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Abstract 
Approximate Bayesian Computation (ABC) is a popular sampling method in 
applications involving intractable likelihood functions. Instead of evaluating 
the likelihood function, ABC approximates the posterior distribution by a set 
of accepted samples which are simulated from a generating model. Simulated 
samples are accepted if the distances between the samples and the observation 
are smaller than some threshold. The distance is calculated in terms of sum-
mary statistics. This paper proposes Local Gradient Kernel Dimension Reduc-
tion (LGKDR) to construct low dimensional summary statistics for ABC. The 
proposed method identifies a sufficient subspace of the original summary sta-
tistics by implicitly considering all non-linear transforms therein, and a 
weighting kernel is used for the concentration of the projections. No strong 
assumptions are made on the marginal distributions, nor the regression mod-
els, permitting usage in a wide range of applications. Experiments are done 
with simple rejection ABC and sequential Monte Carlo ABC methods. Results 
are reported as competitive in the former and substantially better in the latter 
cases in which Monte Carlo errors are compressed as much as possible. 
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1. Introduction 

Monte Carlo methods are popular in sampling and inference problems. While 
the Markov Chain Monte Carlo (MCMC) methods find successes in applications 
where likelihood functions are known up to an unknown constant, MCMC 
cannot be used in scenarios where likelihoods are intractable. For these cases, if 
the problem can be characterized by a generating model, Approximate Bayesian 
Computation (ABC) can be used. ABC is a Monte Carlo method that approx-
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imates the posterior distribution by jointly generating simulated data and para-
meters and does the sampling based on the distance between the simulated data 
and the observation, without evaluating the likelihoods. ABC was first intro-
duced in population genetics [1] [2] and then been applied to a range of complex 
applications including dynamical systems [3], ecology [4], Gibbs random fields 
[5] and demography [6]. 

The accuracy of ABC posterior depends on sufficiency of summary statistics 
and Monte Carlo errors induced in the sampling. Given the generative model 
( )|p y θ  of observation obsy  with parameter θ , consider summary statistics 

( )obs s obss G y=  and ( )ss G y= , where :sG Y S→  is the mapping from the 
original sample space Y to low dimensional summary statistics S. The posterior 
distribution, ( )| obsp yθ , is approximated by ( )| obsp sθ , which is constructed 
as ( ) ( )| , | dobs ABC obsp y p s s sθ θ= ∫ , with 

( ) ( ) ( ) ( ), | | ,ABC obs obsp s s p p s K s sθ θ θ∝ −              (1) 

where K is a smoothing kernel with bandwidth  . In the case of simple rejec-
tion ABC, K is often chosen as an indicator function ( )obsI s s−  . If the 
summary statistics s are sufficient, it can be shown that (1) converges to the 
posterior ( )| obsp sθ  as   goes to zero [7]. 

As shown above, the sampling is based on the distance between the summary 
statistics of the simulated sample s and the observation obss . Approximation er-
rors are induced by the distance measure and are proportional to the distance 
threshold  . It is desirable to set   as small as possible, but a small threshold 
will increase the simulation time. This is a trade-off between the accuracy and 
the efficiency (simulation time). According to recent results on asymptotic 
properties of ABC [8] [9], assuming that the summary statistics follow the cen-
tral limit theorem, the convergence rate of ABC when accepted sample size 
N →∞  is depended on the behavior of Ndµ =  , where   is the threshold 
above and the Nd  is defined as of same magnitude of ( )Neigen Σ , the eigen-
values of the covariance matrix of the summary statistics as the function of N. In 
practice, if a specific sampling method is chosen, the threshold   is constrained 
by the computing resources and time, and thus can be accordingly determined. 
The design of summary statistics then remains the most versatile and difficult 
part in developing an efficient ABC algorithm. To avoid the “curse of dimensio-
nality”, summary statistics should be low dimensional in addition of sufficiency. 

A vast body of literature of ABC has been published. Many are devoted to re-
duce the sampling error by using more advanced sampling methods, from sim-
ple Rejection method [10], Markov Chain Monte Carlo (MCMC) [11] to more 
sophisticated methods like sequential Monte Carlo [3] [12] and adaptive sequen-
tial Monte Carlo methods [13]. 

In this paper, we focus on the problem of summary statistics. In early works of 
ABC, summary statistics are chosen by domain experts in an ad-hoc manner. It 
is manageable if the dimensionality is small which the model is well understood 
by the experts. But choosing a set of appropriate summary statistics is much 
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more difficult in complex models. To address this problem, a set of redundant 
summary statistics are constructed as initial summary statistics; dimension re-
duction methods are then applied yielding a set of low dimensional summary 
statistics while persevering the information. 

Many dimension reduction methods have been proposed for ABC. Entropy 
based subset selection [14], partial least square [15], neural network [16] and 
expected posterior mean [17] are a few of them. The entropy based subset selec-
tion method works well in instances where the set of low dimensional summary 
statistics is a subset of the initial summary statistics, but the computational com-
plexity increases exponentially with the size of the initial summary statistics. The 
partial least square and neural network methods aim to capture the nonlinear 
relationships of the original summary statistics. In both cases, a specific form of 
the regression function is assumed. A comprehensive review [18] discusses the 
methods mentioned above and compares the performances. While the results 
are a mixed bag, it is reported that the expected posterior mean method 
(Semi-automatic ABC) [17] produces relatively better results compared to the 
methods mentioned above in various experiments. It is a popular choice also due 
to its simplicity. 

Semi-automatic ABC [17] uses the estimated posterior mean as summary sta-
tistics. A pilot run of ABC is conducted to identify the regions of parameter 
space with non-negligible probability mass. The posterior mean is then esti-
mated using the simulated data from that region and is used as the summary sta-
tistics in a formal run of ABC. A linear model of the form: ( ) ( )i

i ifθ β= + y  is 
used in the estimation, where ( )f y  are the possibly non-linear transforms of 
the data. For each application, the features ( )f y  are carefully designed to 
achieve a good estimation. In practice, a vector of powers of the data 

( )2 3 4, , , ,y y y y  is often used as noted in [17]. 
To provide a principled way of designing the regression function, capturing 

the higher order non-linearity and realizing an automatic construction of sum-
mary statistics, we introduce the kernel based sufficient dimension reduction 
method as an extension of the linear projection based Semi-automatic ABC. This 
dimension reduction method is a localized version of gradient based kernel di-
mension reduction (GKDR) [19]. GKDR estimates the projection matrix onto 
the sufficient subspace by extracting the eigenvectors of the kernel derivatives 
matrices in the reproducing kernel Hilbert spaces (RKHS). We give a brief re-
view of this method in Section 2. In addition to the GKDR, in which the estima-
tion averages over all data points to reduce variance, a localized GKDR is pro-
posed by averaging over a small neighborhood around the observation in ABC. 
Each point is weighted using a distance metric measuring the difference between 
the simulated data and the observation. The idea is similar to role of the distance 
kernel function in (1). Another proposal is to use different summary statistics 
for different parameters. Note that sufficient subspace for different parameters 
can be different, depending on the particular problem. In these cases, applying 

 

DOI: 10.4236/ojs.2018.83031 481 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2018.83031


J. Zhou, K. Fukumizu 
 

separated dimension reduction procedures yield better estimations of the para-
meter. 

The proposed method gives competitive results in comparison with 
Semi-automatic ABC [17] when using simple rejection sampling. Substantial 
improvements are reported in the sequential Monte Carlo cases, where threshold 
  are pushed to as small as possible to isolate the performance of summary sta-
tistics from the Monte Carlo errors. 

The paper is organized as follows. In Section 2, we review GKDR and intro-
duce its localized modification followed by discussions of computation consid-
erations. In Section 3, we show simulation results for various commonly con-
ducted ABC experiments, and compare the proposed method with the 
Semi-automatic ABC. 

2. Local Kernel Dimension Reduction  

In this section, we review the Gradient based Kernel Dimension Reduction 
(GKDR) and propose the modified Local GKDR (LGKDR). Discussions are giv-
en at the end of this section. 

2.1. Gradient based kernel Dimension Reduction  

Given observation ( ),s θ , where ms∈  are initial summary statistics and 
θ ∈  is the parameter to be estimated in a specific ABC application. Assuming 
that there is a d-dimensional subspace dU ⊂  , d m<  such that 

T| ,s B sθ ⊥                            (2) 

where ( )1, , dB β β= 
 is the orthogonal projection matrix from m  to d . 

The columns of B spans U and T
dB B = I . Condition (2) shows that given TB s , 

θ  is independent of the initial summary statistics s. It is then sufficient to use d 
dimensional constructed vector Tz B s=  as the summary statistics. This sub-
space U is called effective dimension reduction (EDR) space [20] in classical di-
mension reduction literatures. While there are a tremendous amount of pub-
lished works about estimating the EDR space, in this paper, we propose to use 
GKDR in which no strong assumption of marginal distribution or variable type 
is made. The following is a brief review of GKDR, and for further details, we re-
fer to [19] [21] [22]. 

Let ( )1, , m d
dB β β ×= ∈   be the projection matrix to be estimated, and 

Tz B s= . We assume (2) is true and ( ) ( )| |p s p zθ θ=  . The gradient of the re-
gression function is denoted by s∇  as 

( ) ( ) ( )| | |
s

E s E z E z
B

s s z
θ θ θ∂ ∂ ∂

∇ = = =
∂ ∂ ∂

           (3) 

which shows that the gradients are contained in the EDR space. Given the fol-
lowing estimator  

T T
s sM E BAB = ∇ ∇ =  , 

where  
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( ) ( )T T| |ij i jA E E s E sθ β θ β =   , , 1, ,i j d=  .  

The projection directions β  lie in the subspace spanned by the eigenvectors of 
M. It is then possible to estimate the projection directions using eigenvalue de-
composition. In GKDR, the matrix M is estimated by the kernel method de-
scribed below. 

Let Ω  be an non-empty set, a real valued kernel :k Ω×Ω→  is called 
positive definite if ( ), 1 0n

i j i ji j c c k x x
=

⋅ ≥∑  for any ix ∈Ω  and ic ∈ . Given a 
positive definite kernel k, there exists a unique reproducing kernel Hilbert space 
(RKHS) H associated with it such that: (1) ( ),k x⋅  spans H; (2) H has the re-
producing property [23]: for all x∈Ω  and f H∈ , ( ) ( ), ,f k x f x⋅ = . 

Given training sample ( ) ( )1 1, , , ,n ns sθ θ
,  

let ( ) ( )2 2, expS i j i j Sk s s s s σ= − −  and ( ) ( )2 2, expi j i jk θ θ θ θ σΘ Θ= − −  

be Gaussian kernels defined on m  and  , associated with RKHS SH  and 
HΘ , respectively. With assumptions of boundedness of the conditional expecta-
tion ( )|E S sθ =  and the average gradient functional with respect to z, the 
functional can be estimated using cross-covariance operators defined in RKHS 
and the consistency of their empirical estimators are guaranteed [22]. Using 
these estimators, we construct a covariance matrix of average gradients as 

( ) ( ) ( ) ( ) ( )T 1 1ˆ
n i S i S n n S n n S iM s s G n I G G n I s− −

Θ= ∇ + + ∇ k k      (4) 

where SG  and GΘ  are Gram matrices ( ),S i jk s s  and ( ),i jk θ θΘ , respective-
ly. n m

S
×∇ ∈k  is the derivative of the kernel ( ),S is⋅k  with respect to is , and 

n  is a regularization coefficient. This matrix can be viewed as the straight for-
ward extension of covariance matrix in principle component analysis (PCA); the 
data here are the features in RKHS representing the gradients instead of the gra-
dients in their original real space. 

The averaged estimator ( )1
ˆ1 n

n iiM n M s
=

= ∑  is calculated over the training 
sample ( ) ( )1 1, , , ,n ns sθ θ

. Finally, the projection matrix B is estimated by tak-
ing d eigenvectors corresponding to the d largest eigenvalues of M  just like in 
PCA, where d is the dimension of the estimated subspace. 

2.2. Local Modifications  

As discussed above, the estimator M  is obtained by averaging over the train-
ing sample is . When applied to ABC, since only one observation sample is 
available, we propose to generate a set of training data using the generating 
model and introduce a weighting mechanism to concentrate on the local region 
around the observation and avoid regions with low probability density. 

Given simulated data 1, , NX X  and a weight kernel : m
wK →  , we 

propose the local GKDR estimator 

( ) ( )
1

1 ˆ
N

w i i
i

M K X M X
N =

= ∑                    (5) 

 

DOI: 10.4236/ojs.2018.83031 483 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2018.83031


J. Zhou, K. Fukumizu 
 

where M̂  is m m×  matrix and ( )w iK X  is the corresponding weight. 
( )wK x  can be any weighting kernel. In the numerical experiments, a triweight 

kernel is used, which is written as 

( ) ( )
2

32
1 21 , i obs

w i u
th obs

X X
K X u u

X X
<

−
= − =

−
1  

where 1u<1  is the indicator function, and thX  is the threshold value which de-
termines the bandwidth. The normalization term of the triweight kernel is omit-
ted since it does not change the eigenvectors we are estimating. The bandwidth 
determined by thX  is chosen by empirical experiments and will be described in 
0. The Triweight kernel is chosen for its concentration in the central area than 
other “bell shaped” kernels and works well in our experiments. Other distance 
metrics could be used instead of squared distance. 

The idea of the proposed estimator is similar to the ABC estimator itself. 
Without the weighting and the concentration, the estimator will be averaged 
over all iX , regardless of the distribution it is generated from. Since the basic 
assumption of GKDR is that the response variable Y should come from the same 
distribution, we cannot expect good result simply using all samples without 
proper weighting. The form of the estimator is the classic Nadaraya-Watson es-
timator without normalization. 

Description of LGKDR algorithm is given in Algorithm 1. Procedure Gener-
ate Sample is the algorithm to generate sample with parameter as input. Proce-
dure LGKDR is the algorithm to calculate matrix ( )iM X  as given in (4) and 
(5). 

Since the dimension reduction procedure is done before the sampling, it 
works as a pre-processing unit to the main ABC sampling procedure. It can be 
embodied in any ABC algorithm using different sampling algorithms. In this 
paper, the rejection sampling method is firstly employed for its simplicity and 
low computation complexity as a baseline. Further results on Sequential Monte 
Carlo ABC are also reported to illustrate the advantage of the purposed method.  
 

 
Algorithm 1. LGKDR. 
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In these experiments, the distance thresholds are pushed to as small as possible 
to suppress the Monte Carlo errors and isolate the effects of summary statistics 
alone. 

2.3. Separated Dimension Reduction  

In some problems, not all summary statistics are necessary for every parameter. 
For example, in the M/G/1 Queue model, the parameter θ3 that controls the dis-
tribution of the inter-arrival time are not related to the parameters θ1 and θ2, 
which jointly determine the distribution of the service time. It can be expected 
that using different sets of summary statistics for θ3 with smaller dimensionality 
would improve the sampling efficiency. To do that, the information that is unre-
lated to the particular parameter is dropped in the dimensional reduction in ex-
change of lower dimensionality. The experiments show that better results can be 
achieved using these settings. 

More precisely, LGKDR incorporates information of θ in the calculation of 
gradient matrix M . If θ is a vector, the relation of different elements of θ is 
contained in the gram matrix Gθ  as in (4). Separate estimations concentrate on 
the information of the specific parameter rather than the whole vector. As 
shown in the experiments in Section 3.2, it can construct significantly more in-
formative summary statistics in some problems by means of reducing estimation 
error. 

For Semi-automatic ABC [17], the summary statistic for each parameter is the 
estimated posterior mean, thus naturally separated. However, if these 1 dimen-
sional vectors are used for each parameter separately, the results are not every 
good. For best subset selection methods [15] [24], summary statistics are chosen 
as the best subset of the original summary statistics using mutual information or 
sufficiency criterion. It can also be extended to a separated selection procedure. 
In LGKDR, we simply construct summary statistics by using only the particular 
parameter as the response variable. 

2.4. Discussion on Hyper Parameters 

In this section, we discuss the parameters for LGKDR. Parameters for the ABC 
sampling will be discussed in the experiments section. 

First, the bandwidth of the weighting kernel affects the accuracy of LGKDR. 
By selecting a large bandwidth, the weights of directions spread out a larger re-
gion around the observation points. A small bandwidth concentrates the weights 
on the directions estimated close to the observation sample. In our experiments, 
a bandwidth corresponding to an acceptance rate of approximately 10% gives a 
good result and is used throughout the experiments. The same parameter is set 
for the Semi-automatic ABC as well for the similar purpose. A more principled 
method for choosing bandwidth, like cross validation, could be applied to select 
the acceptance rate if the corresponding computation complexity is affordable. 

The bandwidth of the Gaussian kernels Sσ , σΘ  and the regularization pa-
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rameter n  are crucial to all kernel based methods. The first two determine the 
function spaces associated with the positive definite kernels and the latter affects 
the convergence rate (see [25]). In this paper, cross validation is adopted to se-
lect the proper parameters. In the cross validation, for each set of candidate pa-
rameters, the summary statistics are constructed using a simulated observation 

,obs obssθ , a training set ( )training training, Sθ  and a test set ( )test test, Sθ . A small pilot 
run of rejection ABC is performed and the estimation of parameters are calcu-
lated by kNN regression of testθ  with the testS . K is set to 5 in all cases. The pa-
rameters that yield the smallest least error between the testθ  and obsθ  are cho-
sen. The final summary statistics are then constructed and passed to the formal 
run of ABC. 

2.5. Computational Complexity  

Computational complexity is an important concern of ABC methods. LGKDR 
requires matrix inversion, solving eigenvalue problems and the cross validation 
procedure. In this paper, training sample size are fixed to 32 10×  and 104 for 
LGKDR and Semi-automatic ABC, respectively. Under this setting, the total 
computational time of LGKDR are about 10 times over the linear regression. We 
believe that it is a necessary price to pay if the non-linearities between the sum-
mary statistics are strong. Being unable to capture these information in dimen-
sional reduction step will induce a poor sampling performance and a biased es-
timation. Also, although the cross validation procedure takes the majority of 
computation time in LGKDR, it needs to be performed only once for each prob-
lem. Once the parameters are chosen, the computation complexity of LGKDR is 
comparable to the linear-type algorithms. Overall, the computational complexity 
depends on both the dimensional reduction step and the sampling step. For 
complex models like population genetics, sampling is significantly more time 
consuming than the dimension reduction procedure. 

3. Experiments 

In this section, we investigate three problems to demonstrate the performance of 
LGKDR. Our method is compared to the classical ABC using initial summary 
statistics and the Semi-automatic ABC [17] using estimated posterior means. In 
the first problem, we discuss a population genetics model, which was investi-
gated in many ABC literatures. We adopt the initial summary statistics used in 
[26], and rejection ABC is used as the sampling algorithm. In the second prob-
lem, a M/G/1 stochastic queue model which was used in [16] and [17] are dis-
cussed. While the model is very simple, the likelihood function could not be tri-
vially computed. In the last experiment we explore the Ricker model as discussed 
in [17] and [27]. The latter two problems are investigated by both Rejection ABC 
and sequential Monte Carlo ABC method (SMC ABC) [13], the first problem is 
omitted from SMC ABC because it involves repeated calling an outside program 
for simulation and is too time consuming for SMC ABC. 
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3.1. Implementation Details  

The Rejection ABC is described in Algorithm 2 and the SMC ABC is shown in 
Algorithm 3. The hyper-parameters used in LGKDR are set as discussed in sec-
tion 2.4. We use a modified code from [13] and R package “Easyabc” [28] in our 
SMC implementation and would like to thank the corresponding authors. Gaus-
sian kernels are used in all the LGKDR algorithms. The detailed specifications of 
Semi-automatic ABC will be described in each experiment. 

For evaluation of the experiments conducted using rejection ABC, a set of pa-
rameters jθ  where 1, , obsj N∈   and the corresponding observation sample 

j
obsY  are simulated from the prior and the conditional probability ( )|p Y θ , re-

spectively, and are used as the observations. For each experiment, we fix the total 
number of simulations N and the number of accepted sample accN . The sample 
used for rejection are then generated and fixed for all three methods. Using this 
setting, although the randomness of the simulation program is contained in the 
sample; yet since the sample used for each method is same and fixed, we can ig-
nore the randomness in the simulation program and compare the methods more 
fairly. Also, by using fixed set of sample, we can accurately set the acceptance 
rate for each method, which is the most influential parameter for the estimation 
accuracies. For evaluation, the Mean squared error (MSE) over the accepted pa-
rameters ˆ j

iθ  and observation jθ  are defined as 

( )2

1

1 ˆaccN
j j

j i
iacc

MSE
N

θ θ
=

 
= − 

 
∑  

The Averaged Mean Square Error (AMSE) is then computed as the average 
over jMSE  of each observation pair ( ),j j

obsYθ  as 

1

1 .
obsN

j
jobs

AMSE MSE
N =

= ∑  

It is used as the benchmark for Rejection ABC. Because of the difference of 
computation complexity, for fairness of comparison, the acceptance rates are set 
differently. For LGKDR, the acceptance rate is set to 1%; while for 
semi-automatic ABC and original ABC, the acceptance rates are set to 0.1%. The 
training sample and simulated sample are generated from the same prior and 
remain fixed. 
 

 
Algorithm 2. Rejection-ABC. 
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Algorithm 3. Sequential-ABC. 
 

For SMC ABC, to get to as small tolerance as possible, the simulation time is 
different for different method. AMSE is used as the benchmark for the accuracy 
of the queue model. In the case of Ricker model, due to the extremely long si-
mulation time, only one observation is used and MSE is used instead in this case. 
Computation time is reported for both experiments. 

3.2. Parameter Settings 

Several parameters are necessary in running the simulations in ABC. For Rejec-
tion ABC, the total number of samples N and the accepted number of samples 

accN  are set before the simulation as mentioned above. For Semi-automatic 
ABC and LGKDR, a training set needs to be simulated to calculate the projection 
matrix. For LGKDR, a further testing set is also generated for cross validation 
purposes. The value of these parameters is reported in the corresponding expe-
riments. The simulation time for generating these sample set are negligible 
compared to the main ABC, especially in SMC ABC. For LGKDR, another im-
portant parameter is the target dimensionality D. There are no theoretically 
sound methods available to determine the intrinsic dimensionality of the initial 
summary statistics. In practice, since the projection matrix is simply the ex-
tracted eigenvectors of the matrix M as in (5) ordered by the absolute value of 
the corresponding eigenvalues, the dimensionality is just the number of the ei-
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genvectors been used. In our experiments, we run several rejection ABC proce-
dures using different B on a small fixed test set, and then fix the dimensionality. 
Since the test set is fixed and the different projection matrices are directly ac-
cessible, this procedure is very fast. A starting point can be set by preserving 70% 
of the largest eigenvalues in magnitude and it usually works well. There are a 
large collection of literatures on how to choose the number of principle compo-
nents in PCA, which is similar to our problem, for example, see [29] and refer-
ence therein. 

3.3. Population Genetics  

Analysis of population genetics is often based on the coalescent model [30]. A 
constant population model is used in simple situations, where the population is 
assumed unchanged across generations. The parameter of interests in this case is 
the scaled mutation rate θ, which controls the probability of mutation between 
each generation. The detailed introduction of coalescent models can be found in 
[31]. Various studies [11] [12] [32] have been conducted in population genetics 
following different sampling algorithms. In this study, we adopt the setting of 
kernel ABC [26] and compare the performance with ABC and Semi-automatic 
ABC. 

100 chromosomes are sampled from a constant population ( )10000N = . The 
summary statistics are defined using the spectrum of the numbers of segregating 
sites, sfss , which is a coarse-grained spectrum consisting of 7 bins based on the 
Sturges formula ( )21 log segS+ . The frequencies were binned as follows: 0% - 
8%, 8% - 16%, 16% - 24%, 24% - 32%, 32% - 40%, 40% - 48% and 48% - 100%, 
we use the uniform distribution [ ]~ 0,30θ  in this study rather than the 
log-normal distribution in [26]. As ABC is often used for exploratory researches, 
we believe that the performance based on an uninformative prior is important 
for evaluating summary statistics. The program package ms is used to generate 
the sample, which is of common choice in literature of coalescent model [33]. 

We test 3 typical scaled mutation rates 5, 8 and 10 rather than random draws 
from the prior. The results are averaged over 3 tests. A total number of 106 sam-
ple is generated; 105 sample is generated as the training sample for LGKDR and 
Semi-automatic ABC. Different acceptance rates are set for different methods as 
discussed above. We use sfss  as the summary statistics for both Semi-automatic 
ABC and LGKDR. Local linear regression is used as the regression function for 
the former. In LGKDR, the dimension is set to 2. 

As shown in Table 1, the performance of both LGKDR and Semi-automatic  
 
Table 1. Coalescent model. 

Method mutation rate θ 

ABC 1.94 

Semi-automatic ABC 1.62 

LGKDR 1.66 
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ABC improve over original ABC method. LGKDR and Semi-automatic ABC 
achieve very similar results suggesting that the linear construction of summary 
statistics is sufficient for this particular experiment. 

3.4. M/G/1 Queue Model  

The M/G/1 model is a stochastic queuing model that follows the first-come-first-serve 
principle. The arrival of customers follows a Poisson process with intensity pa-
rameter λ. The service time for each customer follows an arbitrary distribution 
with fixed mean (G), and there is a single server (1). This model has an intracta-
ble likelihood function because of its iterative nature. However a simulation 
model with parameter ( ),λ µ  can be easily implemented to simulate the model. 
It has been analyzed by ABC using various different dimension reduction me-
thods as in [16] and [17], with comparison to the indirect inference method. We 
only compare our method with Semi-automatic ABC, since it produces substan-
tially better results then the other methods mentioned above. 

The generative model of the M/G/1 model is specified by 

1

1 1
1 1

1 1 1 1

if

if

n n
n i ii i

n n n n n
n i i iii i i i

U W Y
Y

U W Y W Y

−

= =

− −

= = = =

 ≤= 
+ − >

∑ ∑
∑ ∑ ∑ ∑

 

where nY  is the inter-departure time, nU  is the service time for the nth cus-
tomer, and iW  is the inter-arrival time. The service time is uniformly distri-
buted in interval [ ]1 2,θ θ . The inter-arrival time follows an exponential distribu-
tion with rate 3θ . These configurations stay the same as [16] and [17]. We set 
uninformative uniform priors for 1 2 1,θ θ θ−  and 3θ  as [ ] [ ]21,10 1,1 3× . 

For the rejection ABC, we simulate a set of 30 pairs of ( )1 2 3, ,θ θ θ  but avoid 
boundary values. They are used as the true parameters to be estimated. The total 
number of 106 sample are generated. The posterior mean is estimated using the 
empirical mean of the accepted sample. The simulated sample is fixed across 
different methods for comparison. 

We use the quantiles of the sorted inter-departure time nY  as the exploration 
variable of the regression model ( )f y  as in [17]. The powers of the variables 
are not included as no significant improvements are reported. A pilot ABC pro-
cedure is conducted using a fixed training sample set of size 104. Local linear re-
gression is used rather than a simple linear regression for better results. For 
LGKDR, we use the same quantiles as initial summary statistics for dimension 
reduction as in Semi-automatic ABC. The number of accepted training sample is 

32 10×  in for the LGKDR. The dimension is manually set to 4, as small as the 
performance is not degraded. 

The experimental results of Rejection ABC are shown in Table 2. “LGKDR” 
refers to the LGKDR that does not use separated estimation. “focus 1” denotes 
the separated dimension reduction for parameter θ1, and the following rows are 
of similar form. Compared to ABC, “Semi-automatic ABC” gives substantial  
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Table 2. M/G/1 queue model, rejection ABC. 

Method θ1 θ2 θ3 

ABC 0.2584 0.5113 0.0019 

Semi-automatic ABC 0.0112 0.5279 0.0024 

LGKDR 0.0623 0.2259 0.0023 

LGKDR (focus 1) 0.0082 5.0656 0.0031 

LGKDR (focus 2) 0.3942 0.2514 0.0020 

LGKDR (focus 3) 0.2229 3.4958 0.0020 

 
improvement on the estimation of θ1; the other parameters show similar or 
slightly worse results. LGKDR method improves over ABC on θ1 and θ2, but the 
estimation of θ1 is not as good as in Semi-automatic ABC. However, after apply-
ing separated estimation, θ1 presents a substantial improvement compared to 
Semi-automatic ABC. Separated estimations for θ2 and θ3 give no improvements. 
It suggests that the sufficient dimension reduction subspace for θ1 is different 
from the others and a separated estimation of θ1 is necessary. 

For SMC ABC, a set of 10 pairs of parameters are generated, and the results 
on SMC and LGKDR are reported. All other settings are same as the rejection 
ABC. We omit the results of using Semi-automatic ABC since the sequential 
chain did not converge properly using these summary statistics and the induced 
errors were too large to be meaningful. In SMC ABC, two experiments are re-
ported: SMC ABC1 and SMC ABC2. The number of particles are set to 42 10×  
and 105, respectively. In LGKDR, the number of particles are set to 42 10×  and 
the training sample size for the calculation of projection matrix is 32 10× , ac-
cepted from a training set of size 44 10× . The dimensionality is set to 5. Cross 
validation is conducted using a test set of size 42 10× . 

Results of SMC ABC are shown in Table 3. AMSEs are reported. The simula-
tion time is shown as well. The computational time of constructing LGKDR 
summary statistics is included in the total simulation time and is listed in the 
bracket. The results show that LGKDR gives better results of parameter θ1 and 
θ2, using less time compared to SMC ABC with set E2. The estimation of θ3 is 
worse but the difference is small (0.005). Focusing on θ3 produces an estimation 
as good as in SMC ABC. 

3.5. Ricker Model  

Chaotic ecological dynamical systems are difficult for inference due to its dy-
namic nature and the noises presented in both the observations and the process. 
Wood [27] addresses this problem using a synthetic likelihood inference me-
thod. Fearnhead [17] tackles the same problem with a similar setting using the 
Semi-automatic ABC and reports a substantial improvement over other me-
thods. In this experiment, we adopt the same setting and apply LGKDR with 
various configurations. 
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Table 3. M/G/1 queue model, SMC ABC. 

Method θ1 θ2 θ3 Total time 

SMC ABC 1 0.0404 0.4928 0.0139 9.6e+03 

SMC ABC 2 0.0429 0.1964 0.0054 3.3e+04 

LGKDR 0.0235 0.1605 0.0110 2.0e+04 (7.78e+3) 

LGKDR (focus 3) 0.4854 0.1383 0.0059 2.1e+04 (7.85e+3) 

 
A prototypic ecological model with Richer map is used as the generating 

model in this experiment. A time course of a population tN  is described by  

1 e t tN e
t tN rN − +
+ =                     (6) 

where te  is the independent noise term with variance 2
eσ , and r is the growth 

rate parameter controlling the model dynamics. A Poisson observation y is made 
with mean tNφ . The parameters to infer are ( )( )2log , ,erθ σ φ= . The initial 
state is 0 1N =  and observations are 51 52 100, , ,y y y . 

The original summary statistics used by Wood [27] are the observation mean 
y , auto-covariances up to lag 5, coefficients of a cubic regression of the ordered 

difference 1t ty y −−  on the observation sample, estimated coefficients for the 
model 0.3 0.3 0,6

1 1 2t t t ty y yβ β+ = + +   and the number of zero observations 
( )100

51 0tt y
=

=∑ 1 . This set is denoted as E0 as in [17]. Additional two sets of sum-
mary statistics are defined for Semi-automatic ABC. The smaller E1 contains E0 
and  

( )100
51 tt y j
=

=∑ 1  for 1 4j≤ ≤ , logarithm of sample variance, ( )100
51log j

tt y
=∑  

for 2 6j≤ ≤  and auto-correlation to lag 5. Set E2 further includes 
time-ordered observation ty , magnitude-ordered observation 

( )ty , 2
ty , ( )

2
ty , ( ){ }log 1 ty+ , ( )( ){ }log 1 ty+ ,  

time difference ty∆  and magnitude difference ( )ty∆ . Additional statistics are 
added to explicitly explore the non-linear relationships of the original summary 
statistics and are carefully designed. 

In Rejection ABC, we use set E0 for ABC without dimension reduction since 
the dimension of the larger sets induces severely decreased performance. Sets E1 
and E2 are used for Semi-automatic ABC as in [17]. In LGKDR, we tested sets 
E0 and E1 in different experiments. The result on E2 is omitted as the result is 
similar with using the smaller set of statistics, indicating that manually designed 
non-linear features are unnecessary for LGKDR. The sufficient dimension is set 
to 5; a smaller value induces substantial worse results. We simulated a set of 30 
parameters, a fixed simulated sample of size 107 for all the methods and a train-
ing sample of size 106, a test sample of size 105 for LGKDR and Semi-automatic 
ABC. The values of ( )log r  and ϕ are fixed as in [17], and ( )log eσ  are drawn 
from an uninformative uniform distribution on ( )log 0.1 ,0   . 

The results are shown in Table 4. The performance of Semi-automatic ABC  
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Table 4. Ricker model, rejection ABC. 

Method ( )log r  eσ  ϕ 

ABC(E0) 0.049 0.217 0.944 

Semi-automatic ABC (E2) 0.056 0.246 0.936 

Semi-automatic ABC (E1) 0.082 0.279 1.387 

LGKDR (E0) 0.043 0.241 0.984 

LGKDR (E0, focus1) 0.043 0.221 1.221 

LGKDR (E0, focus2) 0.068 0.200 1.234 

LGKDR (E0, focus3) 0.047 0.211 1.007 

LGKDR (E1) 0.047 0.179 0.895 

LGKDR (E1, focus1) 0.048 0.220 1.38 

LGKDR (E1, focus2) 0.059 0.174 2.694 

LGKDR (E1, focus3) 0.054 0.292 0.829 

 
using the bigger set E2 is similar to ABC but is substantially worsen with set E1, 
suggesting that the non-linear information are essential for an accurate estima-
tion in this model. These features are needed to be explicitly designed and in-
corporated into the regression function for Semi-automatic ABC. LGKDR using 
summary statistics set E0 gives similar results compared with ABC. Using larger 
set E1, the accuracy of ( )log r  is slightly worse than using set E0, but the accu-
racy of eσ  and ϕ present substantial improvements. The additional gains of 
separate constructions of summary statistics in this model are mixed for different 
parameter, ( )log r  and ϕ show very small improvements but eσ  gets im-
provements in both cases. Overall, we recommend using separate constructions 
for the potential improvements if the additional computational costs are afford-
able. 

In SMC ABC, we use set E0 for the SMC, E1 for LGKDR and both E1 and E2 
for Semi-automatic ABC. Number of particles is set to 35 10×  for all experi-
ments. Other parameters are the same as in Rejection ABC. Only one set of pa-
rameter is used and the time of simulation is set to achieve a tolerance which is 
as small as possible. Simulation time is reported with computational time of 
LGKDR included. We show several results with different settings of dimensio-
nality in LGKDR to illustrate the influence of that hyper-parameter. As can be 
observed in the results, if the dimensionality is set too high, the efficiency of the 
SMC chain is decreased; if it is set too low, more bias are induced in the esti-
mated posterior mean suggesting loss of information in the constructed sum-
mary statistics. In this experiment, dimensionality 6 is chosen by counting the 
number of largest 70% eigenvalues in magnitude as discussed before. 

The results are shown in Table 5. It shows that the LGKDR can achieve the 
similar results as Semi-automatic ABC using only 1/10 of the simulation time. 

4. Conclusions 

We proposed the LGKDR algorithm for automatically constructing summary  
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Table 5. Ricker model, SMC ABC. 

Method ( )log r  eσ  ϕ Total time 

ABC(E0) 0.001 0.003 0.430 4.0e+5 

Semi-automatic ABC(E2) 0.002 0.020 0.013 4.3e+5 

Semi-automatic ABC(E1) 0.031 0.079 0.019 1.7e+5 

LGKDR(Dimensional 3) 0.024 0.131 0.779 8.6e+4 

LGKDR(Dimensional 6) 0.006 0.018 0.012 4.5e+4 

LGKDR(Dimensional 9) 0.001 0.040 0.250 2.8e+5 

 
statistics in ABC. The proposed method assumes no explicit functional forms of 
the regression functions and the marginal distributions, and implicitly incorpo-
rates higher order moments up to infinity. As long as the initial summary statis-
tics are sufficient, our method can guarantee to find a sufficient subspace with 
low dimensionality. While the involved computation is more expensive than the 
simple linear regression used in Semi-automatic ABC, the dimension reduction 
is conducted as the pre-processing step and the cost may not be dominant in 
comparison with a computationally demanding sampling procedure during 
ABC. Another advantage of LGKDR is the avoidance of manually designed fea-
tures; only initial summary statistics are required. With the parameter selected 
by the cross validation, construction of low dimensional summary statistics can 
be performed as in a black box. For complex models in which the initial sum-
mary statistics are hard to identify, LGKDR can be applied directly to the raw 
data and identify the sufficient subspace. We also confirm that construction of 
different summary statistics for different parameters improves the accuracy sig-
nificantly.  
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