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Abstract 
The coronal mass ejections (CMEs) produce by Sun poloidal magnetic fields 
contribute to geomagnetic storms. The geomagnetic storm effects produced 
by one-day-shock, two-days-shock and three-days-shock activities on Oua-
gadougou station F2 layer critical frequency time variation are analyzed. It is 
found that during the solar minimum and the increasing phases, the shock ac-
tivity produces both positive and negative storms. The positive storm is ob-
served during daytime. At the solar maximum and the decreasing phases only 
the positive storm is produced. At the solar minimum there is no 
three-days-shock activity. During the solar increasing phase the highest am-
plitude of the storm effect is due to the one-day-shock activity and the lowest 
is produced by the two-days-shock activity. At the solar maximum phase the 
ionosphere electric current system is not affected by the shock activity. Nev-
ertheless, the highest amplitude of the storm effect is caused by the 
two-days-shock activity and the lowest by the one-day-shock activity. During 
the solar decreasing phase, the highest amplitude provoked by the storm is 
due to the three-days-shock activity and the lowest by the one-day-shock ac-
tivity. 
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1. Introduction 

The Sun has magnetic field that interacts with interplanetary medium by means 
of its components. The first, namely poloidal magnetic field, is closed and is re-
sponsible for coronal mass ejections (CMEs). The second, an opened magnetic 
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field is the source of solar winds (slow solar wind, high stream solar wind, re-
current solar wind and fluctuating solar wind [1] [2] [3] [4]. These solar events 
provoke four different geomagnetic situations. In fact, 1) the quiet solar wind 
induces quiet geomagnetic events; 2) the fluctuating wind is responsible for 
fluctuating geomagnetic activity; 3) the recurrent solar wind causes recurrent 
geomagnetic activity and 4) CMEs produce shock activity. 

As the ionospheric storms are closely associated with the geomagnetic storms 
[5] [6], we investigate the geomagnetic storm effect on the ionosphere F2 region. 
Here, are interest the storms due to CMEs actions. Studies of the other disturbed 
activities (the recurrent and the fluctuating activities) impacts on the ionosphere 
F2 region specifically in the African equatorial ionization anomaly (EIA) sector 
are out of the topic of the present study. 

To investigate CMEs action on the ionosphere, Ouagadougou ionosonde sta-
tion (Lat: 12.4˚N; Long: 358.5˚E; dip: 1.43˚) F2 layer critical frequency (foF2) 
will be used. Keeping in mind that the response of the ionosphere to storms is 
rather complicated [5] and comprehensive understanding of nonlinear interac-
tion among the thermosphere, ionosphere and magnetosphere during geomag-
netic storms remains a challenge to be identified/to be understood [7]. To con-
tribute to this challenge, the present work investigates the effect on the ionos-
phere due to CMEs storm activity. 

For better investigating the CMEs storm activity on ionosphere, we consider 
the duration time skill of the storm action on the ionosphere. The storm action 
duration time skill gives an opportunity to classify the CMEs storms by means of 
pixel diagrams (see Figure 1). Pixel diagrams show per year an overview of the 
whole solar geoeffectiveness activity (each type of the solar wind activity [slow, 
recurrent and fluctuating winds activity] and that of CMEs [8]). 

Our goal through this study is to analyze each type of the shock impacts on 
 

 
Figure 1. Year 1990 pixel diagram for highlighting each type of activity days. 
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Ouagadougou station foF2 time variation as recommended by [9]. For doing 
that, we analyze the pixel diagrams. The analysis of the pixel diagrams let us see 
the three type of CMEs storm activity called after shock activity as defined by 
[1]. The starting day of the shock activity on the ionosphere in the pixel dia-
grams is identified by the date of SSC (Sudden Storm Commencement) indi-
cated by the circle that encircles the geomagnetic index Aa daily values (we give 
in the Section 2 the detail on that). The retained shocks are: one-day-shock (its ac-
tion time duration on the ionosphere does not exceed one day), two-days-shock 
(its action time duration on the ionosphere is more than one day and does not 
exceed two days) and three-days-shock (its action time duration on the ionos-
phere is more than two days and does not exceed three days). This point is the 
novelty of the paper for its storm steady approach differs from those of several 
papers which treat a particularly shock event (short time variation, effect of 
storm time different phases with respect to Dst [disturbance storm time] time 
variation) or address statistical ionosphere F2 layer parameters variability under 
individual storm activity (e.g. [10]-[32]). Our objective is, in short term, to 
present the signature of the storm effect on the equatorial ionospheric currents 
(equatorial electrojet and equatorial counter electrojet) variability and their 
strength and in mean and long term to contribute to improve the existing mod-
els’ predictability and also to address the space weather issues. 

2. Materials and Methods 
2.1. The Criteria for Determining the Solar Cycle Phases 

For the solar cycle phases determination, we use the following criteria [33] [34] 
[35] [36]: 1) minimum phase: Rz < 20; 2) ascending phase : 20 ≤ Rz ≤ 100 and Rz 
greater than the previous year’s value; 3) maximum phase : Rz > 100 [for small 
solar cycles (solar cycles with sunspot number maximum (Rz max) less than 
100) the maximum phase is obtained by considering Rz > 0.8*Rz max]; and 4) 
descending phase: 100 ≥ Rz ≥ 20 and Rz less than the previous year’s value. In 
these previous inequations, Rz is the yearly average Zürich sunspot number. 

2.2. The Method for Determining the Shock Activity 

The geomagnetic storm is defined as a phenomenology of a middle- and 
low-latitude-geomagnetic variations that can be identified by the intensification 
of the ring current which is the source of the low-frequency component of storm 
magnetic variation and quantified by the Dst (disturbance storm time) index 
[37]. For studying the geomagnetic storm, in this paper, Aa index [38] [39] daily 
values, are used through pixel diagrams. A pixel diagram helps to select geo-
magnetic data as a function of the solar activity as described by solar rotation (27 
days) [9]. The pixel diagrams consist of 1) plotting the Aa daily values in Bartels 
diagrams, 2) exhibiting the shock activity (very active spot on solar disc) [1] by 
showing SSC (sudden storm commencement) dates in these diagrams (indicated 
by the circle: see Figure 1) because SSC date corresponds to the starting time of 
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geomagnetic storm [6] and 3) adopting a color codes that help to define a geo-
magnetic activity intensity. According to [1] shock activity is estimated by taking 
account 2 or 3 disturbed days after SSC date without a recurrence of 27 days 
during 2, 3 or 4 rotations. By keeping in mind the above conditions for shock ac-
tivity determination, the analysis of a pixel diagram shows the well-known four 
geomagnetic classes of activity (quiet, recurrent, fluctuating somewhere name 
unclear activities and shock activities [three types of shock activity correspond-
ing to (a) one-day-shock (shown by only a day when occurs SSC), (b) 
two-days-shock ( pointed out by the SSC day with a day after this day) and (c) 
three-days-shock (identified by the SSC day with two days after this day)]. As 
noted in introduction section, we only focus our attention on shock activity ef-
fects. The other disturbed activities (recurrent activity and fluctuating activities) 
actions on ionosphere variability are out the topic of the present paper. 

In this paper, Ouagadougou station foF2 (three solar cycles (1966-1998) data) 
values are carried out for each type of shock. For the period involves 
(1966-1998), we have 323 shock days with 168 days of the one-day-shock, 105 
days of the two-days-shock and 50 days of the three-days-shock. 

2.3. The Method for Analyzing the Data 

Each type of shock values (arithmetic hourly mean values) are plotted in a same 
panel which corresponds to each solar cycle phase. In order to appreciate the ef-
fect of each type of shock, their graphs are compared with that of the quietest 
time (determined by considering the five quietest days in a month). The error 
bars shown in the quietest time graph, help us. The error bars applied are carried  

out by means of Vσ =  where the variance V is defined by ( )2
1

1 N
ii x x

N =
−∑   

with x  mean value and N the total number of observations for a particular da-
taset. 

Before the comparison, with respect to our objectives, foF2 time profiles of 
each shock are described by reference to [40] profiles (see Figure 2). Figure 2 
shows the five typical foF2 time profiles in African EIA (Equatorial Ionization 
Anomaly) sector. These profiles are called the noon bite out profile or “B” pro-
file (panel a), the morning peak profile or “M” profile (panel b), the dome profile 
or “D” profile (panel c), the plateau profile or “P” profile (panel d) and the re-
verse profile or “R” profile (panel e). These profiles can be recorded to the equa-
torial ionosphere electric currents (equatorial electrojet and equatorial counter 
electrojet) strength, presence or absence, by reference to the electric current 
day-to-day time variation under the quiet time condition [41] [42]. 

3. Results and Discussion 

Figures 3-6 present the statistical arithmetic mean foF2 values diurnal variation 
under different solar cycle phases for the quietest period (solid curve) and for 
the three types of shock (one-day-shock (dotted curve), two-days-shock (broken  
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Figure 2. foF2 profile types after [40]. Panel a concerns noon bite out profile that ex-
presses the signature of strong electrojet; panel b called morning peak profile and exhibits 
the signature of mean electrojet; panel c profile is dome profile and that of panel d is pla-
teau profile. These two profiles characterized the absence of electrojet. Panel e profile is 
reverse profile and expresses the signature of strong counter electrojet. 
 

 
Figure 3. foF2 diurnal variation during sunspot minimum phase under one-day-shock 
(dotted), two-days-shock (broken), three-days-shock (broken and dotted) and quiet-
est-days (solid). 
 
curve) and three-days-shock (broken and dotted graph). Figure 3 concerns the 
solar minimum phase, Figure 4 addresses the solar maximum phase, Figure 5 is  
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Figure 4. The same as Figure 3 but for solar ascending phase. 
 

 
Figure 5. The same as Figure 3 but for solar maximum phase. 
 
devoted to the solar increasing phase and Figure 6 concerns the solar decreasing 
phase. 

Figure 3 shows that there is no three-days-shock. One-day-shock profile is the 
plateau profile with an evening peak at 1800 LT. Two-days-shock curve shows 
the noon bite out profile with a night time peak at 2000 LT. 

The quietest curve highlights the reverse profile. According to foF2 profiles 
(Figure 2) during the minimum phase, the shock action modifies the ionosphere  
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Figure 6. The same as Figure 3 but for solar declining phase. 
 
variability shown by the modified foF2 profiles during the storm time with re-
spect to the quietest profile. At low altitude, as the storm maybe due to one or 
the combined action of thermospherics composition changes, the eastward 
prompt penetration electric fields, and the equatorward neutral wind [43]-[53], 
the storm action can induce change in the ionosphere electric current system. 
This change produces an effect on ground base magnetic field instruments. Ac-
cording to [41] [42], the analysis of the signature of the ionosphere electric cur-
rent found that each foF2 profile can be expressed in term of: 1) the presence or 
the absence of ionosphere electric current and 2) the strength of ionosphere 
electric current. In low latitude, the ionospheric electric currents are the equa-
torial electrojet and the equatorial counter electrojet. Analyzing the Figure 2, 
according to [40], from top to bottom we have a strong electrojet, a mean elec-
trojet, an absence of electrojet, an absence of electrojet and a strong counter 
electrojet, respectively. These results show that to correctly model the shock ac-
tivity on the ionosphere, during the solar minimum phase, it will be better to 
take into account each type of shock. 

In Figure 3, from daytime to nighttime, the shock activity increases foF2 val-
ues. For two-days-shock, we always have  

two-days-shock quietest-daysfoF2 value foF2 value>  except between 0600 LT and 0700 LT 
where it is the reverse. For one-day-shock we have from 1000 LT to 2300 LT 

one-day-shock quietest-daysfoF2 value foF2 value>  except from 0500 LT to 1000 LT where 
it is the reverse. It can be concluded that the shock activity usually produces pos-
itive storm (a storm foF2 values are superior to those of the quietest periods) 
[54] which, in this latitude, traduces F2-layers uplifting that is caused by ExB 
drift-induced [55]. The different observed profiles underline the necessity to 
treat each type of shock as a specific case for well understand the all mechanism 
for electrodynamics point of view. 
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Figure 4 concerns the solar increasing phase. In this figure, 1) the quiet-
est-days profile is a “B” profile with a night time peak at 2400 LT, 2) the 
one-day-shock profile corresponds to a “R” profile with a night time peak at 
2300 LT, 3) a fairly “M” profile for the three-days-shock profile and 4) a “B” 
profile when is concerned the two-days-shock profile with the predominance 
morning peak. For the two-days-shock and the three-days-shock profiles, there 
is no nigh time peak. The analysis of Figure 4 shows a positive storm from 1000 
LT to 1900 LT for the one-day-shock, from 1000 LT to 1600 LT for the 
three-days-shock and between 1100 LT-1300 LT for that concerned the 
two-days-shock. Negative storm (a storm foF2 values are inferior to those of the 
quietest periods) appears between 0000 LT and 0500 LT and from 2200 LT to 
0000 LT during one-day-shock activity. This is also true for the three-days-shock 
from 2300 LT to 2400 LT. Reference [53] pointed out that at the low-latitude re-
gions, the nightside ionospheric negative phase is the dominant response to the 
geomagnetic storm. Here, we found that only the two-days-shock and the 
three-days-shock activities confirm what have been observed by [53]. This result 
underlines the necessity to take into account storm time duration in term of day 
for statistical CMEs storms activity studies. 

In general, the critical frequency values can be classified as:  

one-day-shock three-days-shock two-days-shockfoF2 value foF2 value foF2 value> > . 
At daytime as a “B” profile expresses the signature of ExB [56] [57] [58], the 

above observations show that only the three-days-shock does not affect this sig-
nature. At night time, because a night time peak is due to the signature of the 
reversal electric field in this latitude [56] [57] [58] [59] we can assert from the 
profile observation that only the one-day-shock action does not disturbe the ef-
fect of the reversal electric. 

Figure 5 presents foF2 profiles for the solar maximum phase. It is shown that 
all foF2 profiles are a “M” profile. This observation points out that the shock ac-
tivity does not modify the foF2 profile. Consequently, the current system is not 
affected by the shock action during the solar maximum phase. But at nighttime, 
even though a nighttime peak is observed in all graphs, the time of its appear-
ance is different: 1900 LT for the one-day-shock, 2300 LT for the 
three-days-shock and the quietest time and after 2300 LT for the 
two-days-shock. As a nighttime peak in the foF2 diurnal variation graph is the 
signature of the reversal electric field in the equatorial region [56] [57] [58] [59], 
it can be retained that during the solar maximum phase, the reversal electric field 
occurs early for the one-day-shock activity and later for the two-days-shock activ-
ity periods and remains as during the quietest period for the two-days-shock ac-
tivity. In general, a positive storm is produced by all shocks except between 2100 
LT and 2300 LT during the one-day-shock and the two-days-shock activities. It 
can be retained from 1000 LT to 1300 LT  

two-days-shock three-days-shock one-day-shockfoF2 foF2 foF2> > , from 0200 LT to 1000 LT 

two-days-shock three-days-shock one-day-shockfoF2 foF2 foF2≅ > , from 2100 LT to 2400 LT 
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three-days-shock two-days-shock one-day-shockfoF2 foF2 foF2> >  and between 0000 LT -0200 LT 

one-day-shock three-days-shock two-days-shockfoF2 foF2 foF2> ≅ . 
Figure 6 concerns the foF2 profiles for the solar decreasing phase. In this fig-

ure, the quietest-days profile is a fairly “B” profile with a night time peak at 2200 
LT, the one-day-shock profile corresponds to a “R” profile with a night time 
peak at 2200 LT, a “D” profile with a night time peak at 2300 LT is observed 
when occurs the two-days-shock and a “B” profile with a fairly night-time peak 
at 2300 LT is seen when acts the three-days-shock. Figure 6 analysis shows that 
there is no negative storm. The signature of the reversal electric field is seen one 
hour after due to the effect of the two-days-shock or the three-days-shock. The 
one-day-shock activity does not induce this time delay with respect to the quiet-
est period. During daytime, only the two-days-shock activity does not disturb 
the effect of the signature of ExB. 

During daytime, Figure 6 shows that from 0800 LT to 1500 LT 

three-days-shock two-days-shock one-day-shockfoF2 value foF2 value foF2 value> > . From 1500 to 
1700 LT and between 1700 to 1800 LT we have  

three-days-shock one-day-shock two-days-shockfoF2 value foF2 value foF2 value> >  and 

three-days-shock one-day-shock two-days-shockfoF2 value foF2 value foF2 value≅ > , 

4. Conclusion 

The shock activity due to CMEs is analyzed by taking into account shock time 
duration, one, two or three days through solar cycle phases. During the period 
involved, during the solar minimum and the increasing phases shock activity 
produces positive and negative storms and especially positive storm at daytime. 
During the two last solar cycle phases only positive storm is produced by the 
shock activity. Generally, each type of shock modifies ionospheric the electric 
current system except during the solar maximum phase. The storm effect am-
plitude expresses the solar cycle dependence and also the shock time duration in 
day. At daytime, we have 1) for the solar increasing phase  

one-day-shock three-days-shock two-days-shockfoF2 value foF2 value foF2 value> > ; 2) the during 
solar maximum phase two-days-shock three-days-shock one-day-shockfoF2 foF2 foF2> >  and for 
the solar descending phase two-days-shock three-days-shock one-day-shockfoF2 foF2 foF2> > . 
Only during the solar minimum there is no three-days-shock activity. These ob-
servations point out the necessity to separate the shock activity into the three 
types of shock activity in term of time duration in day for well-model ionosphere 
response to shock activity and for space weather study issues. 
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