chance to stop the trial due to high toxicity of all dose levels is 
higher in BDTM + BDEM than in BLRM alone. In Scenario 2, the simulations 
show that there is 82.1% of chance for identifying the RD at 300 mg although the 
peak of activity is reached at 600 mg. This is partly due to the fact that the  
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Table 7. Scenario 5: All the doses but the starting dose is too toxic. 

Doses 75 150 300 600 1200 
Average sample 

size/% Stop. Trials 

Prob. True Toxicity 0.26 0.41 0.57 0.75 0.87  

Prob. True Activity 0.4 0.6 0.8 0.65 0.40  

BDTM: % allocation 62.3 34.6 3.1 0.0 0.0 N = 11 

BDTM: % selection 24.7 21.3 0.9 0.0 0.0 53.1 

BDEM + BDTM: % allocation 64.9 33.4 1.7 0.0 0.0 N = 13 

BDEM + BDTM: % selection 18.6 16.0 0.6 0.0 0.0 64.8 

 
probability of toxicity at 600 mg is close to the 33% level which is the lower 
bound of the excessive toxicity interval. However, in this scenario the bivariate 
model outperforms the BDTM in terms of RD selection and patients’ allocation 
to the doses with higher activity and acceptable toxicity. In Scenario 3, all the 
doses’ toxicity rates are below 33% and are considered within the acceptable 
toxicity set. Therefore, the bivariate model selected the RD at either 300 mg or 
600 mg with a probability of 98.2%. 

In Scenario 4, the simulations show that when using the bivariate model, only 
6.5% of patients are treated at 600 mg level compared with 36.7% when using 
BDTM model alone. Although the simulations show similar average sample sizes 
for the two models, one can declare RD at 300 mg using the bivariate model and 
therefore reduce the duration of the study. In conclusion, the simulations per-
formed illustrate that the bivariate model has good operating characteristics and 
outperforms the BDTM alone. 

4. Discussion 

Several reviews report that toxicity has been the most prevalent endpoint used to 
define RD in phase I trials [13] [17]. However, novel cancer therapies may not 
have dose dependent toxicities and there is a need of additional data and para-
meters to further guide the RD determination. The approach presented in this 
paper takes into consideration both safety and efficacy data and can successfully 
improve the determination of the RD by jointly modeling efficacy and toxicity. 
The bivariate model has a flexible structure that considers the toxicity-efficacy 
association and the marginal structure of the toxicity and efficacy models. Also, 
the BDEM model allows fitting different dose response shapes. In addition, the 
setting is flexible since it uses all the available data at any given time point and it 
doesn’t prevent escalation to proceed if only safety data are available and efficacy 
data are not critical for next decision. In practice, it is also still possible for the 
clinical team to override the model decision based on any additional available 
data and to select a different safe dose (i.e. target toxicity not exceeded). The re-
sults of the operating characteristics show that the bivariate model performs 
better than BDTM alone over a variety of true model settings. 

On the other hand, the design methodology described in this paper can be 
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modified to use a different toxicity modelling and generalized to take into con-
sideration trials with combined drugs. A limitation of this design is that it de-
pends on the availability of the tumor response. Close collaboration between cli-
nicians and statisticians is needed to choose appropriate surrogate efficacy end-
points, and to define clinically relevant thresholds to be used for these decisions. 
Additional work is in progress to assess different forms of association between 
efficacy and toxicity as an alternative to the global cross-ratio model and their 
impact on the estimation of the joint probabilities. The use of continuous data 
for the efficacy model combined with PK data as well as toxicity models is also 
under investigation. 
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