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Abstract 
With his publication in 1873 [1] J. W. Gibbs formulated the thermodynamic 
theory. It describes almost all macroscopically observed properties of matter 
and could also describe all phenomena if only the free energy U ST−  were 
explicitly known numerically. The thermodynamic uniqueness of the free 
energy obviously depends on that of the internal energy U and the entropy S, 
which in both cases Gibbs had been unable to specify. This uncertainty, 
lasting more than 100 years, was not eliminated either by Nernst’s hypothesis 

0S =  at 0T = . This was not achieved till the advent of additional proof of 
the thermodynamic relation 0U =  at cT T= . It is noteworthy that from 
purely thermodynamic consideration of intensive and extensive quantities it is 
possible to derive both Gibbs’s formulations of entropy and internal energy 
and their now established absolute reference values. Further proofs of the 
vanishing value of the internal energy at the critical point emanate from the 
fact that in the case of the saturated fluid both the internal energy and its 
phase-specific components can be represented as functions of the evaporation 
energy. Combining the differential expressions in Gibbs’s equation for the 
internal energy, ( ) ( )d d 1T Tµ  and ( ) ( )d d 1p T T , to a new variable 

( ) ( )d dT p Tµ  leads to a volume equation with the lower limit vc as 
boundary condition. By means of a variable transformation one obtains a 
functional equation for the sum of two dimensionless variables, each of them 
being related to an identical form of local interaction forces between fluid 
particles, but the different particle densities in the vapor and liquid spaces 
produce different interaction effects. The same functional equation also 
appears in another context relating to the internal energy. The solution of this 
equation can be given in analytic form and has been published [2] [3]. Using 
the solutions emerging in different sets of problems, one can calculate 
absolutely the internal energy as a function of temperature-dependent, 
phase-specific volumes and vapor pressure. 
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( ), , 0cU M V T = , Critical Volume ( ) ( )d d
c

V M T p Tµ= ⋅    , Two-Phase 

Equilibrium ( )( ) ( ) ( )0 lnv l v l v l v lM u u ST M M v v v v v vµ  − − ≤ + = + − − 

( ) ( )d d 1 d d cp T T V p T T U Vp Vp Vp⋅ + ⋅ = + ≤ ≤ , Chemical Potential 

Negative, ( ) ( ) ( ) ( )( )0 , ,0 0 0v lM T M U M V M u uµ µ  ≤ = = ⋅ − − <  . 

 

1. Introduction 

The purpose of this paper is to show that Gibbs’s theory [1] contains intrinsically 
“natural” reference values of entropy and internal energy that are reciprocal and 
thus represent thermodynamic reference values [4]. Nevertheless, it was and is 
still accepted till the recent past that the value of the internal energy of the real 
gas cannot be given absolutely, e.g. [5] [6]. Instead, the calculation of entropy 
and internal energy could be based on a so-called fiducial reference value [7]. To 
put an end to the diversity of individually, arbitrarily chosen fiducial values, it 
was decided at conferences in the 1950s to assign the values of entropy and 
internal energy (or enthalpy) of a liquid at the triple point the reference values 
zero, which in any case the Nernst hypothesis contradicts. On this basis 
mathematically complex equations were put forward, but an analysis (see 
Appendix) shows that they contain thermodynamic inconsistencies. These then 
yielded incorrect thermodynamic data published for a large number of gases, e.g. 
[8]-[15]. None of these skeleton tables presents data on the chemical potential, 
which could have been derived from the differences , ,v l v lh s T− . A paper that 
specifically investigates calculation of the chemical potential of the generally 
accepted conference agreements comes to the surprising conclusion that the 
chemical potential increases as the temperature [16]. This result cannot, however, 
account for daily observation that flow of freely-moving matter occurs from cold 
to warm regions [17]. One has to take the consequence from the numerous 
thermodynamic discrepancies ensuing from calculating entropy and internal 
energy from the assumptions mentioned, ( ) 0l ts T =  and ( ) 0l tu T =  (or 
( ) 0l th T = ). Here, too, as so often in the history of physics, one has to abandon a 

trusted hypothesis. Here it is the assumption of the naive addition of fiducial 
constants to thermodynamic fundamental quantities. 

The paper shows four possible ways of finding directly the thermodynamic 
reference values of entropy and internal energy and thus comply with the correct 
treatment of real properties of matter called for by Gibbs. First there is the 
possibility of studying the characteristic features of intensive and extensive 
quantities in order to describe thermodynamically the real properties of matter. 
A second investigation deals with the question what follows from representation 
of the internal energy of the fluid as a function of the evaporation energy. The 
third possibility is concerned with solution of a functional equation for the sum 
of two dimensionless variables, the one referring to the local interaction 
potential of fluid particles in the vapor space and the other to that in the liquid. 
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The functional equation emerges from the original equation for the internal 
energy and has been solved [3]. The functional equation is, on the other hand, 
also encountered when one represents the particular phase-specific internal 
energy as a funtion of the evaporation or condensation energy. It has of course 
the same (physically unique) solution and allows the internal energy to be 
explicitly calculated as an absolutely determined temperature function of the 
measurable quantities: phase-specific volumes and vapor pressure [2]. 

2. Intensive and Extensive Quantities of the Saturated Fluid 

The homogeneity of the fluid allows its macroscopic properties to be described 
by intensive and extensive quantities. 

The intensive quantities are the temperature T, vapor pressure p and chemical 
potential μ; vapor pressure and chemical potential are pure temperature 
functions below the critical point of the fluid. With the finite critical values pc 
and 1 1d d d dn n n n

c cp T p T− − >  ( 1,2,3,n =  ) the -expansion of p to second 
order yields 

0 , 0 1 1,c cT T T T≤ ≤ ≤ = − ≤  
2

2 2
2

| |

d 1 d0 ,
d 2 dc c c c

c c

p pp p T T p
T T

≤ = − + ≤   

2 3
2 2

2 3
| || |

d d d 1 d d0 ,
d d 2 dd dc c

c cc c

p p p p pT T
T T TT T

≤ = − + ≤   

2 2 3 2

2 2 3 2
| | |

d d d d0 ,
d d d dc

c c c

p p p pT
T T T T

≤ = − + ≤  

( )
( )

( )
( )

2

2

d dd d d0, 0.
d 1 d d d 1 d

p T p Tp pp T T
T T T T T

= − ≤ = − ≤          (1.1) 

For 0T ≥  the vapor pressure is a positive and convexly curved temperature 
function increasing with T from 0 to pc. Also the temperature derivatives 
increase with T from ( )d d 0 0n np T =  to finite values ( )d dn n

cp T T  (where 
1,2,n =  ). In contrast, the chemical potential is a negative and concavely 

curved temperature function decreasing with T. With the finite critical values 

cµ  and d d cTµ , and, on the other hand, the divergent terms d dn n
cTµ  

( 2,3,n =  ) an -expansion of μ is not possible: 
2 2

2 2
| |

d d d d0 , 0 , 0 ,
d d d dc

c cT T T T
µ µ µ µ

µ µ> ≥ ≥ ≥ ≥ ≥ → −∞         (1.2) 

( )
( )

( )
( )

( )
( )

2 2

2 2
||

d d dd d d0 , 0 ,
d 1 d 1 d d 1 d d c

cc

T T T
T T

T T T T T T
µ µ µ µ µ

> ≥ ≤ = − < − → +∞  

( )
( )

( )
( )

2 2

2 2
| | | |

d dd d d d0 , 0 , 0 , 0 .
d d d dd dc c c c

T T
p p p p p T p Tp p

µ µµ µ µ µ µ µ
> > > > < < < ≤  

Thermodynamics treats the quantity X as an extensive quantity, which means 
that X is proportional to the fluid mass M. The validity of the relation X xM=  
leads to x having the property of additivity and ensures its uniqueness. At 
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temperatures below the critical point the fluid mass M in the volume V is 
additively composed of the vapor mass Mv and the condensed mass Ml in the 
sub-volumes Vv and Vl: v lM M M= +  in v lV V V= + . The same applies to other 
extensive quantities such as the entropy S, internal energy U, enthalpy H, free 
energy F, and heat capacity C. Denoting such quantities by X and ,v lX  and the 
corresponding mass-specific quantities by x X M=  and , , ,v l v l v lx X M= , one 
obtains the following definitions: 

{ }
{ }, , ,

, , , , , , , ,

, , , , , , , .
v l v l

v l v l v l

M M M X X X X V S U H F C

x X M x X M x v s u h f c

= + = + =

= = =
      (1.3) 

It is worth mentioning that the temperature variation of the ratio of the 
differences ( )lx x−  and ( )vx x−  of quantities such as the volume, entropy, 
internal energy, enthalpy, free energy, and specific heat is the same and equal to 
that of the ratio of vapor to condensed masses, viz. 

0 1,v l l l l l l

l v v v v v v

M v v s s u u h h f f c c
M v v s s u u h h f f c c

− − − − − −
≤ = = = = = = ≤

− − − − − −
     (1.4) 

where the equality signs are valid for 0T =  and cT T= , respectively. From 
Equation (1.4) one arrives at the interdependence of two extensive quantities x 
and y and their phase-specific values ,v lx  and ,v ly  in the following form: 

( ) ( ) 0.l v v l v l l vx y y y x x x y x y− + − − + =               (1.5) 

This relationship can also be deduced from the correlations 
( ) ( )v v l lx M M x M M x= ⋅ + ⋅  and ( ) ( )v v l ly M M y M M y= ⋅ + ⋅  with 

( ) ( ) 1v lM M M M+ = . 
The decomposition of mass M into vM  and lM  below the critical point 

occurs within limits and is given by 

10 1.
2

v l l v

v l v l

M v v M v v
M v v M v v

− −
≤ = ≤ ≤ = ≤

− −
              (1.6) 

While the mass-specific quantity x constitutes an average of the quantity X in 
V in relation to the total mass M and is thus a function of T and V/M, the mass- 
and phase-specific quantity xv describes the quantity Xv in the volume Vv and is 
related to the vapor mass Mv, and the quantity xl describes Xl in Vl and is related 
to Ml. The quantities ,v lx  then give thermodynamic information on the masses 

,v lM  in ,v lV , which are subject to equal values of temperature T, vapor pressure 
( )p p T=  and chemical potential ( )Tµ µ=  in V, and different density values 

1
vv−  in Vv and 1

lv−  in Vl. Since the densities of the vapor and condensate in Vv 
and Vl are functions of the temperature alone, the quantities ,v lx  in ,v lV  are 
likewise pure temperature functions. As vv is different to vl for cT T< , the value 
xv is different to xl for cT T< , and as vv and vl are equal to the critical value vc at 
the critical point ( ), ,c c cT p µ , the values xv and xl are equal to the critical value xc 
at ( ),c cT v . The information from xv and xl implicitly contains all particle 
interactions that can be expressed in terms of various imaginable types of 
descriptions of thermodynamic properties. 
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If a thermodynamic quantity is represented in its domain of definition [ ],T v  
by a thermodynamic function ( ),x T v , a thermodynamic quantity is always an 
absolute quantity. For example, the physics of the real gas operates in the 
temperature range [ ]0, cT  in the limits  

( ) ( ) ( ) [ ]0 0, , , , , ,c c c cS M V S T M V S T M V Vp M Tµ= < < = −  and  
( )( ) ( ) ( ) ( )0 0, , , , , , 0v l cM u u U M V U T M V U T M V− − = < < = . 

The critical value xc of the quantity { }, , ,x v s u f=  is finite. In fact, when xv 
approaches the finite value xc from below, then xl approaches xc from above and 
vice versa; in any case, one has ( ) ( ) 0v c l cx T x T− = . The approach is determined 
by ( )( ) ( )( )lim d d lim d d

c cT T v T T lx T T x T T→ →= − . The ratio value of 
( ) ( )v lx T x T  at the critical point is then different for the two possible cases of 

equal or opposite sign of ( )vx T  and ( )lx T . One has 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0, 1 for 0,

0, 1 for 0.
v c l c v c l c v l

v c l c v c l c v l

x T x T x T x T x T x T

x T x T x T x T x T x T

= ≠ = + >

= = = − <
    (1.7) 

The relations of the first line of (1.7) are valid for the quantities { }, ,x v s f= . 
The consequence from relations (1.7) for the quantity x u=  shall be 

investigated. It can be stated that the vapor energy vU  at low temperatures is 
positive since vapor particles are so far apart that their (negative) interaction 
potentials are vanishingly small in comparison with their (positive) thermal 
energies. At low temperatures one thus has 0v v vu U M= > . Under these 
conditions the evaporation energy ( )v lu u M−  is very much larger than vU . 
From ( )v l vu u M U−   one obtains ( )v l v v vu u U M u M M− =  or, with 

1 2vM M ≤ , ( ) 2 0v l v v v vu u u u u M M− > > > ≥ . This gives an estimate of the 
mass-specific energy ul in the form of ( ) 0l v v lu u u u= − − ≤ , i.e. the vapor 
energy uv is not negative and the condensate energy ul is not positive. The 
second line of relations (1.7) then states 0cu = . This yields the important 
results, 

( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 1.l v l c v c v c l cu T u T u T u T u T u T≤ ≤ = = = −     (1.8) 

From Equations (1.3) one obtains the thermodynamic relation of the mean 
fluid quantity x (which is a function of T and v) to the phase-specific quantities 

,v lx  (which are pure temperature functions) as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

, , ,

.

v l l
v l v v l

v l v
l v l v l

v l v l

v l
v v l l v l

v l v l

M M Mx T v T v x T T v x T x x x
M M M

M v v v vx x x x x
M v v v v
v v v vx x x x x x
v v v v

= + = − −

− −
= + − = +

− −
− −

= − − = + −
− −

     (1.9) 

Differentiation of ( ),x T v  with respect to v at fixed T yields the coefficient of 
isothermal phase transition, 

.v l

T v l

x x x
v v v
∂ −  = ∂ − 

                      (1.10) 
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Thus the fluid quantity ( ), cx T v  can be expressed in terms of ,v lx , ,v lv , cv , 
and ( )Tx v∂ ∂ : 

( ) ( ) ( )( )( ), ,, .c v l v l c Tx T v x T v T v x v= − − ∂ ∂            (1.11) 

If the saturated fluid does not have the critical volume vc, but the volume v, 
the following conversion has to be made: 

( ) ( ) ( )( ) ( )( ), ,, , .c c v l v lT Tx T v x T v v v x v x v v x v= − − ∂ ∂ = − − ∂ ∂     (1.12) 

At cT T=  the fluid takes the critical volume vc. From Equation (1.9) it is 
immediately obvious that the critical values ( ),c cx T v , ( )v cx T , ( )l cx T , and the 
zero-point values ( )0,x v  and ( )0lx  are respectively equal, 

( ) ( ) ( ) ( ) ( ), , 0, 0 ,c c v c l c c lx T v x T x T x x v x= = = =         (1.13) 

and from Equation (1.10) it follows that 

( ) ( ) ( ) ( ), if 0,l v Tx T x T v x T x v< < ∂ ∂ >  

( ) ( ) ( ) ( ), if 0.l v Tx T x T v x T x v> > ∂ ∂ <            (1.14) 

In the theory it is not only the difference of the phase-specific quantities xv 
and xl, i.e. 

( ) ( )( ), ,v l v l T
x x v v x T v v− = − ∂ ∂               (1.15) 

that is of importance, but also their sum  
( ) ( ) ( ) ( )( )2 , 2 ,v l v l T
x x x T v v v v x T v v+ = + + − ∂ ∂ . Since  
( ) ( ) [ ] [ ]( ) ( )2 0v l v l v l v l l vv v v v v v v v v v v M M M M+ − − = − − − − = − ≥ , one 
has 

( )( )2 .v l v l l vx x x x x M M M M+ = + − −             (1.16) 

The sign of the function ( )v lx x+  will subsequently be of interest. It is the 
same as that of the function ( )v lx x−  if the product function 
( )( )v l v lx x x x+ −  has a positive sign, while the signs of ( )v lx x+  and 
( )v lx x−  are opposite if  
( )( ) ( ) ( ) ( )22v l v l v l v l l vx x x x x x x x x M M M M+ − = − + − −  is negative. The 
latter can be the case if either the product function ( )v lx x x−  or the difference 

( )2 2
v lx x−  is negative (see Equations (1.25) and (1.26) below). At the critical 

point one has ( )( ) ( )2 ,v l c c cx x T x T v+ =  and at absolute zero 
( )( ) ( ) ( )( )0 2 0, 0v l v lx x x v x x+ = + −  and ( ) ( ) ( )( )0 0, 0v v lx x v x x= + − ; for the 
vapor-phase quantity vx  one then obtains 

( ) ( ) ( ) ( ) ( ) ( )( )2 , , 0 0, 0 .v c c c l c v v lx T x T v x T x x v x x= − = + −      (1.17) 

The critical mean fluid value ( ),c cx T v  is thus equal to the mean of the  

phase-specific critical values ( ) ( )1
2 v c l cx T x T+    and, if the fluid value  

( )0,x v  at absolute zero is given by the condensation energy value 
( )( )0v lx x− − , the vapor value ( )0vx  vanishes, i.e. it holds, for example, that 
( )0 0vu = . 
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At this place the quantum state of the Bose-Einstein condensation should be 
noticed. In contrast to the thermodynamic temperature absolute zero the lowest 
temperature available is the transition temperature  

( ) ( )2 5 3 2 32π e 0trT mk n= ⋅ ⋅ > , where 2πh=  is the Planck constant, k the 
Boltzmann constant, m the particle mass and n the particle density in the 
condensate. The atomic densities achieved in experiments range from 10–14 to 
10–15 cm–3 and transition temperatures from 100 nK to a few μK [18]. The 
internal energy of the dilute gas is positive for trT T>  and vanishes at trT T= , 
whereas that of the condensate is negative [19]. 

2.1. Interdependence of Extensive and Intensive Quantities 

Since the two-phase equilibrium can be described by extensive as well by 
intensive quantities, an interdependence between these quantities exists. 
Thermodynamics yields for the quotients ( ) ( )v l v lx x v v− −  of the particular 
quantities { }, , ,x f s u c=  the well-known vapor pressure relations, 

( )
( )

2

2

d0, 0,
d

d d0, 0.
d 1 d

v l v l

T Tv l v l

v l v l

T Tv l v l

f f s sf s pp
v v v v v v T

p Tu u c cu c p T
v v v T v v v T

− −∂ ∂   = = − ≤ = = ≥   ∂ − ∂ −   

− −∂ ∂   = = − ≥ = = ≥   ∂ − ∂ −   

    (1.18) 

Correspondingly, for the quotients ( ) ( )v l l v v lx v x v v v− −  the chemical 
potential relations are 

d0, 0,
d

v l l v v l l v

v l v l

f v f v s v s v
v v v v T

µµ− −
= − > = ≤

− −
          (1.19) 

( )
( )

2

2

d d0, 0.
d 1 d

v l l v v l l v

v l v l

Tu v u v c v c v T
v v T v v T

µ µ− −
= − > = ≤

− −
 

Equations (1.18) and (1.19) allow one to define volume functions 
( ) ( )v l l v v lx v x v x x− − , which can be represented in different ways: 

1

.
1 2 2

v l l v v v l l v l
v l l

v l v l v l

v l v l v l v l
v

l v v l

x v x v x v x v v vv v v
x x x x x x

v v v v v v x xv
x x x x

− − −
= + − = +

− − −

− + − +
= − = −

− −

       (1.20) 

In evaluating the critical value of a volume function (1.20) one should give 
heed, in respect of Equations (1.7) in the case ( ) ( ) 1v c l cx T x T = , to whether a 
finite limiting value exists; in the case ( ) ( ) 1v c l cx T x T = −  the limiting value is 
vc. Hence the result is: 

( ) ( )
( ) ( )d

.
d

v l l v
c c c

v l

Tu v u v T T v
u u p T

µ−
= =

−
              (1.21) 

With { }, , , , ,, , ,v l v l v l v l v lx f s u c=  one obtains 

d0, 0,
d

v l l v v l l v

v l v l

f v f v s v s v
p f f p s s
µ µ− −
= < = <

− −
            (1.22) 
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( )
( )

2 2

2 2

d d d0, 0.
d dd

v l l v v l l v

v l v l

T u v u v c v c vp
T Tp T u u c c

µ µ− −
= > = <

− −
 

From Equations (1.22) it immediately follows that the critical value is finite 
for { }, ,x f s u=  and divergent for x c= . 

2.2. Entropy and Internal Energy Relations 

According to relation (1.5), the interdependence of volume and entropy is 
( ) ( ) 0l v v l v l l vv s s s v v v s v s− + − − + = . Taking relations (1.18) and (1.19) into 

account, viz. ( ) ( ) d dv l v ls s v v p T− = − ⋅  and ( ) ( ) d dv l l v v lv s v s v v Tµ− − = − , 
this can be transformed to 

d d0
d d

l v l v

v l

s v v s ps v
T v v T
µ −

≤ − = = −
−

. Thus one gets 
Gibbs’s entropy relations, including the thermodynamic reference value 0: 

( )d d d0 , ,
d d d

p pv v s v T
T T T

µ
≤ ≤ − + =                 (1.23) 

( ) ( ) ( ) ( ), , ,
d d d0 , , .
d d dl v l v l v l

p ps T s T v s v T v T v
T T T
µ

 ≤ = − + = + −   

The value ( ),s v T  is the sum of the terms d d 0v p T⋅ ≥  and ( )d d 0Tµ− ≥  
and is positive for 0T >  and vanishes for 0T = . The same is valid for the 
phase-specific entropy ( )ls T ; and since ( ) ( ) ( )0 l c c vv T v T v v T< ≤ = ≤  one 
obtains the following sequences 

( ) ( ) ( ) ( )0 , , .l c c c c vs T s v T s v T s s T≤ ≤ ≤ = ≤            (1.24) 

The interdependence of volume and internal energy is  
( ) ( ) = 0l v v l v l l vv u u u v v v u v u− + − − + , which with  
( ) ( ) ( ) ( )d d 1v l v lu u v v p T T− = − − ⋅  and  
( ) ( ) ( ) ( )d d 1v l l v v lv u v u v v T Tµ− − = −  gives Gibbs’s internal energy relations 
and with respect to relation (1.21) the thermodynamic reference value 0: 

( ) ( )
( )

( )
( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ), , ,

d d d d
, 0,

d 1 d 1 d 1 d 1

d d d
, .

d 1 d 1 d 1

c c c

v l v l v l

T p T T p T
u v T v T v T

T T T T

T p T p T
u T v T u v T v T v

T T T

µ µ

µ

= − ≤ − ≤

 = − = − − 

   (1.25) 

For 0 cT T≤ ≤  the value ( ),u v T  is the sum of the negative term 
( ) ( )d d 1T Tµ  and the positive term ( ) ( )( )d d 1v p T T− ⋅ , where it holds 

that ( ) ( ) ( ) ( )d d 1 d d 1 0T T v p T Tµ − ⋅ ≤  and therefore ( ),u v T  is not 
positive. Furthermore, the phase-specific internal energies obey the relations 
( ) ( ) ( ) ( )d d 1 0v l v lu u v v p T T− = − − ≥  and ( ) 0v lu u+ ≤ ; the last relation 

f o l l o w s  f r o m  ( )( ) ( ) ( ) ( ) ( ) 22 2 2 d d 1v l v l v l v lu u u u u u v v p T T+ − = − = − −     

( ) ( ) ( )d d 2 0v lT p T v vµ ⋅ − + ≤   since ( ) ( ) ( )d d 2 0v lT p T v vµ − + ≥ . 
Hence one gets 

( ) ( )0 and 0,v l v lu u u u− ≥ + ≤                   (1.26) 

( ) ( ) ( )0 .v l l v l c v v lu u u u u u u u u u− − ≤ ≤ ≤ + ≤ = ≤ ≤ −        (1.27) 

The relations ( ) ( )2 0v l v v lu u u u u+ = − − ≤  and  
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( ) ( )2 0v l l v lu u u u u− + = − − − ≥  lead to the limits of the energies ,v lu  in 
relation to the transient energies ( )v lu u± − : 

( )
10 1.
2

v l

v l v l

u u
u u u u

≤ ≤ ≤ ≤
− − −

                (1.28) 

In other words: For 0 cT T< <  the vapor internal energy uv is positive and  

always lower than half the evaporation energy, ( )1
2v v lu u u≤ − , and the liquid 

internal energy ul is negative and lower than half the condensation energy, 

( )1
2l v lu u u ≤ − −  . The critical values of the entropy are obtained from  

the relations ( )|d d d dc c c c c c cc
s T v p v p T T Tµ µ= − = ⋅ − ⋅ , yielding 

( )
| |

d d,
d d

1 d d 0.
2 d d

c c
c c c c

c c c c

c
c

c c c

pps v T v v
T T T T

fp pv
T T T T T

µµ

µ µ

= − = −

    = + − + = − >    
    

      (1.29) 

Because ( ) ( ) ( )0 , d , d d , dc v T u v T T T s v T T≤ = = ⋅ , the functions ( ),u v T  
and ( ),s v T  increase monotonically with increasing T, and so the critical 
values present the maximum internal energy and entropy of the saturated fluid. 

The interdependence of entropy and internal energy is calculated from the 
equation ( ) ( ) 0l v v l v l l vs u u u s s s u s u− + − − + =  and leads to the following 
identities and estimates: 

0, 0.v l v l l v v l v l l v

v l v l v l v l

s s u s u s u u s u s us u u s
u u u u s s s s
− − − −

= + ≥ = + ≤
− − − −

     (1.30) 

The estimates follow from  
[ ] [ ] [ ] [ ] 0v v l l v l v l v l l vu M M u M M s s M M M M u s u s+ ⋅ − + + ⋅ − ≥  (where the 
equality sign is valid for 0T = ) and  
[ ] [ ] [ ] [ ] 0v v l l v l v l v l l vs M M s M M u u M M M M s u s u+ ⋅ − + + ⋅ − ≤  (where the 
equality sign is valid for cT T= ). 

The two obviously equivalent Equations (1.30) present the opportunity for 
proving the correctness of the reference data mentioned in Equations (1.8), 
(1.13), (1.17), (1.21) and (1.27). For example, it follows from ( ),0 0cs v =  that 
( ) ( ) ( ) ( )( ),0 0 0 0c l v lu v u u uµ= = = − −  with ( )0 0vu =  and from 
( ) | |, d d d dc c cc cs v T T v p Tµ= − +  that ( ), 0c cu v T = . The data mentioned are 

thus reciprocal to one another. These data are thermodynamic reference values.  

2.3. Heat Capacity Relations 

The measurable heat capacity is defined by 

( ) ( ) ( ) ( ) ( ) ( )d , d , d , d ,
, , .

d d d d
u v T s v T s v T f v T

c v T T s v T T
T T T T

= = = + +     (1.31) 

Calculation of the specific heat capacities requires the temperature derivatives 
of the quantities given in Equations (1.23) and (1.25). Taking into consideration 
Equations (3.1)-(3.3) below, the heat capacity relations are 
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( ) ( )
( )
( )

( ) ( ) ( ) ( )( )

2 2

2 2

2 2

, , ,2 2

dd d d, 0,
d ln d 1 d d

d d, , 0.
d d

v l
v l

v l

v l v l v lT

p Tv v pc T v v v v T v T
T v v T T T

pc T c T v v v c T v v T v T
T T

µ

µ

  −
= + − − = − + ≥  

    

= + − ∂ ∂ = − + ≥

 (1.32) 

As the values of ( ),c T v , ( ),s T v , and 2 2d dp T  vanish at absolute zero, 
those of ( )d dTµ−  and ( )2 2d dTµ−  also vanish there according to 
Equations (1.18) and (1.19). And as the value 2 2d dTµ  diverges at the critical 
point, the fluid heat capacity and the specific heat capacities also diverge there: 
( ) ( ) ( ),c l c v cc T v c T c T= = → +∞ . 
Further expressions for the heat capacity and temperature derivatives of 

internal energies can be given as follows: 

( ) ( )

( )
( )

( )
( )

d ,
,

d

d dd d d d
,

d d d 1 d d d 1

l v
v l

v l v l

v v l l l v

v l v l

u v T v v v vc v T c c
T v v v v

p T p Tu v v v u v v v
T T T v v T T T v v

− −
= = +

− −

   − −
= + + +   

− −      

  (1.33) 

( )
( )

( ) ( )

( )

( )
( )

2 2
, ,

,2 2

,
,

,
,

, ,
, ,

d d dd d
d d d 1d d

d
,

d
d

.
d

d d d
,

d d d 1

v l v l
v l

v lv l v l
v l

v l v l

v ll v v l v l
v l v l

v l v l v l v l

v l v lv l
v l v l

v l

u v p TpT v T
T T TT T

vc c u uc v T v v
v v T v v

vv v v v c c u uc c v v
v v v v v v T v v

v v p Tu uc c
T v v T T

µ
= − + −

− −
= + − +

− −

− − − −
= + + − +

− − − −

−
= + = −

−

      (1.34) 

( ) ( ) ( )

( ) ( ) ( )
( )

2

2

d d
d d

d dd ,
d d 1d

v l v l v l
v l

v l

v l
v l

u u v v u uc c
T T v v

v v p Tpv v T
T TT

− − −
= − +

−

−
= − −

 

( ) ( ) ( ) ( )
( )

2 2

2 2

d d dd d2 0.
d d d 1d d
v l v l

v l

u u v v p TpT v v T
T T TT T

µ+ +
= − + + − >    (1.35) 

It holds that 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( )( )

0 0 0 0

                     0
v l l v l l v l c

v l c

u u u u u u u T u T u u T u T

u u T

− − = = = + < < < + <

= + =

and for 0 cT T< <  that 

( ) ( )
( )
( )

d
0.

ln d 1
v l

v l c
v l

p Tv vu u u v
v v T

   −
+ − = − − >   

     
        (1.36) 

In order to show that ( )v lu u+  is a convexly curved temperature function, 
one has to prove that ( )2 2d d 0v lu u T+ >  or that the straight line 
( )( )0 1 cu T T−  is above ( )v lu u+ . The condition of convexity for ( )v lu u+  

then reads ( ) ( )( )0 1v l cu u u T T+ ≤ − , which can be transformed to 

( ) ( ) ( ) ( )0 0 0 .v l l l cu T u T u u T T≤ + − ≤ − ⋅             (1.37) 
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Indeed, for 0T >  the terms in Equation (1.37) are positive since ( ) 0vu T >  
and ( ) ( )0l lu T u> , which meets the condition mentioned. Likewise, the 
function ( )( )v lu u T−  is concavely curved when its values are above the straight 
line ( )( )0 1 cu T T− − , which means that ( )( ) ( )( )0 1v l cu u T u T T− ≥ − − . 
Division by ( ) ( )( )0 0 0v lu u u− = − >  gives the correct relations 

( )( ) ( )( ) ( )1 0 1 0v l v l cu u T u u T T≥ − − ≥ − ≥  and thus confirms that the 
condition for concavity of ( )v lu u−  is met. 

From ( ) ( ), , ,d d d dv l v l v l v l v lc u T u u v v v T= − − − ⋅  and  
( ) ( ) ( ) ( )d d 1v l v lu u v v p T T− − = −  it follows that  

( ) ( )

( ) ( ) ( )
( )

2

2

d ln
d

d ln d d 1 d 1 d .
d d d

v l v lv l

v l

u u v vc c
u u T

p T T T p T
T p T T

 − −−  =
−

−  = = −

        (1.38) 

It is of interest to take 0T =  in entropy and heat capacity relations. This is 
immediately possible in the case of the entropy because Nernst’s theorem states 
that the entropy vanishes at absolute zero, where only the condensed phase 
exists, and increases with the temperature: 

( ) ( ) ( )( ) ( )0, 0 0, , , 0.l v
s v s s T v T c T v T= = ∂ ∂ = >         (1.39) 

For 0 cT T≤ ≤  one thus gets 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, 0 , , .l l c l c v c vs v s s T s T v s T v s T s T s T= = < < < = = <  (1.40) 

Similarly, in the case of the heat capacity one gets for 0 cT T≤ <  

( ) ( ) ( ) ( ) ( )0 0, 0 , .l l vc v c c T c T v c T= = < < <             (1.41) 

The temperature derivatives of the chemical potential function ( )d dTµ−  
and the phase-specific entropies ,v ls  can be determined from measurements of 
( ),c T v , ( ),v lv T  and ( )p T  since 

( )2 2

2 2

,d d 0,
d d

c T v pv
TT T

µ
− = − >  

( ) ( )
2

, ,
, 2

d d, d d .
d d dd

v l v l
v l

s vc T v p pv v
T T T TT

= + − +             (1.42) 

With the result ( )d d 0Tµ− >  one obtains from Equations (1.23) the 
relations 

d d d d 0.
d d d dl l v v

p p ps v s v s v
T T T T

µ
− = − = − = − >          (1.43) 

These state that the entropy values are always positive and greater than the 
product of the volumes and vapor pressure coefficient. From relations (1.43), in 
turn, one can derive the following relations: 

d 0.
d

l v

l v

s ss p
v v v T
> > > >                       (1.44) 

Temperature properties of the phase-specific heats are similarly derived. With 
the result ( )2 2d d 0Tµ− >  one obtains from Equations (1.32) the relations 
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2 2 2 2

2 2 2 2

d d d d 0,
d d d dl l v v

p p pc v T c v T c v T T
T T T T

µ
− = − = − = − >        (1.45) 

from which in turn the relations 
2

2

d 0
d

l v

l v

c cc p
v v v T
> > > >                       (1.46) 

can be derived. Experimental verification of 2 2d dVC V c v p T T= > ⋅  also 
proves confirmation of ( )2 2d d 0Tµ− > . 

2.4. Chemical Potential Relations 

The identities 

, , ,v l l v
v l v l

v l T

x y x y xx y
y y y

 − ∂
= − +  − ∂ 

                (1.47) 

, ,
,

d dd d
d d d d

v l v lv l l v
v l

v l T T

x yx y x y x xy
T y y T T y T y

   − ∂ ∂
= − + +   − ∂ ∂   

 

are now used to put the chemical potential functions in explicit form as energy 
functions: 

, , , , , 0,v l v l v l v l v lf v p u s T v pµ = + = − + <  

, ,
, , ,

d dd d d 0,
d d d d d

v l v l
v l v l v l

f vp ps v p v
T T T T T
µ
= − + = + + <          (1.48) 

( )
( )

( )
( )

( )
( )

( )
( )

, ,
, , ,

d dd d d
0,

d 1 d 1 d 1 d d 1
v l v l

v l v l v l

f T vT p T p T
u v Tp v

T T T T T
µ

= + = − + <  

2 2 2
, , ,

, ,2 2 2

d dd d d d 0.
d d dd d d

v l v l v l
v l v l

c s vp p pv v
T T T TT T T

µ
= − + = − + + <  

The relations state that μ is a negative, concavely curved function, decreasing 
with increasing T. For μ as a function of measurable quantities see Equations 
(3.15) and (3.16) below. 

3. Internal Fluid Energy as a Function of the Condensation 
Energy 

It can be shown that the fluid energy ( ),u T v  can be expressed in terms of the 
condensation energy ( )v lu u − −  : 

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )

( )

d d d d
d 1 d 1 d 1 d

.

v l v l l v

v l v l

l l
v l

v l v l

v v
v l

v l v l

T p T p T T
u v v

T T T p T

u u u v u v v
v v u u

v v uu u
v v u u

v v uu u
v v u u

µ µ 
= − = − 

  
− −  −

= − − − 
 −

= − − − − − 
 −

= − − − − − 

            (2.1) 

Since the temperature coefficients ( ) ( )l v lv v v v− −  and ( ) ( )v v lv v v v− −  
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are represented by vM M  and lM M , respectively, the mass distributions 
0vM M =  and 1lM M =  at 0T =  give the three relations ( ) ( )0 0lu u= , 

( ) ( )( ) ( )0 0 0v l vu u u u= − − + , ( ) ( )( )0 0v lu u u= − − , and the distributions 
1 2v lM M M M= =  at cT T=  give the three relations  

( ) ( )( ) ( )2c v l c l cu T u u T u T= − + , ( ) ( )( ) ( )2c v l c v cu T u u T u T= − − + ,  
( ) ( ) ( )2 2c v c l cu T u T u T= + . One thus obtains the following characteristic 

thermodynamic reference values, which are valid for every gas:  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 0 0 , 0 0, 0.l v l v c l c v cu u u u u u T u T u T= = − − = = = =    (2.2) 

4. Internal Fluid Energy as an Expression of Measurable 
Quantities 

Endeavors to publish data of the functions ( ),cu v T  and ( ),v lu T  are 
prominent in the current literature. The energy equations can be written in the 
form  

( ) ( )
( )

( )
( ) ( ) ( )

( )
( )
( ), ,

d d d d
, 0, .

d d 1 d d 1c c v l v l
T p T T p T

u v T v u T v
p T T p T T
µ µ   

= − ≤ = −   
      

 (3.1) 

According to Equations (1.20)-(1.22) the diffential quotient ( ) ( )d dT p Tµ  
is a positive volume quantity monotonically decreasing with increasing T from 
high values ( )vv T  near absolute zero to the lowest value vc at the critical point. 
The expression of measurable volumes ( )vv T  and ( )lv T  instead of 
( ) ( )d dT p Tµ  as published in (2015) [3] reads: 

( )
( ) ( )

d
.

d ln
v l

v l
v l

T v vv v
p T v v
µ −

= + −                   (3.2) 

It is symmetric in the variables and linear in both vv and vl, and at the critical 
point it yields vc. Then inserting the solution (3.2) in the internal energy 
Equations (3.1) yields the results 

( ) ( )
( )
( )

( ) ( )
( )
( ), ,

d
, 0,

ln d 1

d
.

ln d 1

v l
c v v c

v l

v l
v l l v

v l

p Tv vu T v v v v
v v T

p Tv vu T v
v v T

   −
= − − + ⋅ − ≤   

     
   −

= − ⋅ −   
     

        (3.3) 

These equations state that the internal energies can be expressed in terms of 
the measurable quantities, phase-specific volumes and vapor pressure, and are 
given by absolute figures; in particular, it holds that ( ) ( ) 0v c l cu T u T= =  since 
( ) ( )lnv l v l cv v v v v− =  and v l cv v v= =  at cT T= .  

If the functions uv and ul are expressed as dependent on the volume ratio 

v lz v v= , one obtains for the energy ratios ( )v v lu u u−  and ( )l v lu u u− −  
according to Equations (1.28) the following relations: 

( )
( )

1 1 10 for 0 and 1,
ln 1 2

1 1 1.
2 ln 1

vv
c

v l l

l

v l

v Tu
T T z

u u z z v T
u z

u u z z

≤ = − ≤ ≤ ≤ = ≥
− −

−
≤ = − + ≤

− −

     (3.4) 
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The sum of them is, of course, equal to 1. Equations (3.4) allow one to 
calculate the relation between the energy ratio v lu uη =  and volume ratio z of 
fluid particles in the vapor and liquid spaces, viz. 

( )
( )

1 ln0 1 for 0 and 1.
1 ln

vv
c

l l

v Tu z z T T z
u z z z v T

η
− −

≥ = = ≥ − ≤ ≤ = ≥
− −

   (3.5) 

According to Equations (1.17) and (1.8), the energy ratio η assumes the value 
0 at absolute zero (where z →∞ ) and, respectively, the value -1 at the critical 
point (where 1z = ). The relation ( )zη  represents a universal law of the 
two-phase equilibrium of real gases. 

Calculation of the energy ratio ( ) ( )v l v lu u u u+ −  as a function of z starts 
from Equation (1.20) or from ( ) ( )1 1η η+ −  and ends in any case with the 
result 

2 11 0 for 0 and 1.
ln 1

v l v
c

v l l

u u vz T T z
u u z z v
+ +

− ≤ = − ≤ ≤ ≤ = ≥
− −

        (3.6) 

Rigorous thermodynamic calculations combine Equations (1.8) and (1.44) 
and yield the following relations for the internal energy and entropy: 

1 0, 1 for .v l v l v l cu u s s v v T T− ≤ < ≤ ≤ ≤             (3.7) 

The constraints (3.7) state that the ratios of absolute energy and entropy for 
vapor and liquid are restricted within certain limits for temperatures in the 
two-phase region. And combining Equations (1.20), (1.22) and (3.2) gives 

( )

( )

,
ln

.
ln

v v l l v l l v v l
v l v l

v l v l v l

v v l l v l

v l v l

u v u v u v u v v vv v v v
u u u u v v

u v u v v v
u u v v

− − −
+ − = = + −

− −

− −
=

−

            (3.8) 

Algebraic rearrangement of Equation (3.8) leads to a data criterion for 
consistent thermodynamic values ( )vv T , ( )lv T , ( )vu T  and ( )lu T , which is 
valid for cT T≤  and reads: 

ln ln 1.v l v l v v

v l v l l v l v l l

u v v u v v
u u v v v u u v v v
       

+ ⋅ = + ⋅ =      − − − −       
      (3.9) 

In turn, from Equations (3.9) one obtains 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

0, 0,
ln ln

d
0.

d 1

v l v l v l v l
v l l v

v l v l v l v l

v l v l v l v l v l v l

u u u u u u u uu v u v
v v v v v v v v

p T
u u h h v v p s s T v v p v v

T

− − − −
= − ≥ = − ≤

− −

− = − − − = − − − = − − ≥

(3.10) 

Equations (3.9) and (3.10) clearly state that, if table data T, p, vv, vl, ( )v lh h− , 
or ( )v ls s−  and ( )v lu u−  are thermodynamically consistent, then the internal 
energies, uv, ul, ( ) ( ) ( ) ( )v c l v l l v c v lu u v v v v u v v v v= − − + − − , can be given 
absolutely. An entropy data criterion of the same kind as for the internal energy 
can also be formulated. To this end one has to confirm the validity of the 
relation. 
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( ) ( ), ,lnv l v l v l v l v l

v l v l

s T v v v v v v p T u
s s u u

µ  + − + − −  =
− −

      (3.11) 

to obtain with ( ) ( ) ( ), ,1 lnv l v l v l l v v lu u u v v v v v− = − −  the criterion desired: 

( ) ( )
, , 1 ln 1.

ln d d
v l l v v l v

v l v l v l v l v l l

s v v v vp T
s s v v s s T v v v v p T v

µ    +
+ + − − ⋅ =    

− − − −      
(3.12) 

This relation allows, in principle, to give the chemical potential in terms of p, 

,v lv  and ,v ls  as follows: 

( ) ( ), ,
d d .
d ln d ln

v l v l
v l l v v l

v l v l

v v v vp ps T v T T v v p
T v v T v v

µ
 − −

= − − + + + − 
  

   (3.13) 

The entropy expressions read 

( ) ( ) ( )d d d d0 , .
d d d dc c l c l v v c

p p ps v T v s v v s v v
T T T T
µ

≤ = − + = + − = − −    (3.14) 

It holds that ( ), ,
d d
d dv l l v v l c

p ps T v T sT v v v T
T T

− − = − − + −  and 

( ) ( )
d d .

ln d d ln
v l v l

v l c v l
v l v l

v v v vp psT v v T v T v v p
v v T T v v

µ
   − −

= − − + − + + + −   
      

 

According to relations (1.39) one has 
0 0

d d d
d

T Ts csT T T T T
T T

= =∫ ∫ . The  

chemical potential can thus be determined, on the one hand, by measuring the 
two-phase heat capacity, phase-specific volumes and vapor pressure: 

( ) ( )
( )

( )
( )0

, ddd ,
d ln d 1

T c v l
c v l

v l

c T v p Tv vpT T T v T v v
T T v v T

µ
   −

= − + − + − −   
     

∫  (3.15) 

or, on the other, by measuring the phase-specific volumes and vapor pressure 
only: 

( ) ( ) ( )

( )
d 0, .

ln
c cp T Tc v l c c

v l c cp T
c v l c c

T v v ppT T v v s v
T v v T T T

µ µ
µ

  −
= − + − < = − +  

    
∫ (3.16) 

The energy sum ( )sTµ +  is also measurable and calculable and it holds that 

( )
( )
( )

d d .
ln d 1 d

v l
v l c c

v l

p Tv v psT v v v T u v p
v v T T

µ
   −

+ = − − ⋅ − + = +   
     

   (3.17) 

From ( )d d d d 0csT T c v p Tµ + = + >  and  
( )2 2 2 2d d d d d d 0csT T c T v p Tµ + = + >  it is concluded that the energy sum 

csT u v pµ + = +  is a convex temperature function strongly increasing from 
( ) ( )( )0 0 0v lu uµ = − − <  at absolute zero to 0c c c c cs T v pµ + = >  at the critical 

point. 

5. Phase-Specific Energy as a Function of the Evaporation 
Energy 

The Carnot-Clapeyron-Clausius equation 
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( ) ( ) ( )d d 1v l v lu u v v p T T− = − −                  (4.1) 

suggests a unique relation between the energy density and particle density in the 
coexisting bulk phases, vapor and liquid. As the local interaction potentials in 
the partial volumens Vv and Vl are unique functions of the local particle density 
and determine the values uv and ul, respectively, it should be possible by means 
of a density coefficient and a temperature function to find suitable ansatzes for 
the functions ,v lu  depending on the density coefficient and temperature 
function. As density coefficient, a function ρ of the density variable v lz v v=  is 
now chosen, and as temperature function the evaporation energy ( )v lu u− . The 
ansatz proposed for the energy in the vapor phase is then ( ) ( )1v v lu z u uρ= ⋅ − . 
The energy in the condensed phase must be ( ) ( )l v lu z u uρ= − ⋅ −  since the 
transfer of a particle from Vv to Vl causes the value uv to change to ul, the density 
variable from 1/z to z and the phase transition energy from ( )v lu u−  to 
( ) ( )l v v lu u u u− = − − , while the form of ρ is preserved because the functional 
density dependence of the microscopic interaction forces is of course 
phase-invariant. The conjectures [2] 

( ) ( ) ( ) ( )1 ,v v l l v lu z u u u z u uρ ρ= ⋅ − = − ⋅ −             (4.2) 

then yield, on the one hand, the reference values 
( ) ( ) ( ) ( ) ( )10 ,

2v c l c v c l c c cu T u T u T u T u v T = = = + =   and, on the other, for the 
density coefficient the equation 

( ) ( )1 1z zρ ρ+ =                         (4.3) 

and because ( )0 0vu =  and ( ) ( ) 1v c l cu T u T = −  the boundary conditions 

( ) ( )0 1 1.z zρ ρ≤ ≤                       (4.4) 

The functional Equation (4.3) for ρ under condition (4.4) is satisfied by 

( ) ( )1 1 1 10 1 1.
ln 1 2 ln 1

zz z
z z z z

ρ ρ≤ = − ≤ ≤ = − + ≤
− −

        (4.5) 

From Equation (4.2) it follows that 

1 1 1 10 1.
ln 1 2 ln 1

v l

v l v l

u uz
u u z z z z u u

−
≤ = − ≤ ≤ − + = ≤

− − − −
         (4.6) 

The relations (4.6) and (3.4) are identical and valid for 0 cT T≤ ≤  and 
( ) ( ) 1v lz v T v T= ≥ . 

6. Results and Discussion 

The paper treats thermodynamic properties of the saturated fluid. It is shown 
that the fluid state is completely determined by the internal energy and entropy 
in the vapor and liquid spaces. The ratios of the absolute phase-specific internal 
energies and entropies are restricted within certain limits. If for temperatures 

[ ]1 2,T T T⊂  measured saturation data of the vapor pressure, reciprocal 
phase-specific densities and isothermal transient energy obey the data criterion 
Equation (3.9), then the internal energy as a function of T calculated according 
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to Equations (3.10) is an absolute thermodynamic quantity. This fundamental 
procedure in gaining thermodynamic data excludes any application of so-called 
fiducial reference data since they cannot yield correct values. As the state of 
saturation is maintained, it is not possible to distinguish between a constant 
pressure and a constant volume condition. This is the characteristic difference 
between the heat capacities of a two-phase and a one-phase fluid. There is only 
one phase-specific heat capacity in the vapor space, ( )vc T , and one in the 
liquid space, ( )lc T . The measurable heat capacity of the fluid, 
( ) ( ), ,c c v v l lC v T Mc v T M c M c= = + , can also be calculated. Further results are 

the concavity of the positive, measurable temperature function ( )v lu u−  and 
the convexity of the negative temperature functions ( )v lu u+ . The chemical 
potential is a negative, measurable and calculable temperature function. The 
ratios of phase-specific energies to isothermal transient  

energies obey the relations ( ) ( )10 1
2v v l l l vu u u u u u≤ − ≤ ≤ − ≤ , which should  

be heeded when a state chart of the fluid under consideration is constructed. 
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Appendix: Comments on the Internationally Accepted 
Equations for the Saturation Properties of Water 

The International Association for the Properties of Water and Steam (IAPWS) 
[13] [14] provides internationally accepted formulations for the properties of 
water. There are special correlation equations for the vapor-liquid saturation 
properties of water. Formulas are given for the vapor pressure p, phase-specific 
volumes ,v lv , internal energies ,v lu , and entropies ,v ls  as functions of the 
saturation temperature T. This affords a unique description of the temperature 
dependence of every property of the saturated water. 

This study treats the IAPWS equations in the framework of thermodynamics. 
The IAPWS equations read, on the one hand [13] [14], 

( )
( ), , , ,

d d, ,
d 1 dv l v l v l v l

p T pu v s v
T T

α φ= − = +               (A1) 

where the so-called auxiliary quantities α and ϕ are given as functions of the 
temperature T; and, on the other, in terms of the thermodynamic fundamental 
equation, 

, , , ,v l v l v lu s T v pµ− = −                     (A2) 

where μ is the chemical potential of the saturated fluid. Equations (A1) and (A2) 
are related as follows: 

( )
( )

d d, , .
d 1 d

T
T

T T
µ µ

α φ µ α φ− = = = −            (A3) 

Let us now investigate the thermodynamic conditions that have to be satisfied 
by the temperature functions α and ϕ if they are to define the two-phase 
chemical potential μ according to Equations (A3). First a few thermodynamic 
relations are taken and then transformed into IAPWS parlance. The 
Carnot-Clapeyron-Clausius equations read 

( )
( )

d d, .
d 1 d

v l v l

v l v l

p Tu u s s p
v v T v v T
− −

= − =
− −

             (A4) 

These are satisfied by Equations (A1). The Gibbs-Duhem equations read 

, , ,d d d
.

d d d
v l v l v lu v s

p T
T T T

+ =                   (A5) 

They are satisfied by Equations (A1) if the following relation between α and ϕ 
is valid: 

d d .
d d

T
T T
α φ
=                       (A6) 

Note that Equation (A6) is implicitly contained in relations (A3) since 
d d d d d dT T T Tµ α φ φ φ= − ⋅ − = −  and  
( ) ( ) ( )d d 1 d dT T T T T Tµ µ µ α φ φ α= − ⋅ = − + = . Relations (A4) and (A5) 

therefore afford nothing new, but merely confirm relations (A3). The 
mathematical structures of Equations (A1) thus conform to the thermodynamic 

https://doi.org/10.4236/eng.2018.105019


A. Elsner 
 

 

DOI: 10.4236/eng.2018.105019 289 Engineering 
 

internal energy and entropy expressions in respect of Equations (A3).  
Condition (A6) is numerically satisfied by the formulas in [13] [14] for ( )Tα  

and ( )Tφ , whose temperature dependences are expressed as follows: 

[ ] 19 4.5 5 54.5
1 2 3 4 5J g , where ,

c

Td d d d d d
Tαα θ θ θ θ θ θ−= + + + + + ≡    (A7) 

[ ] 20 3.5 4 53.5
1 2 3 4 5

19 9 5 109 1J g K ln ,
20 7 4 107 c

d d d d d d
Tφφ θ θ θ θ θ− ⋅ = + + + + +  

 (A8) 

where [ ], 1.135905627715E3,2.3195246E3 , 647.096 K,cd d Tα φ  = − =   

[ ] [
]

1 2 3 4 5, , , , 5.65134998E 8,2.69066631E3,1.27287297E2,

1.35003439E2,9.81825814E 1 .

d d d d d = − −

− −
 

The vapor pressure p and chemical potential μ obey for temperatures cT T≤  
the following relations: 

( )
( )

2

2

dd d0, 0, 0, 0,
d d 1 d

p Tp pp
T T T

> > < >             (A9) 

( )
( )

2

2

dd d0, 0, 0, 0.
d d 1 d

T
T T T

µµ µ
µ < < < <            (A10) 

Relations (A10) then lead to further conditions for α and ϕ: 

d d0, 0, 0, 0.
d dT T
α φ

α φ< > > >              (A11) 

Accordingly, α must be a negative function increasing as T, and ϕ must be a 
positive function likewise increasing as T. It is found that d d 0Tα > , but not 
that 0α <  for all T in the range [ ],t cT T ; similarly, it does hold that d d 0Tφ > , 
but not that 0φ >  for all [ ],t cT T T⊂ . The auxiliary Equations (A1), despite 
their correct formal structure, are therefore not thermodynamically appropriate 
for justifying the chemical potential according to Equations (A3). Further 
consideration of the temperature dependence of ,v lu  shows that the sum 
( )v lu u+  yields a concavely, but not a convexly curved function, as should be. 

The fit function for measured vapor pressure data reads [13] [14] 

1.5 3 3.5 4 7.5
1 2 3 4 5 6ln , where 1c

c

Tp a a a a a a
p T

τ τ τ τ τ τ τ θ
 

 = + + + + + ≡ −   
 

 (A12) 

and [ ]22.064 MPacp = . The terms 1.5τ , 3.5τ , 7.5τ  produce divergent 
temperature derivatives d dn np T  at cT  for 2n ≥ , whereas all vapor pressure 
derivatives have finite values. In contrast, the derivatives of the chemical 
potential d dn nTµ  diverge at cT  for 2n ≥  and determine the divergence of 
the heat capacity ( ) ( ), , ,C M V T M c V M T= ⋅ . In addition, it should be noted 
here that, if the saturation state is maintained, it is not possible to distinguish 
between a constant pressure and a constant volume condition. There is thus only 
one phase-specific heat capacity in the vapor space, ( ),v vc V M T , and one in 
the liquid space, ( ),l lc V M T , and it holds that  
( ) ( ) ( ) ( ) ( ), , , , , , , ,v v v l l l v v l lC M V T M c V M T M c V M T C M V T C M V T= ⋅ + ⋅ = + . 
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Numerous thermodynamic deficiencies have been mentioned, viz. violation of 
the conditions ( ) 0Tα <  and ( ) 0Tφ >  for every temperature [ ],t cT T T⊂ , the 
incorrect temperature dependence of ( )v lu u+ , the proposed vapor pressure fit 
formula with a divergent term 2 2d dp T  at cT  and, finally, tables which list 
two different phase-specific heat capacities for vapor as well for liquid. From all 
this it is concluded that the published data [13] [14] are in need of basic 
correction. 
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