
Journal of Computer and Communications, 2018, 6, 40-54
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.65004 May 24, 2018 40 Journal of Computer and Communications

Hermeneutical Theodolite of Requirements:
Evaluating and Revealing the Quality Grades of
Software Requirements and of Domain of
Application

Wagner Varalda, Ítalo Santiago Vega

Program of Intelligence Technologies and Digital Design, Pontifical Catholic University of São Paulo, São Paulo, Brazil

Abstract
Throughout the development of software, during Requirements Engineering
activities, software requirements dynamically and constantly evolve and ma-
ture from an “identified” stage to an “approved” stage. This evolution takes
place individually for each requirement, in a very particular way, because it
depends on the level of understanding that the requirements engineer reaches
in relation to it. How, then, to monitor the evolution of each software re-
quirement? How to know the quality of each software requirement? How to
measure the level of understanding and difficulty that the requirements engi-
neer has in relation to each software requirement? This paper aims to present
a proposal to answer these questions through the use of an instrument devel-
oped specifically to assess and reveal the quality grades of each software re-
quirement and also to assess and reveal that the levels of understanding and of
difficulty of the requirements engineer is in relation to each software require-
ment. This instrument was called the Hermeneutical Theodolite of Require-
ments, which also can be applied to evaluate that the levels of understanding
and of difficulty of the requirements engineer is in relation to the domain of
application, essential input artifact and primordial to the specification of the
requirements of software.

Keywords
Hermeneutical Theodolite, SOLO Taxonomy, OMG Essence, Hermeneutical
Engineering of Requirements

1. Introduction

During the development of a software, the requirements engineer must under-

How to cite this paper: Varalda, W. and
Vega, Í.S. (2018) Hermeneutical Theodolite
of Requirements: Evaluating and Revealing
the Quality Grades of Software Require-
ments and of Domain of Application.
Journal of Computer and Communications,
6, 40-54.
https://doi.org/10.4236/jcc.2018.65004

Received: April 12, 2018
Accepted: May 21, 2018
Published: May 24, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.65004
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.65004
http://creativecommons.org/licenses/by/4.0/

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 41 Journal of Computer and Communications

stand the business needs to be met by this software, for your requirements to be
specified in such a way that your behavior is defined correctly and in accordance
with the fundamental needs to be met, with the problems to be solved, with the
functionalities to be made available, with the information to be processed, with
the performances to be achieved, with the restrictions to be considered and with
the interfaces to be created [1]. The results of these activities culminate in the
specifications of the requirements of this software, which will serve as a subsidy
for your architectural project, its construction, its tests, its plans, its estimates
and its deliveries.

Each software requirement has its own evolution dynamics. While some
progress faster and more easily, others need more time and attention to reach
the appropriate maturity level. All of these factors, however, also depend on the
ability of the requirements engineer to understand and interpret the application
domain for which the software will be developed. The better the requirements
engineer understand this item, the better and more consistent the software re-
quirements specifications will be. But how to know the level of understanding
(and also the level of difficulty) in which the requirements engineer is in relation
to the application domain? Likewise, how to know the degree of quality (and al-
so the degree of difficulty) in relation to each of the software requirements?

The Hermeneutical Theodolite of Requirements is an instrument that aims,
through the use of two mechanisms, to evaluate and reveal the levels of under-
standing (and also those of difficulty) in which the requirements engineer is in
relation to the domain of the application and also evaluate and reveal the degrees
of quality (and also those of difficulty) in relation to each software requirement.
Thus, once we know these realities, it is possible to establish strategies to im-
prove the performance of the Requirements Engineering in the project and,
therefore, to improve the process of identification, analysis and specification of
these software requirements.

Used as theoretical foundation, the SOLO Taxonomy [2], the OMG Essence
[3] and the Hermeneutical Engineering of Requirements [4] were adapted and
customized exclusively to be used in the Hermeneutical Theodolite of Require-
ments. The adequacy and customization of SOLO Taxonomy will meet the levels
of understanding and difficulty of the requirements engineer in relation to the
application domain. The suitability and customization of OMG Essence meet of
the degrees of quality (and also of difficulty) grades of software requirements. In
the case of Hermeneutical Engineering of Requirements, its hermeneutical con-
ceptualization is in line with the formation of the elements that establish and
determine the levels of understanding of the requirements engineer who used to
assess their current state of knowledge and indicate their progression needed to
gain a better understanding of the application domain and of software require-
ments.

In relation to the application of Requirements Engineering, the Hermeneutical
Theodolite of Requirements has no dependence or relation with some specific

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 42 Journal of Computer and Communications

practices. This means that it can be applied regardless of the techniques,
processes, and paradigms used for software development.

2. SOLO Taxonomy

The SOLO Taxonomy is a model that classifies students’ learning outcomes in
relation to any activity or task, describing their understanding results at one of
five levels of complexity: no idea, one idea, loose ideas, connected ideas, ex-
tended ideas. With this, teachers are able to individually identify for each stu-
dent their level of understanding of the subject they are studying and thereby
create individual and personalized learning tasks to help them succeed in their
studies and progress more easily in their apprenticeship, evaluating their current
stage and planning the next steps to obtain their learning [2].

Educational institutions use the SOLO Taxonomy as a common language for
the learning and are able to discover their students’ prior knowledge and, thus,
to develop better research plans for their students, describing the actual learning
objectives to be achieved, clearly showing the cognitive complexity of the task
and the evaluation criteria for each of the levels. As a result, it is also possible to
better plan the necessary and appropriate resources to be used to support the
learning process, avoiding unnecessary costs.

SOLO is the acronym for Structure of the Observed Learning Outcome. This
taxonomy was elaborated by the authors John Biggs and Kevin Collis in 1982, of
which they identified and organized cognitive characteristics in five structured
stages [5], as highlighted in Table 1.

As mentioned by one of its founders and developers, the SOLO Taxonomy
“SOLO is used in constructive alignment to design learning interactions and
success criteria for results-based education” (Biggs, 2003).

3. OMG Essence

Created in 2014 through a partnership between SEMAT (Software Engineering
Methods and Theory) [6] and OMG (Object Management Group) [7], Essence

Table 1. The five levels of SOLO Taxonomy.

SOLO Taxonomy
The five levels with their respective capacities (cognitive characteristics)

Levels Capacities

Prestructural Minimum ability to find suggestions, giving confusing answers.

Unistructural Poor ability to find relevant suggestions or data.

Multistructural Medium ability to discover suggestions and recognize relevant data.

Relational
High ability to find suggestions, expose relevant information and
interrelationships.

Abstract (Extended)
Maximum capacity to find suggestions, to disclose relevant information, to
establish interrelations and to elaborate hypotheses.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 43 Journal of Computer and Communications

is a universal language for defining common methods and practices of Software
Engineering and describes the essential elements to the software development,
helping practitioners compare software engineering methods to, like this, make
better decisions about their practices and apply them independently.

With OMG Essence [3], a software development team can create its own prac-
tices library and share it with other teams and thereby compare and discuss how
can improve its Software Engineering practices.

With Essence it is also possible to evaluate the progress of a software devel-
opment team during the development of a project so that it is clearly aware of its
current state and what it must do to improve its performance.

In the case of Requirements Engineering, the evaluation and evolution of
software requirements are made through the states conceived, bounded, cohe-
rent acceptable, addressed and fulfilled. The transition from one state to another
occurs according to the evolution of the understanding that the software devel-
opment team is acquiring in relation to the software requirements, as presented
in Table 2.

4. Hermeneutical Engineering of Requirements

The Hermeneutical Engineering of Requirements [4] is a proposal that aims to
enable the requirements engineer to better understand and interpret the applica-
tion domain and, therefore, to specify more precisely the requirements of the
software.

Its theoretical basis was constituted of some hermeneutic concepts created by
the German philosopher Martin Heidegger (1889-1976), more specifically the
Dasein, the being-in-the-world, the being-with-others and the being-for-death,
which were adapted to form the Hermeneutical Engineering of Requirements.
The results of these adaptations are presented in Table 3.

5. Hermeneutical Theodolite of Requirements

Throughout the lifecycle of software development, the requirements engineer’s
understanding of the requirements of this software evolves as one gains greater
knowledge about them. Likewise, the levels of understanding that requirements
engineer has about the application domain evolve according getting more
knowledge about it.

To evaluate and reveal the different levels of understanding and difficulty that
the requirements engineer has in relation to the application domain and also to
evaluate and reveal the different degrees of quality in which each software re-
quirement is found, it is proposed the utilization of the Hermeneutical Theodo-
lite of Requirements, an instrument composed of two mechanisms: one that acts
on the application domain and another that acts on the software requirements.

The instrument that acts on the domain of the application uses as theoretical
foundations the SOLO Taxonomy (explained in Section 2) and the Hermeneuti-
cal Engineering of Requirements (explained in Section 4), which were adapted

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 44 Journal of Computer and Communications

Table 2. OMG Essence—states relating to Requirements Engineering.

OMG Essence
States Relating to Requirements Engineering

States Progress to Successful Completion

Conceived

• The initial set of stakeholders agrees that a system is to be produced.
• The stakeholders that will use the new system are identified.
• The stakeholders that will fund the initial work on the new system are

identified.
• There is a clear opportunity for the new system to address.

Bounded

• The stakeholders involved in developing the new system are identified.
• The stakeholders agree on the purpose of the new system.
• It is clear what success is for the new system.
• The stakeholders have a shared understanding of the extent of the proposed

solution.
• The way the requirements will be described is agreed upon.
• The mechanisms for managing the requirements are in place.
• The prioritization scheme is clear.
• Constraints are identified and considered.
• Assumptions are clearly stated.

Coherent

• The requirements are captured and shared with the team and the
stakeholders.

• The origin of the requirements is clear.
• The rationale behind the requirements is clear.
• Conflicting requirements are identified and attended to.
• The requirements communicate the essential characteristics of the system to

be delivered.
• The most important usage scenarios for the system can be explained.
• The priority of the requirements is clear.
• The impact of implementing the requirements is understood.
• The team understands what has to be delivered and agrees to deliver it.

Acceptable

• The stakeholders accept that the requirements describe an acceptable
solution.

• The rate of change to the agreed requirements is relatively low and under
control.

• The value provided by implementing the requirements is clear.
• The parts of the opportunity satisfied by the requirements are clear.
• The requirements are testable.

Addressed

• Enough of the requirements are addressed for the resulting system to be
acceptable to the stakeholders.

• The stakeholders accept the requirements as accurately reflecting what the
system does and does not do

• The set of requirement items implemented provide clear value to the
stakeholders.

• The system implementing the requirements is accepted by the stakeholders
as worth making operational.

Fulfilled

• The stakeholders accept the requirements as accurately capturing what they
require to fully satisfy the need for a new system.

• There are no outstanding requirement items preventing the system from
being accepted as fully satisfying the requirements.

• The system is accepted by the stakeholders as fully satisfying the
requirements.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 45 Journal of Computer and Communications

Table 3. Hermeneutical engineering of requirements—results of the adaptations of the
hermeneutical concepts.

Hermeneutical Engineering of Requirements
The results of the adaptations of the hermeneutical concepts created by the philosopher Martin

Heidegger

Hermeneutical
Concepts

Result of the Adaptation to the Hermeneutical Engineering of
Requirements

Dasein’s Triad
Composition of the Triad of Hermeneutical Engineering of Requirements,
consisting of “Identification of Situational Difference”, “Examination of
Situational Difference” and “Specification of Requirement”.

Being-in-the-world
Composition of the Situational Difference Identification, whose purpose is
to identify and understand the “Context of Situational Difference” in
relation to the “Business Community”.

Being-with-others

Composition of the Examination of Situational Difference, which aims to
understand the “Problems/Opportunities”, their “Circumstances” and
identify a set of “Possibilities” and “Benefits” to be offered by the software
to be developed.

Being-for-death

Composition of the Requirement Specification, which aims to declare and
approve the “Original Needs” (together with the “expectations”), produce
and approve the “Acceptable Specification” and to specify and approve the
“Software Requirements”.

exclusively to the Hermeneutical Theodolite of Requirements to organize the
five levels of understanding that the requirements engineer can be in relation to
the application domain, as highlighted in Table 4.

When applying the Hermeneutical Theodolite of Requirements to evaluate
and reveal the levels of understanding and difficulty in which the requirements
engineer is in relation to the application domain, the following results will be
displayed, as shown in Figure 1.

The instrument that acts on the software requirements uses OMG Essence
(explained in Section 3) as a theoretical basis, which has been adapted exclusive-
ly to the Hermeneutical Theodolite of Requirements to organize the five states of
evolution of the software requirement is, as highlighted in Table 5.

When applying the Hermeneutical Theodolite of Requirements to evaluate
and reveal the quality grades of the software requirements, the following results
will be displayed, as shown in Figures 2-6, organized by requirement state.

6. Application of the Hermeneutical Theodolite of
Requirements

It is possible to apply the Hermeneutical Theodolite of Requirements in any
software development project, regardless of its domain of application and its de-
gree of complexity. By way of example, is presented in this article the application
of the Hermeneutical Theodolite of Requirements in a software development
project for the “Game of Memory”.

The decision to choose the “Game of Memory” was taken by the fact that it is a
game well known and easy to understand. Thus, the application of the Hermeneutical

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 46 Journal of Computer and Communications

Table 4. The five levels of understanding of the requirements engineer in relation to the
application domain.

Hermeneutical Theodolite of Requirements
The five levels of understanding of the requirements engineer in relation to the application domain

Level Knowledge Related to the Application Domain

1-Pre-conceptual
Identifies what is happening (the problem and/or the opportunity) and to
whom it is happening (business community), but still does not know details
about the events that occur between them.

2-Conceptual
Identifies what is happening (the problem and/or the opportunity) and to
whom it is happening (business community) and also already knows the
details about the events that occur between them.

3-Contextual
Knows and contextualizes why facts occur, along with their circumstances,
situational differences, problems and/or opportunities.

4-Systemic
Knows how each involved of the business community perceives, is impacted
and deals with each circumstance, situational difference and problem and/or
opportunity.

5-Holistic

Identifies a set of possibilities (and their respective benefits) that can be
adopted by stakeholders of the business community to address (or mitigate)
problems and opportunities, as well as their business processes, scenario,
environment and utensils (or inputs) that contextualize them.

Table 5. The evolution states of the software requirements and their respective sub-states.

Hermeneutical Theodolite of Requirements
The evolution states of the software requirements and their respective sub-states

States Sub-States

Identified

• The requirement was identified individually for stakeholders.
• The origin and classification of the requirement are clear.
• The business rules and the restrictions imposed on the requirement are

known.
• The requirement has been described briefly and concisely.

Conceived

• The requirement communicates its essential characteristics.
• The requirement has been prioritized.
• The requirement has no conflict with another requirement.
• It is possible to trace the requirement.

Described

• The requirement is clear in relation to its scope.
• The requirement is consistent with the expectations of stakeholders.
• Stakeholders accept that the requirement accurately captured it’s what it

does what does not.
• The allocation of the requirement has been made.

Declared

• The requirement complies with the required standards.
• The set of requirements items provides clear value to stakeholders.
• The requirement has been specified consistently.
• Is possible test and evaluate the requirement.

Approved

• The requirement is complete and consistent.
• The requirement has no omissions and no ambiguities.
• There are no items pending in the requirement, preventing its acceptance by

stakeholders.
• The requirement was accepted by stakeholders as being fully meeting their

needs.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 47 Journal of Computer and Communications

Figure 1. Revelation of the levels of understanding and of the difficulty in relation to
the application domain.

Figure 2. State Identfied—Quality grades of the software requirements.

Figure 3. State Conceived—Quality grades of the software requirements.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 48 Journal of Computer and Communications

Figure 4. State Described—Quality grades of the software requirements.

Figure 5. State Declared—Quality grades of the software requirements.

Figure 6. State Approved—Quality grades of the software requirements.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 49 Journal of Computer and Communications

Theodolite of Requirements is presented more directly, without the need for
large explanations about the application domain.

The “Game of Memory”, in its essence, is a game of pieces (usually cards) that
contains varied figures on one of its faces. Each figure is repeated in two pieces.
To start the game, shuffle the pieces and distribute them with the faces of the
figures facedown, so that the players do not see them. Each player, one at a time,
to come two pieces, so that all other players also see them and know which fig-
ures have been revealed by these pieces. If the figures revealed by these pieces are
the same, the player who took them off collects them for themselves and contin-
ues to play. If the figures of these pieces are different, the player who revealed
them put gets them in their respective places and the time to play is by another
player, who will repeat the process in order find pairs of identical pieces. This
cycle repeats until there are no more parts to be untapped. The player who
manages to collect the most equal pieces wins the game [8].

Given this brief description of the “Game of Memory”, the software “Game
Electronic of Memory” should automate this scenario, taking into account four
particularities: 1) the game should be played by only one player; 2) the player
can choose difficulty levels (determined by number of pieces, ranging from 10 to
40; 3) the player may stop a match to continue playing at another time; 4) the
player may start a new match at any time.

In hypothetical way, we consider that to specify the requirements of this soft-
ware it took four cycles of iterations. Thus, the applications of the Hermeneuti-
cal Theodolite of Requirement occurred in the following ways.

Cycle 1: During this cycle, the domain of the application was identified and
well understood, but it was not possible to get a good view of the purpose of the
software to be developed. Thus, when applying the Hermeneutical Theodolite of
Requirements in this cycle, the following results were obtained, as shown in Ta-
ble 6 and Figure 7.

Cycle 2: During this cycle, it was fully understood; the application domain
achieved a good level of understanding regarding the purpose of the software to
be developed and it was identified the requirements “Choose difficulty level”,
“Start new game”, “Save game” and “Recover the saved version”, being that the
first two software requirements were more understood than the last two. Thus,
when applying the Hermeneutical Theodolite of Requirements in this cycle, the
following results were obtained, as shown in Table 7, Table 8, Figure 8 and
Figure 9.

Cycle 3: During this cycle, the application domain and the purpose of the
software to be developed were completely understood and the quality grades of
software requirements evolved considerably, being that the requirements “Save
game” and “Recover the saved version” still require more details. Thus, when
applying the Hermeneutical Theodolite of Requirements in this cycle, the fol-
lowing results were obtained, as shown in Table 9, Table 10, Figure 10 and
Figure11.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 50 Journal of Computer and Communications

Table 6. Game Electronic of Memory: Cycle 1—levels of the application domain under
evaluation.

Example Application of Hermeneutical Theodolite of Requirements—Application Domain
Game Electronic of Memory—Cycle 1

Application Domain Level of Understanding

Memory Game 3-Contextual

Game Electronic of Memory 2-Conceptual

Table 7. Game Electronic of Memory: Cycle 2—levels of the application domain under
evaluation.

Example Application of Hermeneutical Theodolite of Requirements—Application Domain
Game Electronic of Memory—Cycle 2

Application Domain Level of Understanding

Memory Game 5-Holistic

Game Electronic of Memory 4-Systemic

Table 8. Game Electronic of Memory: Cycle 2—evaluations of the quality grades of
software requirements.

Example Application of Hermeneutical Theodolite of Requirements—Software Requirement
Game Electronic of Memory—Cycle 2

Software Requirement Degree of Quality

Choose difficulty level 2.3—The requirement has no conflict with another requirement.

Start new game
3.3—Stakeholders accept that the requirement accurately captured
it’s what it does what does not.

Save game 1.4—The requirement has been described briefly and concisely.

Recover the saved version
1.3—The business rules and the restrictions imposed on the re-
quirement are known.

Table 9. Game Electronic of Memory: Cycle 3—levels of the application domain under
evaluation.

Example Application of Hermeneutical Theodolite of Requirements—Application Domain
Game Electronic of Memory—Cycle 3

Application Domain Level of Understanding

Memory Game 5-Holistic

Game Electronic of Memory 5-Holistic

Table 10. Game Electronic of Memory: Cycle 3—evaluations of the quality grades of
software requirements.

Example Application of Hermeneutical Theodolite of Requirements—Software Requirement
Game Electronic of Memory—Cycle 3

Software Requirement Degree of Quality

Choose difficulty level 4.4—Is possible test and evaluate the requirement.

Start new game 4.3—The requirement has been specified consistently.

Save game 3.1—The requirement is clear in relation to its scope.

Recover the saved version
3.2—The requirement is consistent with the expectations
of stakeholders.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 51 Journal of Computer and Communications

Figure 7. Game Electronic of Memory: Cycle
1—levels revealed about the application
domain.

Figure 8. Game Electronic of Memory: Cycle
2—levels revealed about the application
domain.

Figure 9. Game Electronic of Memory: Cycle 2—evaluations of the
quality grades of software requirements.

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 52 Journal of Computer and Communications

Figure 10. Game Electronic of Memory: Cycle 3—levels
revealed about the application domain.

Figure 11. Game Electronic of Memory: Cycle 3—evaluations of the quality grades of
software requirements.

Cycle 4: During this cycle, an excellent understanding of software require-
ments was achieved. Thus, when applying the Hermeneutical Theodolite of Re-
quirements in this cycle, the following results were obtained, as shown in Table
11 and Figure 12.

In this Figure 12 a new possibility is presented: Turn on the Level Reference,
which becomes a color scale to further aid the reading and interpretation of the
results obtained, both for the software requirements and for the application do-
main. In this example, the red color represents high criticality, the yellow color
means average criticality and the green color indicates low or no criticality.

7. Conclusions

Each software requirement, to reach the appropriate maturity level, progresses
from an “identified” stage to an “approved” stage, in a very particular and

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 53 Journal of Computer and Communications

Table 11. Game Electronic of Memory: Cycle 4—evaluations of the quality grades of
software requirements.

Example Application of Hermeneutical Theodolite of Requirements—Software Requirement
Game Electronic of Memory—Cycle 4

Software Requirement Degree of Quality

Choose difficulty level 5.2—The requirement has no omissions and no ambiguities.

Start new game
5.3—There are no items pending in the requirement, preventing
its acceptance by stakeholders.

Save game 4.3—The requirement has been specified consistently.

Recover the saved version 5.1—The requirement is complete and consistent.

Figure 12. Game Electronic of Memory: Cycle 4—evaluations of the quality grades of
software requirements.

individualized dynamics, as its evolution depends on the understanding and in-
terpretation of the requirements engineer on this requirement, and also about
the application domain for which the software will be developed. In this article,
the Hermeneutical Theodolite of Requirements is presented, an instrument that
aims to evaluate and reveal the levels of understanding (and difficulty) that the
requirements engineer has in relation to the application domain, and also eva-
luate and reveal the quality grades of each software requirement. Thus, with
these results at hand, one can determine a strategic plan to improve the applica-
tion of Requirements Engineering.

In this article, the indicators of the levels of understanding of the require-
ments engineer in relation to the domain of the application, as well as the indi-
cators of the quality grades of the software requirements, determined by their
states and sub-states of evolution were presented. These indicators are the result
of the adaptations made of the SOLO Taxonomy, of the OMG Essence and of
the Hermeneutical Engineering of Requirements.

This article also presented how the Hermeneutical Theodolite of Require-
ments applies, using as an example a software development project for the

https://doi.org/10.4236/jcc.2018.65004

W. Varalda, Í. S. Vega

DOI: 10.4236/jcc.2018.65004 54 Journal of Computer and Communications

“Game of Memory”. With this, it was possible to verify the practicality and sim-
plicity of applying it, besides its independence with the methods, processes and
tools adopted for the project.

In this example it was also presented the possibility of using the Level Refer-
ence to further facilitate the reading of the revealed results. This Level Reference
indicates the degree of criticality of the application domain and software re-
quirements, showing in a simple color scale how critical they are, with red being
an indication for high criticality, the yellow is an indication for the average criti-
cality and green an indication for low or no criticality. But this Level Reference
can be configured in any way, according to the needs and characteristics of each
project.

To evaluate the levels of understanding of the requirements engineer in
relation to the application domain and the quality grades of software
requirements is timely at a time when software complexity is increasing. With
this, it is possible to improve the efficiency and effectiveness of Requirements
Engineering and provide better planning and control over it, regardless of the
application domain, the business area and its complexities.

References
[1] Roger, P. (2016) Software Engineering: A Professional Approach. McGraw-Hill

Education, New York.

[2] Ceia, Mário José Miranda (2002) The SOLO Taxonomy and the Levels of Van Hiele.
School Higher of Education of Portalegre, Portalegre.

[3] OMG (2015) Essence-Kernel and Language for Software Engineering Methods.
SMSC.

[4] Varalda, W. and Vega, Í.S. (2017) Hermeneutical Engineering of Requirements.
Journal of Computer and Communications, 5, 7-16.
https://doi.org/10.4236/jcc.2017.52002

[5] Official Page of John Biggs, Which Presents, among Other Things, the SOLO Tax-
onom. http://www.johnbiggs.com.au/academic/solo-taxonomy/

[6] Official Page of SEMAT. http://www.semat.org/

[7] Official Page of OMG. https://www.omg.org/

[8] Web College (2017-2018) How to Learn More with the Memory Game?
https://www.colegioweb.com.br/educador/como-aprender-mais-com-o-jogo-da-me
moria.html

https://doi.org/10.4236/jcc.2018.65004
https://doi.org/10.4236/jcc.2017.52002
http://www.johnbiggs.com.au/academic/solo-taxonomy/
http://www.semat.org/
https://www.omg.org/
https://www.colegioweb.com.br/educador/como-aprender-mais-com-o-jogo-da-memoria.html
https://www.colegioweb.com.br/educador/como-aprender-mais-com-o-jogo-da-memoria.html

	Hermeneutical Theodolite of Requirements: Evaluating and Revealing the Quality Grades of Software Requirements and of Domain of Application
	Abstract
	Keywords
	1. Introduction
	2. SOLO Taxonomy
	3. OMG Essence
	4. Hermeneutical Engineering of Requirements
	5. Hermeneutical Theodolite of Requirements
	6. Application of the Hermeneutical Theodolite of Requirements
	7. Conclusions
	References

