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Abstract 
We propose the basis for a rigorous approach to modeling combat, specifically 
under conditions of complexity and uncertainty. The proposed basis is a ten-
sorial generalization of earlier Lanchester-type equations, inspired by the 
contemporary debate in defence and military circles around how to best util-
ize information and communications systems in military operations, includ-
ing the distributed C4ISR system (Command, Control, Communications, 
Computing, Intelligence, Surveillance and Reconnaissance). Despite attracting 
considerable interest and spawning several efforts to develop sound theoreti-
cal frameworks for informing force design decision-making, the development 
of good frameworks for analytically modeling combat remains anything but 
decided. Using a simple combat scenario, we first develop a tensor generaliza-
tion of the Lanchester square law, and then extend it to also include the Lan-
chester linear law, which represents the effect of suppressive fire. We also add 
on-off control inputs, and discuss the results of a simple simulation of the fi-
nal model using our small scenario. 
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1. Introduction 

Since at least the time of the Military Enlightenment, military organizations 
have invested considerable effort into developing theories of war and battle. 
The purpose of such theories is ultimately to inform decisions: what equipment 
to acquire, what processes to institute, what training and education to develop, 
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what research to conduct, how to conduct operations, and what operations to 
conduct in the first place. Perhaps unsurprisingly, many such efforts at the de-
velopment of theories of war and battle have been oriented around the idea of 
achieving something like a complete and correct theory by which future out-
comes might be predicted and thereby the means of determining the means to 
guarantee, or at least maximize the chances of, obtaining the outcome one de-
sires. This has remained a dominant theme in military thinking ever since the 
foundational works of early theorists such as Jomini [1], through adoptions into 
military domains other than land battles in the late 19th century and early 20th 
Century with military educators such as Mahan [2], into the middle of the 20th 
Century with increasingly technologically-oriented theorists such as Fuller [3] 
[4] and Hart [5], and into modern and even more heavily technologically fo-
cussed instantiations such as Network Centric Warfare (NCW) [6] and Ef-
fects-Based Operations (EBO) [7]. Classical attempts at mathematically model-
ing military conflict occurred within this overarching tradition of military 
thinking, and consequently they manifest the same basic goal of yielding ma-
thematical theories that are numerically predictive with respect to battle out-
comes. 

Yet as predicted even from the outset by Clausewitz [8], a programme aimed 
at developing theories predictive of outcomes is ultimately not possible, be-
cause—to use modern mathematical language—the conditions of war and bat-
tle are simply not ergodic. That is, the inherent complex nonlinearity of such 
systems yield strong limitations on what can be predicted about their out-
comes; conditions are not static and distributions are not nicely behaved, 
making it not possible to sample from the unrealized future by collecting data 
about the past. As a result of his stance, Clausewitz set himself apart from both 
his contemporary Jomini and from most other military theorists since by shy-
ing away from fixed and prescriptive theories—while nonetheless conceding 
that such ideas are possible within sufficiently narrowly constrained problem 
domains. It is thus sometimes remarked that Clausewitz’ focus is strategic ra-
ther than tactical. More deeply, this point of view gives a basis that more me-
thodologically focused than theory focused: we are here primarily concerned 
with the means of solving problems that are effectively unique, messy, un-
der-specified, socially complex, evolving and for which there is generally a 
scarcity of available data. In other words, decision-making in military matters 
has all the characteristics of what are often now described as “wicked prob-
lems” [9]. 

Against a broad backdrop where modern military organizations have sought 
to move away from approaching force development and employment from the 
point of view of individual platforms as collections of functions, theories such 
as NCW proved influential because they postulated that the ability of military 
organizations to collect and disseminate and process data while denying to ad-
versaries the same ability is the crucial determiner of the outcome. The prob-
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lem, however, is that NCW presented a discredited though intuitively appealing 
explanation for exactly how this is to occur, with practical consequences that 
have proven problematic [10] [11]; its methodological framework held that 
knowledge is the outcome of collecting and consuming data and that the accu-
racy of the knowledge is a function of the amount of information and ability to 
process it. The slightly later EBO notion similarly concludes that information 
collection, dissemination and processing are crucial, yet arguably overstates the 
strength and usefulness for prediction of supposed connections between out-
comes and ostensible causes. Therefore, instead of the NCW, we are talking 
about distributed C4ISR system (Command, Control, Communications, Com-
puting, Intelligence, Surveillance and Reconnaissance); for one of its examples, 
see [12]. 

These observations may be seen in terms of the limitations of classical sys-
tems engineering achievements in dealing with wicked problems [9]; the reme-
dy was a methodological shift to essentially the kind of problem-solving ap-
proach espoused and exemplified by Clausewitz, but fleshed out later by Popper 
and subsequent authors [13] [14]. This line of reasoning inspires our approach. 
As with most approaches to modeling combat, there can little doubt that con-
nectivity is important, that the availability and quality of information matters; 
our explanation for why this is so departs from earlier methods in this that the 
networks at the heart of our model permit ideas to be tested more rapidly and 
more thoroughly. Thus we have in mind the ideas of problem-solving, where 
the problem choices are primarily of the wicked variety; it is not information 
per se that matters, but rather the ability to obtain information that reveals un-
acceptable error in proposed solutions and problem formulation. The goal of 
our modeling thus shifts from predicting outcomes of combat directly to ques-
tions about system control. In this paper and its successor we present a basis for 
a novel mathematical approach to modeling war and battle under the condi-
tions of complexity and uncertainty as a step towards overcoming the limita-
tions that have been so challenging to most models of combat outcomes pro-
posed in the past. 

2. Background  
2.1. Lanchester Equations  

In defence operation research community it is well known that classical 
Lanchester-Osipov combat equations (also called Lanchester-style mass action 
models [15] [16] [17])1 include two forces, Red/Attacker’s strength:  

( )  :R R t= →� �  and Blue/Defender’s strength: ( )  :B B t= →� � , with their 
respective initial sizes 0R  and 0B  and their corresponding combat-effectiveness 
coefficients Rk  and Bk . Lanchester equations are of the following two basic 

 

 

1We remark that before Lanchester and Osipov, similar mass action models in naval applications 
were proposed by Chase [18], Fiske [19] and Baudry [20]. 
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types:2 
1) Lanchester square law for direct-aimed fire:  

( )( )
( )( )

0

0

, with 0 , 0 ,

, with 0 , 0 ,
R R

B B

R k B R R k

B k R B B k

= − = >

= − = >

�

�
               (2) 

where overdot denotes time derivative, and Rk  and Bk  denote individual 
combat-rate coefficients for the Red and Blue forces, respectively (e.g., tank 
versus tank, concentration of fire). 
2) Lanchester linear law for area—unaimed fire:  

( )( )
( )( )

0

0

, 0 , 0 ,

, 0 , 0 ,
BR BR

RB RB

R k BR R R k

B k RB B B k

= − = >

= − = >

�

�
               (3) 

where BRk  and RBk  denote mixed combat-rate coefficients for Red and Blue 
forces (e.g., artillery barraging an area without precise knowledge of target 
locations).  

Although similar Lanchester-type models had been extensively used in the 
past Century, today they are widely regarded as grossly oversimplified represen- 
tations of modern warfare, at best. This motivates our effort towards a modeling 
methodology of much higher complexity, including both continuous and 
discrete spatiotemporal dynamics, as proposed in the present paper3. 

2.2. Brief Review of Recent Military Thinking  

For the last two decades, modern defence forces have generally been investing 
considerable effort in shifting the basis for decision-making for force 
development, employment and conduct of operations beyond individuation 
around platforms. Regarding ships, aircraft, armored vehicles and soldiers, for 
instance, as the base atomic units of military forces that are then packaged 

 

 

2Frequently used generalization of the classical Lanchester-Osipov models of combat force dynamics 
[15] [16] [17]—including two forces, Red/Attacker’s strength: ( )  :R R t= →� �  and Blue/Defen- 

der’s strength: ( )  :B B t= →� � , with their respective initial sizes 0R  and 0B  and their corres-

ponding combat-effectiveness coefficients Rk  and Bk —is the LPB model, proposed in 1960s by 
Peterson [21] and in 1990s by Bracken [22], which reads:  

( ) ( ) ( )0 0, , with 0 , 0 , , 0 ,q p p q
B R R BR k R B B k R B R R B B k k= − = − = = >� �            (1) 

where the exponents p and q (such that 1 p q α+ − = ) need to be empirically determined. The 
conserved quantity in the LPB model (1), 2 2 constR Bk R k B− =  is obtained by eliminating time t, 
separating and integrating. The Lanchester aimed-fire (or, square law) model:  

( ) ( ) ( )0 0, , with 0 , 0 , , 0R B R BR k B B k R R R B B k k= − = − = = >� �  

corresponds to 1, 0p q= =  and thus to 2α = ; and the unaimed-fire (or, linear law) model:  

( ) ( ) ( )0 0, , with 0 , 0 , , 0BR RB BR RBR k BR B k RB R R B B k k= − = − = = >� �  

corresponds to 1p q= =  and thus 0α =  in the LPB model (1) (for more technical details see, 
e.g. [23] and the references therein). 
3Since we will be using tensor indices (subscripts and superscripts) and Einstein’s summation con-
vention over repeated indices, to avoid confusion, we will focus on Lanchester’s own models (2)-(3), 
rather than on the LPB model with exponents (1). 
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hierarchically yields separate Command and Control (C2) channels for different 
military functions, which are then attached to acicular organizations that 
necessarily centralism planning and coordination to achieve desired effects. The 
emergence of modern communications and information technology was 
consequently broadly seen as offering the potential to dissolve such crystalline 
arrangements in favor of military forces able to fluidly self-organize in rapidly 
changing situations to both counter threats and take advantage of opportunities, 
by enabling collaboration directly between elements formerly widely separated 
by hierarchy. 

Other advances including those the fields of telecommunications, robotics, 
artificial intelligence and autonomous systems have further opened apparent 
opportunities for collaborative planning, coordination and rapid response; at 
its core, modern defence thinking seeks to achieve highly distributed C2 
arrangements enabled by communications and information systems in which 
information can be rapidly disseminated while also being protected from outside 
interdiction and interference. The extreme instantiation of this lies in the idea 
that by the provision of such a system, together with the training and procedures 
to utilize it, “information superiority”—the ability to acquire, transport and 
process more information than the opposition—will deliver superior ability to 
apply the effects of military force, and thus at least maximum chances of 
winning, if not virtually guaranteed complete battlefield domination. The ability 
for foreseeable battlefield communication systems to provide an infrastructure 
sufficient to realism the required connectivity, the flawed nature of at least this 
kind of extreme account has been made manifest by the fact that apparently 
overwhelming forces, enjoying the full benefits of the best technology has to 
offer, can and do continue to lose to ostensibly backwards and inferior forces. 

While there remains broad agreement that technological developments offer 
considerable opportunity, the issue of exactly what benefits are implied and how 
to best utilize the technologies to best effect have remained unsettled. Theories 
of war and battle intended as explanatory and predictive bases for guiding force 
development decision-making have been proposed—NCW being an especially 
prominent example in Western defence departments in the first decade of the 
21st Century—but none has proven satisfactory. In the case of NCW, foun- 
dational problems with its explanation of methodology with far-reaching 
practical consequences in the design of systems and over-estimation of the 
relative benefits of the technology [10], which have appeared to have been born 
out in practice, has left the theory much less enthusiastically received than in the 
heyday of its development. For present purposes, its weaknesses may be seen in 
terms of its inability to account adequately for command and control under 
conditions of uncertainty and complexity, now widely recognized in defence and 
military circles as a defining feature of combat; the theory is predicated on the 
notion that more information about past and present conditions leads to greater 
knowledge about future states, which, is known to be false in complex nonlinear 
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systems [11]. 
Recent years have seen a growing knowledge about, and interest in, the 

burgeoning knowledge across the sciences about complexity and uncertainty, 
among defence and military thinkers. The general emerging view is that defence 
and military matters feature burgeoning complexity of technological, social, 
economic, cultural and political varieties. Whether war and battle is really 
becoming more complex than in the past is highly debatable; what is more 
certain is that analytical and conceptual frameworks used in its study to inform 
force design decisions struggle to adequately account for effects that Clausewitz 
pondered 180 years ago. The objective of the present paper is to take a step in 
this direction by generalizing and making rigorous the study of information 
networks using tensor dynamics on battlespace manifolds, and integrating it 
with Lanchester-type attrition models. 

3. System Input  
3.1. From the Air Campaign Scenario to the Combat Tensor  

To be able to compare our system with McLemore et al. [24] we need to have the 
same/similar system input and after computations to compare the outputs. In 
our scaled-down (toy) model we interpret their Table. Scenario forces, as fol-
lows. From a collaborative perspective, in their Air Campaign Scenario, the Red 
forces are given by a Bipartite graph: 15× Fighter aircraft and 15× Sensor air-
craft, which in our 9 × 9-case becomes: 4 Fighter aircraft and 5 Sensor aircraft4 
(see Figure 1). Also, their Blue forces are given by a Tripartite graph: 10× Figh-
ter aircraft, 10× Sensor aircraft and 10× New aircraft, which in our 9 × 9-case 
becomes: 3 Fighter aircraft, 3 Sensor aircraft and 3 New aircraft (see Figure 2). 

To make our Red and Blue aircraft configurations more realistic, the identity 
9-matrices (with the local feedback-loops) have been added to the Red and Blue 
adjacency matrices as: 

no self-loops

0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1

Red : 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1

 
 
 
 
 
 
 ⇒
 
 
 
 
 
 
 

including local self-loops

,

1 1 1 0 0 0 0 1

a
b

 
 
 
 
 
 
  ≡
 
 
 
 
 
 
 



(4) 

 

 

4Since we have a simplified 9 × 9-case, we do not have the same number of Fighter and Sensor air-
craft, and from the collaborative decision-making perspective sensors are more important than figh-
ters. In recent military operations, there has been anecdotal evidence that access to larger number of 
sensors has great effect on the outcome. 
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Figure 1. Bipartite graph for the Red force, 
including 4 Fighter aircraft and 5 Sensor aircraft. 

 

 
Figure 2. Tripartite graph for the Blue force, including 3 
Fighter aircraft, 3 Sensor aircraft and 3 New aircraft. 

 
no self-loops

0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1

Blue : 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0 0

 
 
 
 
 
 
 ⇒
 
 
 
 
 
 
 

including local self-loops

.

1 1 1 1 1 1 0 0 1

a
b

 
 
 
 
 
 
  ≡
 
 
 
 
 
 
 

A

(5) 
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The graphs for our Red and Blue forces, defined by adjacency matrices with 
local self loops, a

b  and a
bA , respectively, are presented, using default graph 

embeddings in Mathematica®, in Figure 3 and Figure 4.  

3.2. The Combat Tensors for the Red and Blue Forces  

As a “soft” introduction to dynamics of vector and tensor fields on battlespace 
manifolds, we define here the Combat-tensors, as the following matrix products 
(i.e., tensor contractions):  
 

 
Figure 3. Bipartite graph with local feedback loops for the 
Red force, including 4 Fighter aircraft and 5 Sensor aircraft. 

 

 
Figure 4. Tripartite graph with local feedback loops for the 
Blue force, including 3 Fighter aircraft, 3 Sensor aircraft and 
3 New aircraft. 
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( ) ( ) ( ) ( )Red : , , , Blue: , ,a a b a a a
b b c b b bt T t t t= =x x x xN A    

of the combat adjacency matrices a
b  and a

bA  with the total Power tensors 
( ),a

bT tx  and ( ),a
b tx . Each component of the Power tensors (9 × 9 of them 

on the battle-manifold M9; see next section) is defined as a sum of the sigmoid 
spatiotemporal kink functions ( )Tanh , tx  and ( )ArcTan , tx . 

4. TCW Battlespace  

A set of all active and controllable degrees-of-freedom (DOFs) of an arbitrary 
complex system comprises the configuration manifold for that system (see [25] 
for more technical details). For example, an nD configuration manifold for a 
humanoid robot is the set of all its movable joint angles. Following this 
fundamental manifold prescription, any battlespace (see [26] and the references 
therein) in TCW can be formally defined as the battle-manifold. In case of a very 
large battle-manifold Mn, it can be approximated with n� , where n, the total 
number of DOFs, can be in millions (using computational framework outlined 
in the Appendix). 

Complex warfighting dynamics on such battle-manifolds is naturally defined 
as an interplay of spatiotemporal vector and tensor fields flowing on them. For 
defining tensor expressions, we will use the abstract tensor notation with 
Einstein’s summation convention upon repeated indices; see [27]-[32]. 

On any battle-manifold Mn we can observe a dynamic interplay of various 
Actors, all defined by various vector and tensor fields, depending on their 
complexity. 

Simpler Actors are formally defined as spatiotemporal vector-fields,  
( ),a av v t= x , similar to velocities and forces from classical mechanics, or 

flow-velocities and vortices from fluid mechanics, or Hamiltonian vector-fields 
from generalized mechanics [28] [29], or Hopfield-Grossberg vector-fields from 
neurodynamics [33]. 

The main Actors on any battle-manifold Mn are the Red and Blue vector-fields, 
( ),aR tx  and ( ),aB tx , respectively, which represent either the Red-Blue 

populations, or any other power measure of the Red-Blue forces. 
The main supporting Actor is the combat-tensor ( ),a

b tx , defined earlier, 
which belongs to this category; a

b  commutes with any other 2nd-order 
tensor field of the same covariance on the same battle-manifold Mn (e.g. 

( ) ( ), , ,a a
b bT t S tx x )—they can be added together as linear machines:  

a a a a
b b b bT S= ± ± ±�   
All these tensor fields are spatiotemporal dynamical objects governed by 

tensor equations, similar to the elastic stress-strain relation: 
elasticitystress strain

cd
ab ab cdEσ ε= . 

5. Tensor Combat Equations 
5.1. Basic Tensor Combat Equations 

For simplicity, we assume the simple 9D battle-manifold 9 9M ≈ � , coordinated 
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by ( )1 9, ,x x=x � , although all the calculations would equally work for any 

manifold dimension (up to millions, using the computational framework 
outlined in the Appendix). We start the TCW modeling with the tensor 
Lanchester square law, which is the following vector/tensor generalization of 
Equation (2):  

Red : ,

Blue : ,

a a b
b

a a b
b

R kA B

B C Rκ

=

=

�

�
                      (6) 

where the Red and Blue forces are now defined as vector-fields, ( ),a aR R t= x  
and ( ),a aB B t= x , and their effectiveness coefficients are denoted by k and κ. 
The tensor fields ( ),a a

b bA A t= x  and ( ),a a
b bC C t= x  represent the sum of their 

combat-tensors ( a
b  and a

bN ), their total power (or stress-energy) tensors 
( ( ),a a

b bS S t= x  and ( ),a a
b b t= x  ), and the Red and Blue swarming matrices, 

( ),a a
b b t= x   and ( ),a a

b b t= x   from McLemore et al. [24], provided the 
swarming matrices have dimension of dim M :  

R-C2 R-Power R-McL

Red : ,a a a a
b b b bA S= ± ±   

B-C2 B-Power R-McL

Blue : .a a a a
b b b bC = ± ±N    

For example, on a 9D battle-manifold M9, the basic tensor Lanchester Equation 
(6) expand as: 

1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

2 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

3 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

4 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

5 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

7 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

8 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

9 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9
1 2 3 4 5 6 7 8 9 ,R kA B kA B kA B kA B kA B kA B kA B kA B kA B= + + + + + + + +�  

1 1 1 1 2 1 3 1 4 1 5
1 2 3 4 5

1 6 1 7 1 8 1 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

2 2 1 2 2 2 3 2 4 2 5
1 2 3 4 5

2 6 2 7 2 8 2 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

3 3 1 3 2 3 3 3 4 3 5
1 2 3 4 5

3 6 3 7 3 8 3 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

4 4 1 4 2 4 3 4 4 4 5
1 2 3 4 5

4 6 4 7 4 8 4 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
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5 5 1 5 2 5 3 5 4 5 5
1 2 3 4 5

5 6 5 7 5 8 5 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

6 6 1 6 2 6 3 6 4 6 5
1 2 3 4 5

6 6 6 7 6 8 6 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

7 7 1 7 2 7 3 7 4 7 5
1 2 3 4 5

7 6 7 7 7 8 7 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

8 8 1 8 2 8 3 8 4 8 5
1 2 3 4 5

8 6 8 7 8 8 8 9
6 7 8 9 ,

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

9 9 1 9 2 9 3 9 4 9 5
1 2 3 4 5

9 6 9 7 9 8 9 9
6 7 8 9 .

B C R C R C R C R C R

C R C R C R C R

κ κ κ κ κ

κ κ κ κ

= + + + +

+ + + +

�
 

Similar expansions (though larger) hold for battle-manifolds of any dimensions 
and can be derived using the fast tensor package xTensor [34] for Mathemati-
ca®. 

Assuming, for simplicity, the coordinate independence ( const=x ), both sets 
of expanded Lanchester equations represent sets of coupled nonlinear ODEs, 
which can be directly numerically solved, for any given Red and Blue initial 
conditions: ( ) 00a aR R= , ( ) 00a aB B= , using any adaptive Runge-Kutta ODE- 
solver (e.g. Cash-Karp, Fehlberg and Dormand-Prince integrators), or their 
corresponding manifold/Lie-group integrators (e.g. Runge-Kutta Munthe-Kaas). 

In the general case of explicit coordinate dependence ( ( )t=x x ), we would be 
actually dealing with the set of the first-order nonlinear PDEs, which would all 
require spatial discretization (e.g., using the Method of Lines, as implemented 
in Mathematica), after which the above mentioned ODE-solvers can be used 
again. 

The same computational algorithms will apply, in both cases (ODEs and 
PDEs), also for the extended tensor Lanchester equations, formulated as follows. 

5.2. Adding the Lanchester Linear Law  

Next, to include the Lanchester linear law Equation (3) into Equation (6), while 
keeping their covariance (so that each term represents a vector-field), we need to 
extend them with quadratic terms of the Lanchester unaimed-fire equations 
(linear law) as:5  

Red : ,

Blue : ,

a a b ab c d
b b cd

a a b ab c d
b b cd

R kA B k F B R

B C R G B Rκ κ

= +

= +

�

�
                 (7) 

where the fourth-order tensors ab
cdF  and ab

cdG  represent more complex, strategic, 

 

 

5The Basic Red and Blue tensor combat Equations (6)-(7) are valid for any linear/flat manifold M9. 
In case of a strongly nonlinear/curved manifold M9, they would need the additional connection coef-
ficients (i.e., Christoffel symbols)—which can be neglected for our purpose, as an unnecessary 
over-complication. With this view in mind, in the following sections we will introduce more com-
plex dynamics and nonlinear control concepts into Equations (6)-(7), without introducing any geo-
metric connection (e.g., Levi-Civita connection on Riemannian manifolds)—which can always be 
added to the battlespace system as additional nonlinear complexity (see [30]). 
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tactical and operational, Red and Blue capabilities, which can be defined either as the 
outer products of various matrices from [24], or composed as triple tensor sums:  

Red Red Red

Blue Blue Blue

strat tact oper ,

strat tact oper .

ab ab ab ab
cd cd cd cd

ab ab ab ab
cd cd cd cd

F

G

= ± ±

= ± ±
                   (8) 

The basic Red and Blue tensor combat Equation (7) are implemented in Mathe-
matica as the initial value problem for the following temporal vector-fields: 

 

 
 

where the 2nd-order Red and Blue combat-tensors ,a bA  and ,a bC  are defined 
via sparse adjacency matrices (4) and (5) as: 

[ ] [ ] [ ]( ) [ ]
{ } { }

,Table 0.1 , Tanh 2 3 ArcTan 3 2 RandomReal ,

, , , ,

a bA sR a a t t

a n b n

  = − + − 


[ ] [ ] [ ]( ) [ ]
{ } { }

,Table 0.1 , Tanh 3 4 ArcTan 2 5 RandomReal ,

, , , ,

a bC sB a a t t

a n b n

  = − + − 


 

and the 4th-order (strategic + tactical + operational) tensors , , ,a b c dF  and  

, , ,a b c dG  are defined as: 

[ ] [ ] [ ]( ) [ ]
{ } { } { } { }

, , ,Table 0.01 0.1Sech 3 2 0.1Exp 3 0.01Sin 4 RandomReal ,

, , , , , , , ,

a b c dF t t t

a n b n c n d n

 = − + − + −


[ ] [ ] [ ]( ) [ ]
{ } { } { } { }

, , ,Table 0.01 0.1Sech 2 3 0.1Exp 4 0.01Cos 3 RandomReal ,

, , , , , , , .

a b c dG t t t

a n b n c n d n

 = − + − + −


 

A sample simulation of the basic tensor combat Equation (7) is performed in 
Mathematica (see Figures 5-7) for 10 time units (to match the simulations given 
in [24]) and random initial conditions. 

5.3. Interpretation of Dynamical Simulations  

The focus of our interpretation is the Red-Blue dynamics phase plot in Figure 7. 
This illustrates nine instances of engagement between the Red and Blue forces, 
confirming a fully engaged scenario. Figure 5 and Figure 6 are indicators of the 
outcome of the engagements: Blue is clearly winning in seven instances (note the 
exponential-like growth seen in Figure 6). On the other hand, Red is only win-
ning in two of the engagements. It should be noted that one of the engagements 
seems to be border line or not clear, which is indicative of the uncertainty of the 
outcome of this specific instance of engagement. The warfare uncertainty will be 
addressed in [25]. 
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Figure 5. Sample simulation of the basic tensor combat 
Equation (7) for 10 time units with random initial conditions: 
monotonic dynamics of Red forces. 

 

 
Figure 6. Sample simulation of the basic tensor combat 
Equation (7) for 10 time units with random initial conditions: 
monotonic dynamics of Blue forces. 

 

 
Figure 7. Sample simulation of the basic tensor combat Equation 
(7) for 10 time units with random initial conditions: monotonic 
Red-Blue phase plots. 
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In contrast, the output from [24] presented in their Chart 1 (Blue) and Chart 2 
(Red) does not show the actual dynamics of the simulation, but rather the statis-
tical inference from that simulation. Their main point is the “kill” of the aircraft, 
which they plotted along the same time axes (10 units) that we are using for the 
simulation. The 9 conflict points in our phase plane (Figure 7) are the points of 
potential “kill”; by relating to the Red and Blue time evolutions (in Figure 5 and 
Figure 6) we can also infer who was “killed” or “degraded” at that same time 
point, as compared to their Chart 1 and Chart 2. 

Based on this interpretation, we can see that our proposed tensor framework 
is capable of addressing the similar questions as those addressed by [24]. In the 
subsequent paper [25] we will extend this tensor Red-Blue dynamics to model 
warfare uncertainty. 

5.4. Adding Bang-Bang Control Actions  

For the purpose of recasting the combat-dynamics Equations (7) into a control 
system, we will add to both Red and Blue forces simple-and-strong bang-bang 
(on-off) control inputs ( )au t  and ( )av t  of the form: 

( ) ( )

0, for 0 , 0, for 0 ,
4 4

10, for , 0, for ,
4 2 4 2and

3 30, for , 10, for ,
2 4 2 4
3 310, for , 10, for ,
4 4

a a

t t

t t
u t v t

t t

t t

τ τ

τ τ τ τ

τ τ τ τ

τ τ
τ τ

 ≤ < ≤ < 
 
 ≤ < ≤ < 

= = 
 ≤ < ≤ <
 
 
 ≤ < ≤ <
 

 

where τ  is the total simulation time (in our case 10τ =  time units, to match 
the scenario from [24]). 

In this way, we obtain the controlled tensor Red-Blue equations:  

Red : ,

Blue : .

a a b ab c d a
b b cd

a a b ab c d a
b b cd

R kA B k F B R u

B C R G B R vκ κ

= + +

= + +

�

�
                 (9) 

The basic vector control inputs ( )au t  and ( )av t  are implemented in Ma-
thematica (in the scalar form) as: 

[ ] 3 3_ 10Piecewise 0,0 , 1, , 0, , 1, ,
4 4 2 2 4 4

u t t t t tτ τ τ τ τ τ
τ

         = ≤ < ≤ < ≤ < ≤ <        
         

 

[ ] 3 3_ 10Piecewise 0,0 , 0, , 1, , 1, ,
4 4 2 2 4 4

v t t t t tτ τ τ τ τ τ
τ

         = ≤ < ≤ < ≤ < ≤ <        
         

 

Which gives the implementation of the controlled Red-Blue Equations (9) as: 
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A sample simulation of the bang-bang controlled tensor combat Equation (9) 
is performed in Mathematica (see Figures 8-10) for 10 time units and random 
initial conditions. 

From Figures 8-10 we can see that adding strong bang-bang control inputs to 
tensor combat equations completely changes the natural combat-dynamics be-
havior—control actions have the overall flattening effect. Even if the control in-
puts have lower amplitudes (e.g., 5 instead of 10) the outcome would be qualita-
tively similar: both the time-plots and the phase plot would be flattened out. 
From these computational observations we can infer that adding artificial con-
trol inputs to natural Red-Blue combat dynamics does not make real sense, be-
cause in reality the Red and Blue forces mutually control each other. 

6. Conclusion and Future Work  

We have presented the basic development of the tensor-centric warfare (TCW),  
 

 
Figure 8. Sample simulation of the bang-bang controlled tensor Equation (9) 
for 10 time units with random initial conditions: dynamics of Red forces. 

 

 
Figure 9. Sample simulation of the bang-bang controlled tensor Equation (9) 
for 10 time units with random initial conditions: dynamics of Blue forces. 
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Figure 10. Sample simulation of the bang-bang controlled tensor 
Equation (9) for 10 time units with random initial conditions: 
Red-Blue phase plots. 

 
as a tensor union and generalization of classical Lanchester combat equations 
and modern intention to orient the conduct of defence and military deci-
sion-making around functions that cross traditional hierarchical lines of com-
mand. Recognizing both the debates that continue about how best to do this and 
the limitations and weaknesses in military theories intended to inform and drive 
these developments, we have picked up the central feature of information and 
communications systems as a base infrastructure in future force design. The 
emphasis in our formalization lies in the possibility of better addressing the 
complexity and uncertainty inherent in war and battle, which, despite having 
been studied since the Military Enlightenment period, have continued to prove 
challenging to military thinking. In the sequel to this paper, presented in [25], 
we are extending this basic development with entropic modeling of warfare un-
certainty and symmetry. 
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Appendix: Computational Framework  

A network-computational framework, with networks/tensors of up to millions of 
nodes, can be developed using the publicly available Matlab® toolbox supporting 
the cutting-edge topological research of brain cliques and cavities from compu-
tational neuroscience (the Blue Brain project [35] [36] [37]). It is based on the 
persistent homology algorithms on directed simplices [38]. 

All tensor expressions can be derived using the tensor package xTensor [34] 
for Mathematica. After Mathematica derivation, all tensor expressions can be 
completely evaluated (for manifolds of any dimension) using quasi-symbolic 
gradients computed by automatic differentiation, implemented either in C++, or 
in functional languages like Haskell (AD library) [39] and/or F-sharp (DiffSharp 
library) [40]. 
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