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Abstract 

The fractional diffusion equations can accurately describe the migration 
process of anomalous diffusion, which are widely applied in the field of natu-
ral science and engineering calculations. This paper proposed a kind of nu-
merical methods with parallel nature which were the alternating segment ex-
plicit-implicit (ASE-I) and implicit-explicit (ASI-E) difference method for the 
time fractional sub-diffusion equation. It is based on the combination of the 
explicit scheme, implicit scheme, improved Saul’yev asymmetric scheme and 
the alternating segment technique. Theoretical analyses have shown that the 
solution of ASE-I (ASI-E) scheme is uniquely solvable. At the same time the 
stability and convergence of the two schemes were proved by the mathemati-
cal induction. The theoretical analyses are verified by numerical experiments. 
Meanwhile the ASE-I (ASI-E) scheme has the higher computational efficiency 
compared with the implicit scheme. Therefore it is feasible to use the parallel 
difference schemes for solving the time fractional diffusion equation. 
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1. Introduction 

Fractional differential equations arise from some anomalous diffusion models 
and can be very useful in describing the memory and heritability of various 
complex substances. Because of its deep physical background and rich theoreti-
cal significance, it has been widely used in various fields such as fluid mechanics, 
signal processing and information recognition [1] [2] [3]. Due to the success in 
the analysis of a discrete non-Markovian Random Walk Approximation for the 
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anomalous diffusion and its close connection with fractional calculation, the 
anomalous diffusion has become a more interesting research direction in the 
field of complex systems [4]. The time fractional diffusion equation is a class of 
diffusion equations where the first-order time derivative is replaced by the time 
fractional order derivative α. Due to the numerical calculation and storage ca-
pacity of the analytic solution of such equations are very large, the studying on 
numerical algorithm for solving the models has become one of the main subjects 
in anomalous diffusion [5] [6] [7] [8]. 

In recent years, there have been many research achievements on the numeri-
cal algorithm of fractional diffusion equations. Xu Chuanju et al. applied the 
spectral method directly to the solution of time fractional derivatives, and 
proved the convergence by providing a priori error estimate [9]. Liu Fawang et 
al. proposed the implicit RBF method for solving the time fractional diffusion 
equation. Since no grid meshing is consistent with the definition of fractional 
derivatives, it has been regarded as a promising research direction [10]. However 
in the existing numerical algorithms, the finite difference method is still domi-
nant. A class of unconditionally stable and convergent implicit difference ap-
proximate method for fractional diffusion equation was constructed by Zhuang 
Pinghui et al., which was second-order in space and 2 α−  order in time [11]. 
Yuste established the forward Euler difference scheme and put forward the 
weighted average finite difference scheme by G-L (Grunwald-Letnikov) ap-
proximation method for the time fractional sub-diffusion model, as well as 
proved the stability of the scheme [12]. Pu Hai et al. examined a C-N 
(Crank-Nicolson) difference method to solve a class of sub-diffusion equations 
with variable coefficients [13]. The approach was proved unconditionally stable 
by the energy method and convergent to temporally }{min 2 2,1α α− +  order 
and spatially second order. Gao Guanghua et al. derived a compact finite differ-
ence scheme for the sub-diffusion equation, which is fourth-order accuracy ap-
proximation for the space derivative [14]. 

However the computational complexity of existing serial algorithms is rela-
tively high and the computation efficiency is low. With the rapid development of 
multi core and cluster technology, the parallel algorithm of diffusion equation 
has also widely used in numerical calculations [15] [16]. Zhang Baolin et al. 
proposed the idea of using Saul’yev asymmetric scheme to construct segment 
implicit scheme, and using the alternative technique to establish a variety of ex-
plicit-implicit and implicit alternative parallel methods [17]. Yuan Guangwei et 
al. put forward an efficient parallel method which not only keeps the conserva-
tion of the implicit scheme, but also maintains the required accuracy and un-
conditional stability by taking the prediction correction method [18]. In this pa-
per, we will study the application of the parallel difference method which was 
used in the integer-order equations for solving the time fractional order diffu-
sion equation [19] [20] [21]. 

The structure of this paper is arranged as follow. In Section 2, the alternating 
segment explicit-implicit (ASE-I) parallel difference method is constructed. The 
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unconditional stability and convergence are analyzed. In Section 3, we give the 
alternating segment implicit-explicit (ASI-E) parallel difference method. In Sec-
tion 4, numerical experiments are presented to support our theoretical analysis 
and indicate that the ASE-I (ASI-E) scheme is effective for solving time fraction-
al sub-diffusion equation. 

2. ASE-I Parallel Difference Method 

2.1. Time Fractional Sub-Diffusion Equation 

The fractional sub-diffusion equation is considered as follows 

( ) ( ) ( )
2

2

, ,
0 ,0 ,0 1

α

α α
∂ ∂

= ≤ ≤ ≤ ≤ < <
∂ ∂
u x t u x t

x L t T
t x

        (1) 

Initial boundary conditions: 

( ) ( ) ( ) ( )0, , 0, ,0 .= = =u t u L t u x f x  

( ),u x t  indicates the diffusion concentration in point x at time t, fractional 
order derivative α in Equation(1) is Caputo fractional derivative defined by 

( )
( )

( )
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1
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By taking the finite sine transform and Laplace transform, the exact solution 
for the Equation (1) with the boundary conditions as above is obtained as Equa-
tion (3) 
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where ( )αE z  is Mittag-Leffler function, ( ) ( )0
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2.2. Construction of ASE-I Scheme 

Define , 0,1, ,τ= = kt k k n , , 0,1, ,= = ix ih i m  where ,τ = =
T Lh
n m

 are the  

grid sizes in time and space respectively. Let k
iu  be the numerical approxima-

tion to ( ),i ku x t , the 1L  interpolation approximation of the time fractional de-
rivative is defined as follows 
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Let ( )1 11 , 0,1, 2, ,α α− −= + − = jb j j j n , the approximate form can be rewritten 
as 

( ) ( ) ( ) ( ), 1 1
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Moreover the spatial derivative can be discretized in the following four 
schemes: first, the classical implicit scheme is 

( ) ( )1 1 1
, 1 1 12

1, 2α
τ

+ + +
+ + −= − +k k k

h i k i i iL u x t u u u
h

,              (5) 

Second, the classical explicit scheme is 

( ) ( ), 1 1 12

1, 2α
τ + + −= − +k k k

h i k i i iL u x t u u u
h

,               (6) 

At last, we present the two improved Saul’yev asymmetric schemes 

( ) ( )1 1
, 1 1 12
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+ +
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Substituting Equation (4-8) into Equation (1), let ( )2 , 2αµ τ µ α= = Γ −h r , 
we can respectively derive the four schemes of Equation (1): 

When 0=k , 
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When 0>k , 
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As the scheme we constructed above, the classical implicit scheme (5) is abso-
lutely stable but it is inconvenience to efficiently obtain the results because of 
needing to solve three diagonal matrixes. The classical explicit scheme (6) has 
ideal parallelism but it is conditionally stable. The improved Saul’yev asymme-
tric schemes (7) and (8) are convenient to parallel computing, but are condition-
ally stable. So the ASE-I scheme which we constructed is combined with the ad-
vantages of the above schemes and the design is as follows 

Let 1m Bl− = , here B is a positive odd number, w is a positive integer, 
3, 3B l≥ ≥ . We divide the points on each time level into B sections, order as

1 2, , , BS S S . And on the even level, we arrange the computation according to 
the rule of “the explicit segment-the implicit segment-the explicit segment”. 
When it turns to the odd level, the rule changes into “the implicit segment-the 
explicit segment-the implicit segment” that makes the implicit segment and the 
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explicit segment doing alternatively at different time level. In this format, for
( )0 00, , 2 , , 2i i l l B l≥ = − , we consider the calculation of the implicit segment 

point ( )0 , , 1, 2, ,i i k l i l+ + =  . The left boundary point ( )0 1, 1i k+ +  of the 
implicit segment is calculated with the improved Saul’yev scheme (7), the right 
boundary point ( )0 , 1+ +i l k  is calculated with the improved Saul’yev scheme 
(8), and the “interior point” ( )0 , 1 , 2,3, , 1i i k i l+ + = −  are calculated with the 
classical implicit scheme (5). See Figure 1, indicates the classical implicit 
scheme, indicates the improved Saul’yev schemes, thus we get the following im-
plicit segment Equation (13). 
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In order to improve the calculation accuracy, the left and right boundary 
point of implicit segment will be replaced by the implicit scheme when 0 0i =  
and ( )0 1i B l= − . 

At the same time the explicit segment scheme is 
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Figure 1. Schematic of segment implicit. 

 
We use ○ to denote the classical explicit scheme, ● to denote the classical im-

plicit scheme, the remainder are two improved asymmetric formats. 
Let 26, 5, 5m l B= = =  and give the schematic of the ASE-I scheme (see Fig-

ure 2). 
Thus the ASE-I scheme can be written as follows 
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Figure 2. Schematic diagram of the ASE-I scheme. 
 

( )
*

* *

*

1 1
1 2 1

1or 2, 1,2, , ,
2

1 2 1
1 1 ×

− 
 − −  −  = = + =    − − 
 − 

  

i
l

l l

BG l l l i  

′′lQ  is a zero matrix with ′′ ′′×l l  order ( ′′ =l l  or 2−l ). 
Using the properties of the function ( ) ( )1 1α−= ≥g x x x , a set of conclusions 

can be obtained: 

0 1
1

1
1 2

1

1 0, 1

1, 1 2 2 0α

=

∞
−

=

 = > > → = −


 = > − = > > →


∑

∑





k

j k
j

j
j

b b c b

c c c
             (16) 

2.3. Existence and Uniqueness of ASE-I Scheme Solution 

Lemma 1. [17] Set 0ρ > , if matrix A is a non-negative real matrix, the matrix 

( ) 1ρ −+I A  exists, and ( ) 1
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Lemma 2. The matrix 1G  and 2G  of ASE-I scheme are non-negative real 
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Theorem 1. The solution of the ASE-I scheme for solving time fractional 
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sub-diffusion equation is uniquely solvable. 

2.4. Stability of ASE-I Scheme 

Lemma 3. Set , 0σ ρ∀ > , if A matrix is non-negative real matrix, we can get 
( )( ) 1

2
1ρ σ σ −− + ≤I A I A . 

Proof. Because of 

( )( )

( )( ) ( )( )( )
( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

1

21

2

1 1

, 0

, 0

2 2

2, 0

,
max

,

,
max

,

, 2 , ,
max 1,

, 2 , ,

n

n

n

R

I A

R

R

I A I A

I A I A I A I A

I A I A
I A I A

A A A
A A A

ϕ ϕ

ψ σ ϕ

ψ ψ

ψ ψ

ρ σ σ

ρ σ σ ϕ ρ σ σ ϕ

ϕ ϕ

ρ σ ψ ρ σ ψ

σ ψ σ ψ

ρ ψ ψ σρ ψ ψ σ ψ ψ
ψ ψ σ ψ ψ σ ψ ψ

−

−

− −

∈ ≠

= +

∈ ≠

∈ ≠

− +

− + − +
=

− −
=

+ +

− +
= ≤

+ +

 

thus ( )( ) 1

2
1ρ σ σ −− + ≤I A I A . 

The growth matrix of ASE-I scheme for time fractional sub-diffusion equation 
is ( ) ( )( ) ( )1 1

2 1 1 1 1 2
− −= + − + −T I rG c I rG I rG c I rG . Let 

( ) ( ) ( )( ) ( )( )1 1 1
2 2 1 1 1 1 2 2 ,− − −= + + = − + − +T I rG T I rG c I rG I rG c I rG I rG  

we can easily obtain 2 2
1= ≤T T  by Lemma 3. 

Suppose that k
iu  is the solution of ASE-I scheme， 

k
iu  is the approximate 

solution of the scheme，the error ε = −k k k
i i iu u  satisfies 

( ) ( )
( ) ( )
( ) ( )

1 0
1 2

1 1 1 0
2 1 1 2

2 1 1 0
1 1 2 2 1 1

, 1,3,+ −

+ +
+ +

 + = −
 + = − + + + + =


+ = − + + + +

 



k k k
k k

k k k
k k

I rG E I rG E

I rG E c I rG E c E c E b E k

I rG E c I rG E c E c E b E

 (17) 

in which ( )1 2 1, , ,ε ε ε −= 

k k k k
mE . Let 1 2,λ λ  are the eigenvalues of 1 2,rG rG  re-

spectively and the two matrices have the same eigenvalues. Hence  
2

1 2
2

1

max 1
1

λ
λ

 − = ≤ 
+ 

cT , ( )1 2
1 2

1

max 1 , 0
1

λ
λ λ

λ

 −  ≤ ≥ 
+  

c , we can get 

1 1 2 2
2 1 1

1 1 1 1

1 110 1 , , max 1.
1 1 1 1

λ λ λ
λ λ

λ λ λ λ
 + − − ≤ ≤ + + − ≤ ≤ ≤ 

+ + + +  

cc  

For 1=n , ( ) ( )11 0 0 02
1 22 2 22 1

1max
1

λ
λ

−  − = + − ≤ ≤ 
+  

E I rG I rG E E E . 

For 1 22, λ= ≥n c , ( ) ( )2 1 0
2 1 1 1 + = − + I rG E c I rG E b E , 

( ) ( )12 1 0
2 1 1 12 22

1 2 1 0 0 02
2 2 2

1 1

1
max max ;

1 1

E I rG c I rG E b E

c b
E E E

λ λ
λ λ

−  ≤ + − + 

 − +   − = = ≤   
+ +    
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1 2λ<c , 2 0 0 02 1 1 2 1
2 2 2 2

1 1

2 1max max .
1 1

λ λ
λ λ

   − + + −
≤ = ≤   

+ +   

c b bE E E E  

Suppose that 0

2 2
≤nE E  when 2≤n k , then we also have 

( ) ( )12 1 2 2 1 1 0
1 1 2 2 2 22 22

1 2 2 2 2 0

2
1

1 2 1 0 0

2 2
1

max
1

max ;
1

k k k
k k

k k

E I rG c I rG E c E c E b E

c c c b
E

c b
E E

λ
λ

λ
λ

−+ −≤ + − + + + +

 − + + + +  ≤  
+  

 − +  = ≤ 
+  





 

( ) ( )12 2 2 1 2 1 0
2 1 1 2 2 1 2 12 22

1 2 2 2 1 2 1 0

2
1

1 2 1 0 0

2 2
1

max
1

max .
1

k k k
k k

k k

E I rG c I rG E c E c E b E

c c c b
E

c b
E E

λ
λ

λ
λ

−+ +
+ +

+ +

≤ + − + + + +

 − + + + +  ≤  
+  

 − +  = ≤ 
+  





 

Summing up we have 0

2 2
, 1, 2,3,≤ = 

nE E n . Hence, the following theo-

rem is obtained. 
Theorem 2. The ASE-I scheme for time fractional sub-diffusion equation is 

unconditionally stable. 

2.5. Convergence of ASE-I Scheme 

Because of 

( ) ( )
( )

( )
( )

( )
1 2

1
, 11 2

0 1

, , , d
2 2 1

α α
τα

τ α α ατ

ξτ τ ξ
α ξ ξ

+
+

+
= +

∂ ∂ ∂
= − + +

Γ −∂ ∂ ∂ −
∑∫

k j
h j

j k

u x t u x t u x
L R

t t t
 

where ( )2
1

ατ −=R O , 

( )
( )

( )
( )

( ) { }
( )

( )

( ) ( ) ( ) ( ) ( )

0 1

2
1

2
0 1

1

0 1

1
1 1 1

0

,1 d
1

1 dmax
1

1 ,
1 1

k

k j

j
j k

k j
tt jt t t j k

k
u

j

u x

t

u
t

c
k j k j O

τ

ατ

τ

ατ

α
α α α

ξ ξ
α ξ ξ

ξ
α ξ

τ
τ

α α

+

+

= +

+

≤ ≤ = +

−
− − −

=

∂
Γ − ∂ −

≤
Γ − −

 = + − − − = − Γ −

∑∫

∑∫

∑

 

hence we can get 

( ) ( ) ( ) ( )
1

2
, 1 2 21

, ,
, , .

2

α α
α α
τ α α

τ
τ

+
−

+ +

∂ ∂
= − + =

∂ ∂h i k
u x t u x t

L u x t R R O
t t

 

At the same time the truncation error of improved Saul’yev asymmetric 
schemes used in spatial discretization is 

2 3 2 2

,
2 6 2 4 6 12

τ τ τ τ τ τ
− + − + − − −tx xtt xttt xxt xxtt xxxt xxxx

h hu u u u u u u
h h h
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2 3 2 2

2 6 2 4 6 12
τ τ τ τ τ τ

− + + − + −tx xtt xttt xxt xxtt xxxt xxxx
h hu u u u u u u

h h h
, respectively. 

When the two schemes are constructed alternatively on different time layers,  

the truncation error is 1

2 2
1

2 6
ττ+ = − −k

xxt xxtt xxxxi

hT u u u . In the same way, the 

truncation error of the explicit-implicit scheme (5-6) is  

2

2 2
1

2 6
ττ+ = − −k

xxt xxtt xxxxi

hT u u u  as well. Due to the first term of 1
1+k

i
T  and 2

1+k
i

T

can be cut off by the error term of temporal discretization 
( )1

1

,
2

α

α

τ +

+

∂
−

∂
u x t
t

, 

therefore the truncation error of ASE-I scheme is ( )2 2ατ − +O h . 

Define = −k k k
i i ie u u  in which k

iu  is exact solution of the Equation (1) and 

( )1 2 1, , , −= 

k k k k
me e e e . Using 0 0=e  to substitute into the Equation (15), we can 

get 

( )
( ) ( )
( ) ( )

1 1
1

1 1 1 1
2 1 1 2

2 1 1 2
1 1 2 2 1

,

,

, 1,3,5,

+ − +

+ + +
+

 + =
 + = − + + + +


+ = − + + + + =



 

k k k k
k

k k k k
k

I rG e R

I rG e c I rG e c e c e R

I rG e c I rG e c e c e R k

 

in which 

( ) ( ) ( )2 2 2 22 , 1, 2,3,α α ατ α τ τ τ−

∞
= Γ − + ≤ ⋅ + = 

nR O h C O h n , C is a constant. 

Lemma 4. ( )1 2 2
1 1 , 1, 2, ,ατ τ−
−∞

≤ + = 

k
ke b C h k n , 

1 1
max

∞ ≤ ≤ −
=k k

ii m
e e , 1C  is a 

positive constant. 
Proof . Lemma 4 can be proved using mathematical induction. 

When 1=n , ( ) ( )11 1 1 2 2
1 1 0

ατ τ− −

∞ ∞
= + ≤ +e I rG R C b O h . 

When 2=n , 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

12 1 2
2 1 1

1 11 2 2 2 2
2 1 1 0 2

11 2 2 1 2 2
1 1 2 1 1 1 1 1

e I rG c I rG e R

I rG c I rG Cb O h I rG O h

C b O h I rG c I rG b C b O h

α α

α α

τ τ τ τ

τ τ τ τ

−

∞ ∞

− −−
∞∞ ∞

−− −
∞∞

 = + − + 

≤ + − + + + +

≤ + + − + ≤ +

 

Suppose that ( )1 2 2
1 , 2ατ τ−
−∞

≤ + ≤n
ne b O h n k , then we also have 

( ) ( )

( ) ( )

( ) ( ) ( )

12 1 2 2 1 1 2 1
1 1 2 2 2

11 2 1
2 1 1 2 2 2 2

11 2 1 1 2 2
2 1 1 2 1 1 2 ,

k k k k
k

k
k k k

k
k k

e I rG c I rG e c e c e R

b I rG c I rG c c b R

b I rG c I rG b R C b O hατ τ

−+ − +

∞ ∞

−− +
∞ ∞∞

−− + −
∞ ∞∞

 = + − + + + + 

≤ + − + + + +

= + − + ≤ +




 

( ) ( )

( ) ( )
( ) ( ) ( )

12 2 2 1 2 1 2 2
2 1 1 2 2 1

11 2 2
2 1 2 1 1 2 2 1 2 1

11 2 2 1 2 2
2 1 2 1 1 1 1 2 1 .ατ τ

−+ + +
+∞ ∞

−− +
+ + +∞ ∞∞

−− + −
+ +∞ ∞∞

 = + − + + + + 

≤ + − + + + +

= + − + ≤ +





k k k k
k

k
k k k

k
k k

e I rG c I rG e c e c e R

b I rG c I rG c c b R

b I rG c I rG b R C b O h
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In summary, we have ( )1 2 2
1 1 , 1, 2, ,ατ τ−
−∞

≤ + = 

k
ke b C h k n . 

Due to 
( )

1 1

1 11

1lim lim lim
11 11 1

α

α α αα α

− − −

− −−→+∞ →+∞ →+∞
= = =

−+ −  + − 
 

k

k k k

b k k
k k k

k

, thus 

( ) ( )2 2 2 2
1

1
1

α α α α ατ τ τ
α

− −

∞
≤ + ≤ +

−
ke k C h CT h  where C  and T is a positive 

constant. 
Theorem 3. The ASE-I scheme for time fractional sub-diffusion equation is 

unconditionally convergent and there is a positive A satisfies  

( )2 2 , 1, 2, ,ke A h k nατ −

∞
≤ + =  . 

3. ASI-E Parallel Difference Method 

Imitating the method constructed ASE-I scheme, we give the ASI-E scheme for 
solving the time fractional sub-diffusion equation. The difference between the 
ASE-I and ASI-E scheme is that the use of implicit segment and explicit segment 
is different. 

On the odd level, we arrange the computation according to the rule of “the 
implicit segment-the explicit segment-the implicit segment”, when it turns to the 
even level, the rule changes into “the explicit segment-the implicit segment-the 
explicit segment”. Thus we get the ASI-E difference scheme 

( ) ( )

( ) ( )

1 1 1 0
2 1 1

2

1
2 1 1 2 0

1 1 2 1
2

, 0, 2,

+ + − +

=

+
+ + + − +

+
=

 + = − + + +
 =
 + = − + + +


∑

∑


k
k k k k j

j k
j

k
k k k k j

j k
j

I rG U c I rG U b c U b U
k

I rG U c I rG U b c U b U
 (17) 

in which the definition of 1 2,C C  and kb  are the same as above. Due to the 
implicit scheme on the first layer is unconditionally stable and convergent, we 
imitate the analytical and proved method of the ASE-I scheme (15) from the 
second time layer, and get the following theorem. 

Theorem 4. The ASI-E scheme for time fractional sub-diffusion equation is 
unconditionally stable and convergent, meanwhile there is a positive A satisfies 

( )2 2 , 1, 2, ,ατ −

∞
≤ + = 

ke A h k n . 

4. Numerical Examples 

In this section, we present numerical examples to demonstrate that the ASE-I 
scheme is a computational effective numerical method for time fractional 
sub-diffusion equation compared with the implicit scheme as well as give the 
convergence rate of the ASE-I scheme. Numerical experiments will be done in 
MatlabR2015b, based on the Intel Core i5-2400 CPU@2.20GHz. 

Considering the following time fractional sub-diffusion equation 

( ) ( )

( ) ( ) ( ) ( )

2

2

, ,
,

0, 2, 0, ,0 .

α

α

∂ ∂
=

∂ ∂
 = = =

u x t u x t
t x

u t u t u x f x
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The initial condition is ( )
2 , 0 0.5,
4 2 , 0.5 2.

3

x x
f x x x

≤ ≤
= −

≤ ≤

 

At 0.4, 0.5t α= = , we compare the solution of ASE-I scheme with the exact 
solution and the numerical solution using the implicit scheme. For the exact so-
lution, the series in Equation (3) is truncated after 20 terms. We take 1000n = , 

80m =  when calculating numerical solutions, the computed results are listed in 
Table 1. 

As these can be seen from Table 1, the numerical solutions of ASE-I and 
ASI-E scheme are better close to the exact solution compared with the implicit 
numerical solution, and the result of ASE-I scheme is obviously better, thus we 
mainly focus on ASE-I scheme. The surface of ASE-I numerical solution shown 
in Figure 3 describes the complete diffusion process which instructs the varia-
tions in concentration at different times and spaces. In particular, we consider 
the decay process curve of fractional diffusion model at the space point 2=x L  
under the case of α taking different values. From Figure 4, it can be seen that the 
speed of diffusion is getting faster as α approaches to the number “1”, and the  
 

 
Figure 3. Numerical solution surface of ASE-I scheme. 

 
Table 1. Comparison of exact solution and numerical solutions. 

 
x 

0.25 0.5 0.75 1 1.25 1.5 1.75 

Exact solution 0.0992 0.1876 0.2330 0.2371 0.2091 0.1578 0.0908 

Implicit scheme 0.0988 0.1868 0.2319 0.2359 0.2080 0.1569 0.0903 

ASE-I scheme 0.0992 0.1876 0.2329 0.2370 0.2090 0.1577 0.0908 

ASI-E scheme 0.0996 0.1884 0.2342 0.2383 0.2103 0.1586 0.0910 
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Figure 4. Decay process curve of diffusion model. 

 
diffusion velocity of solute becomes more and more slow with the reduction of 
the diffusion concentrations, this is consistent with measurements of some ac-
tual diffusion processes. 

Next, to better validate the stability and compare the accuracy of the ASE-I, 
we will analyze the change cure of the sum of relative error with time steps 
(SRET) and the distribution of the difference total energy (DTE) at space grid 
points. Taking the exact solution  j

iu  as the control solution, we let the numer-
ical solution j

iu  of the scheme as the perturbation solutions. The definition of 
SRET and DTE are as follows: 

( ) ( ) ( )2

1 1

1SRET , DTE .
2= =

−
= = −∑ ∑





j jm ni i j j
i ij

i ji

u u
j i u u

u
 

From Figure 5, the SRET of ASE-I scheme is less than 5. The relative error is a 
little big in the first few steps, and decreases rapidly with the time step, thus we 
can know that the ASE-I scheme of the time fractional sub-diffusion equation is 
stable. 

The values of ASE-I scheme’s DTE are between 0 and 0.0075 from Figure 6, 
and the calculation error of the diffusion concentration is getting reductive with 
the passage of space, this also can demonstrate that the ASE-I scheme of time 
fractional sub-diffusion equation is very close to the exact solution. The values of 
DTE appear to fluctuate near the grids 16, 32, 48 64, and its maximum values 
appear near the grids 16 and 32. Fortunately these grids are the “inter boundary 
point” of the ASE-I scheme, i.e. a couple of Saul’yev scheme alternatively applied 
in different temporal level. At the same time, the explicit-implicit scheme is ap-
plied in the “inter point” for the ASE-I scheme. So it is normal to conclusion that 
the values of DTE in “inter boundary point” are little bigger than that in “inter 
point”. Moreover we compare the DTE of the implicit scheme and ASE-I  
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Figure 5. Change curve of SRET. 

 

 
Figure 6. Distribution of DTE at space points. 

 
scheme. As shown in Figure 6, there is not much difference between the two 
schemes and the error of the ASE-I scheme is slightly smaller than the other one. 
Comprehensively considering the ASE-I scheme can be more effective to solve 
the time fractional sub-diffusion equation. 

A test example will be performed to illustrate the convergence order of the 
ASE-I scheme. Denote [22] 

( )
1
22

2, 2, 2 1
,

m
n n j n j n

h i i i i
i

E E u u u uτ
=

 = = − = − 
 
∑   

( ) ( )2 2, 2, 2 2 2, 2, 2Order 1 log , Order 2 log .n n n n
h hE E E Eτ τ= =  

https://doi.org/10.4236/jamp.2018.65089


L. F. Wu et al. 
 

 

DOI: 10.4236/jamp.2018.65089 1031 Journal of Applied Mathematics and Physics 

 

Thus the numerical results are presented as follows. 
Table 2 gives the computational errors with different temporal step sizes us-

ing the fractional order 0.5α = . We can see that the numerical accuracy in 
temporal direction is approximately 2 α−  order and compared with the impli-
cit scheme, it has the higher accuracy. At the same time, we compute the nu-
merical accuracy in spatial direction. Taking 20,40,80,160,320m =  for Impli-
cit and ASE-I scheme and let ( )2 210 τ= =N M h . From Table 3, we can see 
that the numerical accuracy in spatial direction is second-order for Implicit and 
ASE-I scheme, therefore the experimental results are basically consistent with 
the theoretical analysis. 

At last we select 1000m =  and 200,400,600,800,1000,1200n =  as the spa-
tial grid number and the temporal grid number. In terms of computation time in 
Table 4, the computational efficiency (CPU time) of the ASE-I (ASI-E) scheme 
has big advantage compared with implicit scheme. With the increase of the grid 
number, the computation times of the implicit scheme rapidly grow up, and 
which the ASE-I (ASI-E) scheme’s has a lower growth rate by comparison. The 
computation time of the ASE-I (ASI-E) scheme can save nearly 75% compared 
with the implicit scheme and the Sp (Speedup) is approximately 4.38 and 4.16 
respectively. Comprehensively considering the computing efficiency and the 
computing accuracy, the ASE-I scheme can be more effective to solve the time 
fractional sub-diffusion equation. When the long time course is calculated, the 
parallel computing advantages of ASE-I scheme will be more obvious. 

 
Table 2. Numerical errors and convergence of ASE-I scheme in temporal direction (h = 
0.02). 

n 
Implicit scheme ASE-I scheme 

2,τ
nE  Order1 2,τ

nE  Order1 

100 1.318791e−2 —— 4.602391e−2 —— 

200 4.744180e−3 1.474986 1.601679e−2 1.522799 

400 1.694009e−3 1.485717 5.311683e−3 1.592344 

800 6.018973e−4 1.492852 1.549930e−3 1.776966 

1600 2.130681e−4 1.498203 4.902799e−4 1.660525 

 
Table 3. Numerical errors and convergence of ASE-I scheme in spatial direction ( 2τ = h ). 

m 
Implicit scheme ASE-I scheme 

2,
n

hE  Order2 2,
n

hE  Order2 

20 2.593343e−3 —— 4.309022e−3 —— 

40 6.548375e−4 1.985604 1.096470e−3 1.974494 

80 1.667856e−4 1.973142 2.386357e−4 2.199984 

160 4.221036e−5 1.982326 3.733635e−5 2.676157 

320 1.057340e−5 1.997158 9.359062e−6 1.996145 
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Table 4. Comparison of the three difference schemes’ CPU time. 

 200 400 600 800 1000 1200 Sp 

Implicit Scheme 10.830s 21.381s 31.115s 41.098s 59.172s 85.819s 1 

ASE-I Scheme 0.5085s 2.0831s 4.7679s 8.4739s 13.963s 19.787s 4.38 

ASI-E Scheme 0.8882s 2.0564s 5.0325s 8.5669s 13.451s 20.633s 4.16 

5. Conclusion 

For the time fractional sub-diffusion equation, this paper constructs the ASE-I 
and ASI-E difference schemes with unconditional stability and convergence. 
Numerical experiments verify the theoretical analyses and show that the pro-
posed scheme is of excellent computational accuracy and obvious parallel prop-
erties. The ASE-I (ASI-E) scheme given by this paper can be extended to solve 
other fractional diffusion models and the parallel computing advantages of the 
ASE-I (ASI-E) scheme will be more obvious for the long time course and the 
high dimensional fractional diffusion equation. But the application of the ASE-I 
(ASI-E) scheme in multidimensional fractional differential equations remains to 
be further studied. 
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