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Abstract 
In this paper, we consider an almost periodic system which includes a system 
of the type ( ) ( ) ( )11 1m k

ij jjx n a n x i m
−

+ = ≤ ≤∑ , where k is a positive integer, 

ija  are almost periodic in n and satisfy ( ) 0ija n ≥  for i j≠ , ( )1 0m
iji a n

=
=∑  

for 1 j m≤ ≤ . In the special case where ( )ija n  are constant functions, above 
system is a mathematical model of gas dynamics and was treated by T. 
Carleman and R. D. Jenks for differential systems. In the main theorem, we 
show that if the m m×  matrix ( )( )ija n  is irreducible, then there exists a 

positive almost periodic solution which is unique and has some stability. 
Moreover, we can see that this result gives R. D. Jenks’ result for differential 
model in the case where aij(n) are constant functions. In Section 3, we consider 

the linear system with variable cofficients ( ) ( ) ( )1 , mx n A n x n x R+ = ∈ . Even 
in nonlinear problems, this linear system plays an important role, as their 
variational equations, and it is requested to determine the uniform 
asymptotically stability of the zero solution from the information about 
( )A n . In order to obtain the existence of almost periodic solutions of both 

linear and nonlinear almost periodic discrete systems: above linear system 
and ( ) ( ) ( )( )11 m

i ij j jjx n a n g x n
=

+ =∑  for 1 i m≤ ≤ , respectively, we shall 

consider between certain stability properties, which are referred to as 
uniformly asymptotically stable, and the diagonal dominance matrix 
condition. 
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1. Introduction 

System of almost periodic difference equations has been studied to describe 
phenomena of oscillations in the natural and social sciences. The investigation of 
almost periodic systems has been developed quite widely during the twentieth 
century, since relationships with the stability theory have been found. A main 
interest of the subject is the existence theorem for almost periodic solutions. Ob-
viously an almost periodic solution is a bounded solution, but the existence of 
bounded solutions does not necessarily imply the existence of almost periodic 
solutions. Therefore, in order to prove the existence of almost periodic solutions, 
we need some additional conditions to the existence of bounded solutions. A 
main subject of the investigation has been to find such additional conditions, 
and up to now, many conditions have been considered (for example, in the li-
near system, J. Favard’s separation condition [1]).  

In the Section 4, we consider the nonlinear almost periodic system of 

( ) ( ) ( )
1

1 , 1 ,
m k

i ij j
j

x n a n x n i m
=

+ = ≤ ≤∑                 (1) 

where k is a positive integer, ( )ija n  are almost periodic in n and satisfy  

i) ( )
1

0, 1 ,
m

ij
i

a n j m
=

= ≤ ≤∑  

ii) ( ) 0 for .ija n i j≥ ≠  
In the special case where ( )ija n  are constant functions, system (1) is a 

mathematical model of gas dynamics and was treated by T. Carleman [2] and R. 
D. Jenks [3]. In the main theorem, we show that if the m m×  matrix ( )( )ija n  
is irreducible, then there exists a positive almost periodic solution which is 
unique and some stability. Moreover, we can see that this result gives R. D. 
Jenks’ result in the case where ( )ija n  are constant functions. In the Section 5, 
we consider the linear almost periodic system with variable coefficients  

( ) ( ) ( ) 01 , 0,x n A n x n n n+ = ≥ ≥                   (2) 

where mx R∈ . Even in nonlinear problems, system (2) plays an important role, 
as their variational equations and moreover, it is requested to determine the 
uniformly asymptotic stability of the zero solution from the condition about 
( )A n . When ( )A n  is a constant matrix, it is well known that the stability is 

equivalent to the following condition (cf. [4]);  
“Absolute values of all eigenvalues of ( )A n A≡  are less than one.”  
However, it is not true in the case of variable coefficients, and hence we need 

additional conditions to (2). In the main theorem, we show that one of the such 
conditions is the diagonal dominance matrix condition on ( )A n  [5], that is, 
( )A n  satisfies  

( ) ( )
1,

, 1 .
m

ii ki
k k i

a n a n i m
= ≠

≥ ≤ ≤∑  

This result improves a stability criterion based on results of F. Nakajima [6] 
for differential equations. 
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2. Preliminaries 

We denote by Rm the real Euclidean m-space. Let ( ),R = −∞ ∞  and [ )0,R+ = ∞ . 
Z is the set of integers, Z+ is the set of nonnegative integers. For mx R∈ , let x  
be the Euclidean norm of x and ix  be the i-th component. Let  

{ }| 0 for 1 ,m
iD x R x i m= ∈ ≥ ≤ ≤  

1
| 1

m

i
i

x D x
=

 Ω = ∈ = 
 

∑  

and 

1
| 0 .

m
m

i
i

x R x
=

 Π = ∈ = 
 

∑  

We introduce an almost periodic function ( ), : mf n x U R× →Z , where U is 
an open set in Rm. 

Definition 1. ( ),f n x  is said to be almost periodic in n uniformly for 
x U∈ , if for any 0>  and any compact set K in U there exists a positive 
integer ( )* ,L K  such that any interval of length ( )* ,L K  contains an integer 
τ for which  

( ) ( ), ,f n x f n xτ+ − ≤   

for all n∈Z  and all x K∈ . Such a number τ in above inequality is called an 
-translation number of ( ),f n x .  

In order to formulate a property of almost periodic functions, which is 
equivalent to the above definition, we discuss the concept of the normality of 
almost periodic functions. Namely, let ( ),f n x  be almost periodic in n 
uniformly for x U∈ . Then, for any sequence { }kh′ ⊂ Z , there exist a 
subsequence { }kh  of { }kh′  and a function ( ),g n x  such that  

( ) ( ), ,kf n h x g n x+ →                       (3) 

uniformly on K×Z  as k →∞ , where K is a compact set in U. There are 
many properties of the discrete almost periodic functions [7], which are 
corresponding properties of the continuous almost periodic functions 
( ) ( ), , mf t x C R U R∈ ×  [cf. [8] [9]]. We denote by ( )T f  the function space 

consisting of all translates of f, that is, ( )f T fτ ∈ , where  

( ) ( ), , , .f n x f n xτ τ τ= + ∈Z                    (4) 

Let ( )H f  denote the uniform closure of ( )T f  in the sense of (4). ( )H f  
is called the hull of f. In particular, we denote by ( )fΩ  the set of all limit 
functions ( )g H f∈  such that for some sequence { }kn , kn →∞  as k →∞  
and ( ) ( ), ,kf n n x g n x+ →  uniformly on S×Z  for any compact subset S in 
Rm. Specially, for a function ( )f n  on Z with values in Rm, ( )H f  denotes the 
set of all function ( )g n  such that for some sequence { }kn ,  

( ) ( ) in as ,kf n n g n k+ → →∞Z  

where the symbol “” stands for the uniformly convergence on any compact set 
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in Z (in short, “in Z”). Clearly, ( )f H f∈ .  
By (3), if : mf U R× →Z  is almost periodic in n uniformly for x U∈ , so is a 

function in ( )fΩ . 
We define the irreducible matrix to need after. 
Definition 2. An m m×  matrix ( ) ( )( )ijA n a n=  is said to be irreducible if 

for any two nonempty disjoint subsets I and J of the set of m integers 
{ }1,2, ,m  with { }1,2, ,I J m=  , there exists an i in I and a j in J such that 

( ) 0ija n ≡/ . In the case where ( )A n  is scalar, ( )A n  is said to be irreducible if 
( ) 0A n ≡/ . Otherwise, ( )A n  is said to be reducible, and we can assume that 
( )A n  takes the form of  

( ) ( )
0

,A n B n
∗ 

=   ′∗ 
 

where * is ( )1l l l m× ≤ ≤  square matrix, *' is m l l− ×  matrix, ( )B n  is 
m l m l− × −  zero or a square irreducible matrix. 

3. Linear Systems 

We consider the system of linear difference equation  

( ) ( ) ( )1 ,x n A n x n+ =                      (5) 

where mx R∈  and the m m×  matrix ( ) ( )( )ijA n a n=  is bounded on Z and 
almost periodic function in n. We state discretization of Jenks and Nakajima' 
results for differential equations [3] [10]. 

Now we define stability properties with respect to the subset K in Rm. Here, we 
denote by ( )0 0, ,x n n x  the solution of system (5) with initial condition 
( )0 0,n x . 

Definition 3. The bounded solution ( )u n  of system (5) defined on Z is said 
to be; 

i) uniformly stable (in short, U.S.) in K on Z+ if for any 0>  there exists a 
( ) 0δ >  such that ( ) ( )0 0, ,u n x n n x− <   for all 0n n≥  whenever 0x K∈  

and ( ) ( )0 0u n x δ− <   at some 0n  in Z+. 
ii) uniformly asymptotically stable (in short, U.A.S.) in K on Z+ if it is U.S. in 

K on Z+ and if there exists a 0 0δ >  and, if for any 0>  there exists a 
( ) 0T >  such that ( ) ( )0 0, ,u n x n n x− <   for all ( )0n n T≥ +   whenever 

0x K∈  and ( )0 0 0u n x δ− <  at some 0n  in Z+. 
iii) uniformly asymptotically stable (in short, U.A.S.) in the whole K on Z+ if it 

is U.S. in K on Z+ and if for any 0>  and 0r >  there exists a ( ), 0T r >  
such that ( ) ( )0 0, ,u n x n n x− <   for all ( )0 ,n n T r≥ +   whenever 0x K∈  
and ( )0 0u n x r− < , at some 0n  in Z+. 

When Z+ in the definitions (i), (ii) and (iii) is replaced by Z, we say that ( )x n  
is U.S. in K on Z, U.A.S. in K on Z and U.A.S. in the whole K on Z, respectively. 
Clearly Definition 3 agrees with the definitions of the usual stability properties in 
the case where mK R= . 

Throughout this paper, we suppose the following conditions;  
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i) ( )
1

0 for 1 ,
m

ij
i

a n j m
=

= ≤ ≤∑  

ii) ( ) 0 forija n i j≥ ≠  
and 

iii) each element in ( )H A  is irreducible. 
First of all, we prove the following lemmas. 
Lemma 1. Consider the m-equations ( ) ( )( )1 ,i ix n f n x n+ = , 1 i m≤ ≤ , 

where ( ),if n x  is continuous on second variable x in Rm, and assume that the 
initial value problem has a unique solution.  

a) If ( )
1

, 0
m

i
i

f n x
=

=∑ , then the set Π is invariant.  

b) If ( ), 0if n x ≥  for 0ix =  and 0jx ≥ , then the set D is positively 
invariant, and in addition, 

if ( )
1

, 0
m

i
i

f n x
=

=∑ , then the set Ω is positively invariant. 

In the case of differential equations, the proof of the similar lemma is obvious 
(for instance, see [11]). We modify it to prove this lemma, but we omit it. 

Lemma 2. If conditions (i) and (ii) are satisfied, then the trivial solution of 
system (5) is U.S. in Π on Z and also it is U.S. on Z. 

By modifying theorem in [5], we can easily prove Lemma 2 at same technique. 
Lemma 3. If each element in ( )H A  is irreducible, then the each element in 

( )H A , we say ( )B H A∈  and ( ) ( )( )ijB n b n= , has the property that for any 
two nonempty disjoint subsets I and J of the set of m integers { }1,2, ,m  with 

{ }1,2, ,I J m=  , there exists an i I∈  and j J∈  such that  

( )lim 0.n ijb n→∞ ≠  

Proof. Suppose not, Then there exists a ( ) ( )( )ijB n b n=  in ( )H A  and two 
nonempty disjoint subsets I and J of { }1,2, ,m  with { }1,2, ,I J m=   
such that  

( )lim 0 for all and .n ijb n i I j J→∞ = ∈ ∈  

Since ( )B n  is bounded on Z, there exists a subsequence ,k kn n →∞  as 
k →∞ , such that  

( ) ( ) in as ,kB n n C n k+ → →∞Z  

where ( ) ( )( ) ( )ijC n c n H A= ∈ . Clearly,  

( ) ( )lim 0 for and , .ij ij kk
c n b n n n i I j J

→∞
= + = ∈ ∈ ∈Z  

This show the reducibility of ( )C n , which is a contradiction. This proves 
Lemma 3. 

For system (5), we consider the system in ( )H A  of  

( ) ( ) ( )1 ,x n B n x n+ =                      (6) 

where ( )B H A∈ . 
Lemma 4. Assume that conditions (ii) and (iii) are satisfied for system (5), 
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and let ( )x n  be a nontrivial solution of system (6) such that ( )x n D∈  on Z. 
Then there exists a constant 0c >  such that  

( ) ( ) for and 1 .ix n x n c n i m≥ ∈ ≤ ≤Z  

Proof. Let ( ) ( ) ( ) ( )( )1 2, , , mx n x n x n x n=   be a solution of system (6) such 
that ( )x n D∈  on Z. First of all, we show that if ( )0 0ix n =  at some 0n ∈Z , 
then  

( ) 00 for all .ix n n n= ≥  

Since ( )ix n  satisfies the equation  

( ) ( ) ( ) ( ) ( )1 ,
m

i ii i ij j
j i

x n b n x n b n x n
≠

+ = +∑  

where ( )( ) ( )ijb n B n= . Moreover, since ( ) ( ) 0m
ij jj i b n x n

≠
≥∑ , we have  

( ) ( ) ( )1 ,i ii ix n b n x n+ ≥                      (7) 

which implies  

( ) ( ) ( )
0

1

0 0
=

for .
n

i i ii
s n

x n x n b s n n
−

≤ ≤∏  

Thus, we obtain  

( ) 00 for .ix n n n= ≤  

Because ( )0 0ix n =  and ( ) 0ix n ≥  on Z. Now suppose that Lemma 4 is not 
true. Then for some B in ( )H A , the corresponding system (6) has a nontrivial 
solution ( )x n , ( )x n D∈  on Z, such that for some sequence kn ,  

( ) ( )1 0 as .k kx n x n k→ →∞                   (8) 

Set ( ) ( ) ( )k k kn x n n x nφ = + . Then, ( )k nφ  satisfies  

( ) ( ) ( )1 kx n B n n x n+ = +  

and  

( ) ( )on , 0 1.k kn Dφ φ∈ =Z  

Since the sequence ( ){ }0kφ  is bounded, ( ){ }k nφ  is uniformly bounded on 
any finite interval in Z, and hence there is a convergent subsequence of kφ , 
which is again denoted by kφ , such that  

( ) ( )k n y nφ →  in Z for some function ( )y n  as k →∞ . 
We can also assume that  

( ) ( ) in as ,kB n n C n k+ → →∞Z  

where ( )C H A∈  and ( ) ( )( )ijC n c n= . Therefore, ( )y n  is the solution of 
the system  

( 1) = ( ) ( ),y n C n y n+                      (9) 

( )y n D∈  on Z and ( )0 1y = . Moreover (8) implies that ( )1 0 0y = . Thus, 
as was proved above, we have  
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( )1 0 for 0,y n n= ≤  

For this ( )y n , we define two subsets I and J of { }1,2, ,m  by 
( ){1 | 0iI i m y n= ≤ ≤ ≡  for in N≤ , where iN  depends on ( )}iy n  and 
( ){ }1 | 0 oniJ i m y n= ≤ ≤ > Z . Then { }1,2, ,I J m=  , { }1 I∈  and J φ≠  

since ( ) 0y n ≠ . By Lemma 3,  

( )
0 0 0 0lim 0 for some and some .n i jc n i I j J→∞ ≠ ∈ ∈           (10) 

Now the 0i -th equation of system (9) takes the form of  

( ) ( ) ( ) ( ) ( )
0 0 0

1 ,i i k k i k k
k I k J

y n c n y n c n y n
∈ ∈

+ = +∑ ∑  

and hence  

( ) ( )
0

0 for 1 min ,i k k ii Ik J
c n y n n N

∈∈

= + ≤∑                (11) 

because of the definition of the set I. Since each term in the left hand side of (11) 
is nonnegative, all of them are equal to zero. Therefore  

( ) ( )
0 0 0

0 for 1 min ,i j j ii I
c n y n n N

∈
= + ≤  

which implies, by (10),  

( )
0 0 00 at some .jy n n=  

This contradicts the definition of the set of J. The proof is completed. 
The following proposition is an immediate result of Lemma 4. 
Proposition 1. Under conditions (ii) and (iii), system (6) has no nontrivial 

solution ( )x n  such that  

( ) on ,x n D∈∂ Z  

where { | 0iD x D x∂ = ∈ =  for some },1i i m≤ ≤ . 
We next consider a non-homogeneous system corresponding to system (5)  

( ) ( ) ( ) ( )1x n A n x n f n+ = +                   (12) 

and assume that ( )A n  satisfies conditions (i), (ii) and (iii). 
Lemma 5. If ( )f n  is bounded on Z with values in Rm and ( )1 1m

ii f n
=

−∑  is 
bounded on Z+, then all solutions of system (12) are bounded on Z+. 

Proof. It is sufficient to show that (12) has at least one bounded solution on 
Z+, because the trivial solution of (5) is U.S. by Lemma 2. We consider the 
system with real parameter   

( ) ( ) ( ) ( )1x n A n x n f n+ = +                    (13) 

and show that for a sufficiently small , system (13) has a bounded solution on 
Z+, which implies the existence of a bounded solution on Z+ for system (12) by 
replacing x in (13) with x  . For a 0 1 mδ< <  and for the m-vector e each 
of whose components is 1, let D′  be a convex cone defined by  

{ }| , ,mD x R e x e x δ′ = ∈ ≥ ⋅ ⋅  

where ,⋅ ⋅  denotes the inner product and 2 ,x x x= . Clearly, D D′⊂ . 
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Every solution ( )x n  of (13) satisfies  

( ) ( )
1 1

1
m m

i i
i i

x n f n
= =

+ =∑ ∑  

because of condition (i). By replacing n with n-1 of the above both sides,  

( ) ( ) ( )
1 1

1 for 0 ,
m m

i i
i i

x n f n M M x
= =

= − ≤ + ∈Ω∑ ∑    

where  

0M >  is sufficient small number and ( )
0 1

1sup
m

i
n i

M f n
> =

= −∑ . 

When ( )x n D′∈ , we have  

( ) ( ) ( )
1

, ,
m

i
i

x n e x n x n e δ
=

= ≥ ⋅ ⋅∑  

and hence,  

( ) ( ) ( ) ( ) ,M M e x n M M e δ− ≤ ≤ + ⋅               (14) 

Therefore, in order to show the boundedness of ( )x n  with ( )0x  in Ω, it is 
sufficient to prove that ( )x n D′∈  on Z+ if  is sufficiently small. Now suppose 
that for each solution ( )x n  of (13) with ( )0x  in Ω, there exists an 0l >  
such that  

( ) .x l D′∈∂   

We can assume that  

( ) at some ,0x n D n n l∈∂ ≤ <      

and 

( ) for ,x n D D n n l′∈ − ≤ ≤    

where K∂  and K  denote the boundary and the closure of the set K, 
respectively. If we set ( ) ( )y n x n n= +   , ( )y n  is a solution of the system  

( ) ( ) ( ) ( )1y n A n n y n f n n+ = + + +   

such that ( ) ( )0 ,y D y Dτ ′∈∂ ∈∂    at 0l nτ = − >    and ( )y n D D′∈ −  for 
0 n τ≤ ≤  . Thus, by (14),  

( ) ( ) ( ) ( ) for 0 ,M M e y n M M e nδ τ− ≤ ≤ + ⋅ ≤ ≤ 

    

The same argument in the proof of Lemma 4 enables us to assume that  
( ) ( )y n w n→  in Z for some function ( )w n  as 0→  

and 
( ) ( )A n n B n+ →  in Z for some ( )B H A∈  as 0→  

Therefore, ( )w n  satisfies ( ) ( ) ( )1w n B n w n+ =  and clearly, for  

0liminfτ τ→=   ,  

( ) for 0w n D D n τ′∈ − ≤ <                   (15) 

and 
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( ) ( ) for 0 .M e w n M e nδ τ≤ ≤ ⋅ ≤ ≤               (16) 

Moreover we have ( )0w D∈∂ , which implies by Lemma 1 that  

( ) on .w n D +∈ Z  

From this and (15) it follows that  

( ) for 0 .w n D D D D n τ′∈ − = ∂ ≤ <               (17) 

Now we show that τ = ∞ . In fact, if τ < ∞ , we have  

( ) ( ) as 0.y wτ τ→ →    

Thus ( )w Dτ ′∈∂  because ( )y Dτ ′∈∂  , and hence  

( ) { }0 ,w D Dτ ′∈∂ ∂ =  

which contradicts (16). Therefore (16) and (17) hold for τ = ∞ . Moreover this 
enables us to assume that  

( ) ( ) for allM e w n M e nδ≤ ≤ ⋅ ∈  Z  

and 

( ) for all .w n D n∈∂ ∈Z  

Because ( )H B  is compact in the sense of the convergence. This contradicts 
the conclusion in Proposition 1. This proves that ( )x n D′∈  on Z+ if  is 
sufficiently small. The proof is completed. 

Lemma 6. Under the assumptions (i) and (ii), if for each B in ( )H A , the 
trivial solution of the system  

( ) ( ) ( )1x n B n x n+ =  

is U.S. on Z and U.A.S. on Z+, then the trivial solution of system (5) is U.A.S. on Z. 
Proof. Let ( )0 0, ,x n n x  be the solution of (5). Since the trivial solution of (5) 

is U.S. on Z by Lemma 2, as is seen from (ii) in Definition 3, it is sufficient to 
show that for any 0>  there exists a ( ) 0T >  such that  

( ) ( ) ( )0 0 0 0, , for some , ,x n n x n n n n Tδ< ≤ ≤ +   

whenever 0n ∈Z  and ( )0 0 1x δ δ< = , where ( )δ ⋅  is the number in (i) of 
Definition 3.  

Now suppose that there exists an 0>  and sequences { }kn  in Z and { }kx  
in Rm such that 0kx δ≤  and  

( ) ( ), , for all , .k k k k kx n n x n n n n kδ≥ ≤ ≤ +  

Since ( )0 1kx δ δ< = ,  

( ) ( ), , 1 for , .k k k k kx n n x n n n n kδ ≤ ≤ ≤ ≤ +  

Set ( ) ( ), ,k k k kn x n n n xφ = + . Then, ( )k nφ  satisfies  

( ) ( ) ( )1 kx n A n n x n+ = +  

and 
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( ) ( ) 1 for 0 .k n n kδ φ≤ ≤ ≤ ≤  

We can assume that  
( ) ( )k n y nφ →  in Z+ for some function ( )y n  as k →∞  

and 
( ) ( )kA n n B n+ →  in Z for some ( )B H A∈  as k →∞ . 

Therefore ( )y n  is a solution of the system  

( ) ( ) ( )1y n B n y n+ =                      (18) 

and 

( ) ( ) 1 on .y nδ +≤ ≤ Z  

On the other hand, we have  

( ) 0 as ,y n n→ →∞  

because the trivial solution of (18) is U.A.S. on Z+. Therefore there arises a 
contradiction. Thus the proof is completed. 

We show the following theorem, before we will mention a definition of the 
exponential dichotomy of a linear system;  

System (5) is said to possess an exponential dichotomy if there exists a 
projection matrix P and positive constants 1 2 1 2 1, , , ,K K ρ ρ σ  and 2σ  such that  

( ) ( ) ( )11
1 1 10 e , for ,n ln P l K n lσρ ρ −− −Φ Φ ≤ < = ≥  

( )( ) ( ) ( )21
2 2 20 e , for ,n ln I P l K n lσρ ρ −− −Φ − Φ ≤ < = ≤  

where, I is a identical matrix and Φ is a fundamental matrix solution of system 
(5) (cf. [4] [5] [8]). 

Theorem 1. Assume that system (5) satisfies conditions (i), (ii) and (iii), Then 
the trivial solution of system (5) is U.A.S. in Π on Z. 

Proof. On the set Π which is invariant for system (5), the system is written as 
the ( )1m − -system  

( ) ( ) ( )1x n A n x n+ =                         (19) 

where ( ) 1
1 2 1, , , m

mx x x x R −
−= ∈

  and ( )A n  is an ( ) ( )1 1m m− × −  matrix 
whose ( ),i j  element is given by ( ) ( )ij ima n a n−  for 1 , 1i j m≤ ≤ − . First of 
all, we can show that for each B  in ( )H A , the system  

( ) ( ) ( )1x n B n x n+ =                         (20) 

has an exponential dichotomy on Z+ since (20) has at least one bounded 
solution, and as is well known (cf. [12]), it is equivalent to show the system  

( ) ( ) ( ) ( )1x n B n x n f n+ = + 

                    (21) 

possesses at least one bounded solution on Z+ for any bounded function ( )f n  
on Z+. For each ( )B n  in ( )H A  there corresponds some ( ) ( )( )ijB n b n=  in 

( )H A  such that the ( ),i j  element of ( )B n  is equal to ( ) ( )ij imb n b n−  for 
1 , 1i j m≤ ≤ − . For ( ) ( ) ( ) ( )( )1 2 1, , , mf n f n f n f n−=

 , let ( )g n  be defined by  
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( ) ( ) for 1 1,i ig n f n i m= ≤ ≤ −  

( ) ( )
1

1
.

m

m i
i

g n f n
−

=

= −∑  

Obviously ( )g n  and ( )( )1 1 0m
ii g n

=
− =∑  are bounded on Z+. Applying 

Lemma 5 to the m-system  

( ) ( ) ( ) ( )1 ,x n B n x n g n+ = +  

we obtain the bounded solution ( )x n  on Z+ with ( )0 0x = , and 
( )1 1 0m

ii g n
=

− =∑  which yields  

( )
1

0.
m

i
i

x n
=

=∑  

Hence we can verify that ( ) ( ) ( ) ( )( )1 2 1, , , mx n x n x n x n−=
  is a bounded 

solution on Z+ of system (21). The exponential dichotomy of (20) implies further 
that the trivial solution is U.A.S. on Z+, because the trivial solution is U.S. on Z 
by Lemma 2. Therefore it follows from Lemma 6 that the trivial solution of (19) 
is U.A.S. on Z, i.e., the trivial solution of (5) is U.A.S. in Π on Z. The proof is 
completed. 

4. Nonlinear Systems 

We consider the nonlinear almost periodic system of  

( ) ( ) ( )( )
1

1 for 1 ,
m

i ij j j
j

x n a n g x n i m
=

+ = ≤ ≤∑             (22) 

where ( ) ( )( )ijA n a n=  is almost periodic function of n with conditions  
(iv) ( )

1
0, 1

m

ij
i

a n j m
=

= ≤ ≤∑  
and 

(v) ( ) 0 for .ija n i j≥ ≠  
In addition, assume that ( )jg u  are continuously differentiable for 0u ≥ , 
( )0 0jg =  and ( ) 0jg u >  for real number 0u > , where ( )jg u  is the 

derivative of ( )jg u  at u.  
We first consider the linear system  

( ) ( ) ( )1x n L n x n+ =                      (23) 

and its perturbed system  

( ) ( ) ( ) ( )( )1 , ,x n L n x n f n x n+ = +                (24) 

where ( )L n  is an m m×  matrix function, almost periodic function in n, 
( ),f n x  is continuous with respect to its second argument and ( ) ( ),f n x o x=  

uniformly for n∈Z . Assume that the set Π is invariant for both system (23) 
and (24). 

First of all, we can prove the following lemmas. 
Lemma 7. If the trivial solution of system (23) is U.A.S. in Π on Z, then the 

trivial solution of system (24) has also the same stability property. 
Proof. Let ( )1 2 1, , , mx x x x −=   for ( )1 2, , , m

mx x x x R= ∈ . Then there are 
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positive constants 1c  and 2c  such that  

1 2 for ,c x x c x x≤ ≤ ∈Π                      (25) 

because ( )1 2 1m mx x x x −= − + + + . On the set Π, systems (23) and (24) are 
written as  

( ) ( ) ( )1x n L n x n+ =                         (26) 

and  

( ) ( ) ( ) ( )( )1 ,x n L n x n g n x n+ = +

                    (27) 

respectively, where the ( ),i j  element of ( ) ,1 , 1L n i j m≤ ≤ − , is given by 
( ) ( )ij iml n l n−  for ( ) ( )( )ijL n l n=  and ( ) ( ),g n x o x=   uniformly for n∈Z . 

Inequality (25) shows that the trivial solution of (23) is U.A.S. in Π if and only if 
the trivial solution of (26) is U.A.S., and we have also the same equivalence 
between (24) and (27). As is well known, if the trivial solution of (26) is U.A.S., 
then the trivial solution of (27) has also the same stability property. Thus our 
assertion is proved. 

The following lemma is obtained by the slight modification of the difference 
equation to Seifert’s result [13]. Then, we will omit the proof (cf. [9]). 

We consider the almost periodic nonlinear system  

( ) ( )( )1 , , , ,mx n f n x n n x R+ = ∈ ∈Z               (28) 

where ( ),f n x  is almost periodic in n uniformly for mx R∈  and for a 
constant * 0L > , ( ) ( ) *, ,f n x f n y L x y− ≤ −  for n∈Z  and ,x y∈Ω . 

Lemma 8. Assume that the set Ω is positively invariant for system (28) and all 
solutions in Ω on Z are U.A.S. in Ω on Z. Then the set of such solutions is finite 
and consists of only almost periodic solutions 1 2, , , mφ φ φ  which satisfy  

( ) ( )i jn nφ φ β− ≥  on Z for i j≠  and some constant 0β > . 
Now we can show the following theorem. Since the last statements of the 

following theorem are alternative, under each assumption of these statements we 
can prove the existence of almost periodic solutions in Ω and the module 
containment. 

Theorem 2. Under the assumptions (iv) and (v), system (22) has a nontrivial 
almost periodic solution in Ω whose module is contained in the module of 
( )A n . In addition to the above assumptions, if ( )A n  is irreducible, then the 

almost periodic solution of (22) is unique in Ω, which remains in 0Ω  on Z, and 
it is U.A.S. in the whole Ω on Z, where { }0 | 0 for all ,1ix x i i mΩ = ∈Ω > ≤ ≤ . 
Moreover, if ( )A n  is reducible, then at least one of the above almost periodic 
solutions ( )p n  satisfies that ( )p n ∈∂Ω  on Z, where  

{ }| 0 for some ,1ix x i i m∂Ω = ∈Ω = ≤ ≤ . 
Proof. First of all, we consider the case where ( )A n  is irreducible. Since 

system (22) satisfies the conditions of Lemma 1, the set Ω is positively invariant, 
namely, ( )y n ∈Ω  on Z+ for a solution ( )y n  of (22) with ( )0y ∈Ω , and 
furthermore we can assume that  
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( ) ony n ∈Ω Z  

because of the almost periodicity of ( )A n . We can show that this ( )y n  is 
U.A.S. in Ω on Z. If we set ( )x y n w= +  in system (22), then w∈Π  for x in 
Ω and  

( ) ( ) ( )( ) ( )
1

1 for 1 ,
m

i ij j j j
j

w n a n g y n w o w i m
=

+ = + ≤ ≤∑         (29) 

And Π is invariant for the above system. Considering the first approximation of 
system (29)  

( ) ( ) ( )1 ,w n L n w n+ =                      (30) 

where ( ) ( )( )ijL n l n=  is defined by ( ) ( ) ( )( )ij ij j jl n a n g y n=  , condition (iv) 
implies that Π is also invariant for (30). Then, by Lemma 6, if the trivial solution 
of (30) is shown to be U.A.S. in Π on Z, then the trivial solution of (29) has the 
same stability, and consequently ( )y n  is U.A.S. in Ω on Z. Therefore it is 
sufficient to show that the trivial solution of (30) is U.A.S. in Π on Z. Clearly 
( )L n  is bounded and we have  

( ) ( ) ( )( )
1 1

0 for 1
m m

ij ij j j
i i

l n a n g y n j m
= =

= = ≤ ≤∑ ∑   

and  

( ) ( ) ( )( ) 0 forij ij j jl n a n g y n i j= ≥ ≠               (31) 

because of conditions (iv) and (v), respectively. Thus ( )L n  satisfies conditions 
(i) and (ii). Condition (iii) will be verified in the following way. Applying the 
same argument as in the proof of Lemma 4 to system (22), we can see that there 
exists a constant 0c >  such that  

( )1 for and 1 ,iy n c n i m≥ ≥ ∈ ≤ ≤Z               (32) 

and hence there is a constant 0c >  such that  

( )( ) for and 1 .j jg y n c n j m≥ ∈ ≤ ≤  Z  

Therefore, (31) implies  

( ) ( ) for ,ij ijl n ca n i j≥ ≠  

which guarantees that each element of ( )H L  is irreducible, because ( )A n  is 
irreducible and almost periodic. Thus it follows from Theorem 1 that the trivial 
solution of (30) is U.A.S. in Π on Z, i.e., all solutions of system (22) in Ω on Z 
are U.A.S. in Ω on Z. Therefore Lemma 8 concludes that system (22) possesses 
an almost periodic solution in Ω which remains in 0Ω  by (32), and the set of 
solutions in Ω on Z is finite and consists of only almost periodic solutions 

1 2, , , mφ φ φ  which satisfy  
( ) ( )i jn nφ φ β− ≥  on Z for i j≠  and some constant 0β > . 

Next we can show that there exists a 0T >  such that each solution 
( )0 0, ,x n n x  of (22) with 0x ∈Ω  satisfies that for some jφ  and the constant 

0δ  of (ii) in Definition 3,  
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( ) ( )0 0 0 0 0, , at some , ,jx n n x n n n n n Tφ δ− < ≤ ≤ +  

which implies  

( ) ( )0 0, , 0 as ,jx n n x n nφ− → →∞                (33) 

because jφ  is U.A.S. in Ω. Suppose that this is not true. Then there exists a 
small constant 0α >  less than β and sequences { }kn  in Z and { }kx  in Ω 
such that  

( ) ( ) [ ], , for all , and all ,1 .k k j k kx n n x n n n n k j j mφ α− ≥ ∈ + ≤ ≤  

Since ( ),f n x  is almost periodic in n uniformly for x∈Ω , we can choose a 
sequence { } [ ], 2k k k kn k n kτ τ+ < < + , such that  

( ) ( ), , in as .kf n x f n x kτ+ → ×Ω →∞Z  

If we set ( ) ( ) ( )k
j j kn nψ φ τ= +  for 1 j m≤ ≤  and ( ) ( ) ( )1 , ,k

m k k kn x n n xψ τ+ = + , 
these 1m +  functions ( ) ( )k

j nψ  satisfy  

( ) ( )( )1 ,kx n f n x nτ+ = +  

and 
( ) ( ) on for 1 ,k
j n j mψ ∈Ω ≤ ≤Z  

( ) ( ) [ ]1 for 2 ,k
m k kn n k nψ τ+ ∈Ω ≥ − ≥ −  

because ( ) ( )1
k

m k k kn xψ τ+ − = ∈Ω . Moreover,  
( ) ( ) ( ) ( )0 0 for ,1 , 1.k k
j i i j i j mψ ψ α− ≥ ≠ ≤ ≤ +  

We can assume that ( ) ( ) ( )k
j jn nψ ψ→  in Z for some function 

,1 1j j mψ ≤ ≤ + , as k →∞ . Therefore ( )1,2, ,j j mψ =   are solutions of 
system (22), because ( ) ( ), ,kf n x f n xτ+ →  in ×ΩZ  as k →∞ , and  

( ) on for 1 1j n i mψ ∈Ω ≤ ≤ +Z  

and 

( ) ( )0 0 for ,1 , 1,j i i j i j mψ ψ α− > ≠ ≤ ≤ +  

which shows that system (22) has 1m +  distinct solutions in Ω on Z. This is 
contradiction. Therefore, ( )j nψ  is U.A.S. in the whole Ω on Z, if the 
uniqueness of jφ  is shown.  

Now we will prove the uniqueness of jφ . Suppose 1 jφ φ≠  for 2j ≥  and 
set  

( ) ( ){ }1 0 0 1,0, 0 asS x x n x n nφ= ∈Ω − → →∞  

and 

( ) ( ){ }2 0 0,0, 0 for some , 2, as .j jS x x n x n j nφ φ= ∈Ω − → ≥ →∞  

Then 1S  and 2S  are open sets in Ω, and moreover these sets are nonempty 
and disjoint, because ( ) ( )1 jn nφ φ α− ≥  on Z for 2j ≥ . On the other hand , 
(33) shows that 1 2S SΩ =  , which contradicts the connectedness of Ω. Thus 
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the uniqueness of an almost periodic solution is proved, and moreover, as is seen 
from [14], this uniqueness guarantees the module containment of the almost 
periodic solution.  

Now consider the case where ( )A n  is reducible. We can assume ( )A n  
takes the form of  

( ) ( )
0

,A n B n
∗ 

=   ∗ 
 

where ( )B n  is zero or a square irreducible matrix of order , 2 1l l m≤ ≤ − . If 
( )B n  is zero, system (22) obviously has the constant solution ( )p n  in ∂Ω  

such that ( ) 0ip n =  for 1 1i m≤ ≤ −  and ( ) 1mp n = . In the latter case, if we 
set in system (22)  

0 for 1 and for 1 ,k i m l ix k l m y x i l− += ≤ ≤ − = ≤ ≤  

then system (22) is reduced to the lower dimensional system  

( ) ( ) ( )( )
1

1 for 1 ,
l

i ij j j
j

y n b n g y n i l
=

+ = ≤ ≤∑              (34) 

where ( ) ( )( )ijB n b n= . Since ( )B n  is irreducible, the above system (34) has 
an almost periodic solution ( )y n  such that  

( ) ( )
1

0 for 1 and 1
l

i i
i

y n i l y n
=

> ≤ ≤ =∑                (35) 

and furthermore the module of ( )y n  is contained in the module of ( )B n , 
i.e., of the module of ( )A n . Thus, system (22) has an almost periodic solution 
( )p n  in ∂Ω  on Z such that ( ) 0ip n =  for 1 i m l≤ ≤ −  and  
( ) ( )i i m lp n y n− +=  for 1m l i m− + ≤ ≤ . The proof is completed. 
Remark 1. As will be seen from the module containment, the above almost 

periodic solution is a critical point in the case where ( )A n  is a constant. Hence 
Theorem 2 is a discretization of Nakajimas’ result (Theorem 2 in [10]). 

5. A Stability Criteria of Linear Systems 

We consider a stability criterion for solutions of a linear system with coefficient 
matrix of diagonal dominance type.  

We again consider a linear system (5).  
Let ( ) ( )( ) , , 1, 2, ,ijA n a n i j m= =   be an m m×  matrix of functions for 
n∈Z . We assume the following conditions;  

( ) 0 for 1 and ,jja n j m n≤ ≤ ≤ ∈Z                (36) 

( )det 0,A n ≠                         (37) 

where, ( )det A n  denotes the determinant of matrix ( )A n  and  

( ) ( )
1,

for 1 and .
m

ij jj
i i j

a n a n j m n
= ≠

≤ ≤ ≤ ∈∑ Z            (38) 

At first, we need the following lemmas for main theorem. 
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Lemma 9. If a square matrix A is irreducible and satisfies (38) and if for at 
least one j,  

1,
,

m

ij jj
i i j

a a
= ≠

<∑  

then A is nonsingular. 
For the proof, see [15]. 
Lemma 10. If a nonsingular m m×  matrix ( )ijA a=  satisfies (38), then all 

principal minors of A are nonsingular, namely,  

1 1 1 2 1

2 1 2 2 2

1 2

1 2det 0 for 1 .

l

l

l l l l

j j j j j j

j j j j j j
l

j j j j j j

a a a

a a a
j j j m

a a a

 
 
  ≠ ≤ < < < ≤ 
 
 
 







   



 

Proof. Let 1A  be an ( )l l l m× <  principal minor of A. Then, for a 
permutation matrix Q,  

1T

2

,
A

QAQ
A

∗ 
=  ∗ 

 

where 2A  has ( )m l−  rows and l columns and TQ  denotes the transposed 
matrix of Q. Moreover, from the definition of irreducibility, we can choose an 
l l×  permutation matrix lQ  such that  

1 2

2T
1l l

p

p

B C
B

Q AQ
C

O B

 
 
 =  
  
 





                 (381) 

where iB  is an i ir r×  irreducible matrix, 1
p

ii r l
=

=∑ , and iC  has 
( )1 2 1ir r r−+ + +  row and ir  columns for 2 i p≤ ≤ . In particular, in the case 
where 1A  is irreducible, 1B  must be 1A  itself, and the matrices 

2 3 2 3, , , , , , ,p pB B B C C C 
 are not present. Setting ( )lP Q I Q= ⊕  for 

( ) ( )m l m l− × −  unit matrix I, where lQ I⊕  is the direct sum of lQ  and I, we 
have  

1 2

2 3
T

T 1
T

12

1 2

p

p

l l

p pl

p

p

B C C
B C C

Q AQ
B PAP B CA Q

O B
D D D

−

 
 ∗ 
  ∗
 = = = 

∗   
 
 
 ∗ 

 

 

where ( )T
2 1 2, , ,l pA Q D D D=   and iD  has m l−  rows and ir  columns. 

Since the diagonal dominance condition (38) is invariant under the permutation 
of indexes, B also satisfies (38). Hence, letting  

( ) ( ) ( ), and= = =i jk i jk i jkB b C c D d  
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for a fixed ,1≤ ≤i i p , we have  

( )
1, 1, 1,

1 ,
= ≠ = ≠ = ≠

+ + ≤ ≤ ≤∑ ∑ ∑
i i ir r r

jk jk jk kk i
j j k j j k j j k

b c d b k r          (39) 

where the summations on j are taken along columns and 1 =C O  for 
convenience. If ≠iC O  or ≠iD O , then  

1, 1,
0 for some ,1 ,

= ≠ = ≠

+ > ≤ ≤∑ ∑
r ri i

jk jk i
j j k j j k

c d k k r  

and hence for this k,  

1,= ≠

<∑
ir

jk kk
j j k

b b  

by (39). Therefore it follows from Lemma 9 that  

det 0,≠iB                           (40) 

since iB  is irreducible. If =iC O  and =iD O , then we have the form of  

( )det det= × iB B  

which also implies (40), because det 0≠B . In any case, we have det 0≠iB . 
Since these are true for all ,1≤ ≤i i p , it follows from (381) that  

1det 0.≠A  

this proves Lemma 10. 
Lemma 11. If system (5) satisfies conditions (36) and (38), then the norm of 

solution ( )x n  such that ( ) ( )1== ∑m
iix n x n , is non-increasing, and 

consequently the zero solution is U.S.. 
For the proof, we can see (cf. [5]). 
In the following theorem, we can prove that the zero solution is U.A.S., if 
( )A n  is bounded on Z and if condition (36), (37) and (38) are satisfied. 
Theorem 3. In system (5), let ( )A n  be bounded on Z. Assume that 

conditions (36) and (38) are satisfied for all ∈Zn  and that there is a constant 
0α >  such that  

( )det , on .α≥ ZA n  

Then the zero solution is U.A.S.. 
Proof. As is stated in Lemma 11, the zero solution is U.S., and hence it is 

sufficient to show that for any 0>  there exists a ( ) 0>T  such that  

( ) ( )0 0 0 0, , at some , ,< ≤ ≤ + x n n x n n n n T  

whenever 0 1≤x . Suppose that this is not true. Then there exists a constant 
0> , a sequence of solution ( ) ( ){ }kx n  of (5) and a sequence kn  such that  

( ) ( ) 2onk
k kx n n n n k≥ ≤ ≤ +  

and 
( ) ( ) 1.k

kx n ≤  
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Since ( ) ( )kx n  is non-increasing, we have  
( ) ( ) 21, onk

k kx n n n n k≤ ≤ ≤ ≤ +  

and there exists a subinterval [ ],k ks s k+  of 2,k kn n k +   such that  

( ) ( ) ( ) ( ) 1< , for , .k k
k kx n x n s n n s k

k
′ ′− ≤ ≤ +  

Set ( ) ( ) ( ) ( )k k
kn x n sϕ = + . Then, we obtain  
( ) ( ) ( ) ( ) ( )1 ,k k

kn A n s nϕ ϕ+ = +                   (41) 

( ) ( ) 1, on 0k n n kϕ≤ ≤ ≤ ≤                    (42) 

and 

( ) ( ) ( ) ( ) 1 , for 0 , .k kn n n n k
k

ϕ ϕ ′ ′− < ≤ ≤              (43) 

Since ( )A n  is bounded, it follows from (41) and (42) that ( ) ( ){ }k nϕ  is 
uniformly bounded on any finite interval of Z, and thus, taking a subsequence, 

( ) ( ){ }k nϕ  can be assumed to converge uniformly on any finite interval of Z. 
Defining ( )y n  by  

( ) ( ) ( )lim ,k

k
y n nϕ

→∞
=  

it follows from (42) and (43) that there is a constant 0, 1β β> ≤ ≤ , such that  

( ) , for 0.y n nβ= ≥  

Since ( ) ( ) ( ) ( )( )1 2, , , my n y n y n y n=   is defined on Z, we can choose an 
interval [ ]1 2,I σ σ=  (for some ( ) 1 21, 2 ,0i iσ σ σ∈ = < <Z ) such that  

( ) ( ) ( )
1 2

, , , 0 on ,
hj j jy n y n y n I>  

( ) ( ) ( )
1 2

, , , 0 on
h h lj j jy n y n y n I
+ +

<  

and 

( ) ( ) ( )
1 2

0 on .
l l mj j jy n y n y n I
+ +

≡ ≡ ≡ ≡  

Here we note that { }1 2, , , lj j j φ≠  because ( ) 0y n ≡/ . Then  

( ) ( ) ( )
1 1

on .
p p

h l

j j
p p h

y n y n y n Iβ
= = +

= − =∑ ∑  

Let  

( ) ( ) ( ) ( ) ( ) ( )
1 1

.
p p

h l
k kk

j j
p p h

f n n nϕ ϕ
= = +

= −∑ ∑                 (44) 

Then, we have  
( ) ( ) ( )lim on ,k

k
f n y n Iβ

→∞
= =  

and there is a sequence { }θ ⊂k I  such that  
( ) ( )lim 0.θ

→∞
∆ =k

kk
f                        (45) 

Moreover, since I is compact and ( )A n  is bounded on Z, we can assume 
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that  
lim , for someθ θ θ
→∞

= ∈kk
I  

and 

( )lim , for some matrix .θ
→∞

+ = ×k kk
A s B m m B  

Clearly B satisfies (36), (38) and det α≥B . Taking a difference of both sides 
of (44) at θ= kn  and using relation (41), we find  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

, ,θ θ ϕ θ θ ϕ θ
= = = + =

   
∆ = + − +   

   
∑ ∑ ∑ ∑p q q p q q

h m l m
k k k

k j j k k j k j j k k j k
p q p h q

f a s k a s  

and 

( ) ( ) ( ) ( )
1 1 1 1

lim ,θ θ θ
→∞ = = = + =

   
∆ = −   

   
∑ ∑ ∑ ∑p q q p q q

h l l l
k

k j j j j j jk p q p h q
f b y b y  

where ( )= ijB b , since we have  
( ) ( ) ( )lim , for 1ϕ θ θ

→∞
= ≤ ≤k

j k jk
y j m  

and 

( ) 0 for 1 .θ = + ≤ ≤
qj

y l q m  

By (45), we have  

( )
1 1 1

0 .θ
= = = +

 
= − 

 
∑ ∑ ∑p q p q q

l h l

j j j j j
q p p h

b b y                 (46) 

Since B satisfies (36) and (38),  

1 1

0, for 1 ,
0, for 1 .= = +

≤ ≤ ≤
− ≥ + ≤ ≤

∑ ∑p q p q

h l

j j j j
p p h

q h
b b

h q l
 

Therefore each term of right hand side of (46) is non-positive, because we 
have  

0, for 1 ,
0, for 1 .

> ≤ ≤
< + ≤ ≤

jq

q h
y

h q l
 

Then it follows from (46) that  

( )
1 1

0, for 1 ,θ
= = +

 
− = ≤ ≤ 

 
∑ ∑p q p q q

h l

j j j j j
p p h

b b y q l  

which implies  

1 1
0, for 1 ,

= = +

− = ≤ ≤∑ ∑p q p q

h l

j j j j
p p h

b b q l  

since ( ) 0θ ≠
qj

y  for 1≤ ≤q l . Thus we have  

1 1 1 2 1

2 1 2 2 2

1 2

det 0.

 
 
  = 
 
 
 





   



l

l

l l l l

j j j j j j

j j j j j j

j j j j j j

b b b

b b b

b b b

                 (461) 
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On the other hand, B satisfies (38) and det 0α≥ >B , and thus it follows 
from Lemma 10 that all principal minors of B are nonsingular, which contradicts 
(461). This proves that the zero solution of system (5) is U.A.S.. 

Corollary 1. If system (5) is defined only for 0≥n  and all assumptions of 
Theorem 3 are satisfied for 0≥n , then the zero solution is U.A.S. for 0≥n . 

Proof. We construct the system defined on Z by  

( ) ( ) ( )01 , ,+ = ∈ mx n A n x n x R                  (47) 

where  

( ) ( )
( )0

, for 0,
0 , for 0.

 ≥=  <

A n n
A n

A n
 

Since system (47) satisfies all assumptions of Theorem 3 on Z, the zero 
solution is U.A.S. on Z, and furthermore, since system (5) coincides with system 
(47) for 0≥n , this prove our conclusion. 

6. Application 

Before Example 1, we state the following lemma is a special case of Theorem 3 in 
[13]. 

In the nonlinear system  

( ) ( )( )1 , ,+ =x n F n x n                      (48) 

let ( ),F n x  be almost periodic in n uniformly for ∈ mx R  and for any 0>r , 
let there exists a constant ( )* * 0= >L L r  such that  

( ) ( ) *, , for , and .− ≤ − ≤ ∈ZF n x F n y L x y x y r n  

Lemma 12. If ( )x n  is a bounded solution of (48) on Z  and if for any 
solution ( )y n  of (48), ( ) ( )−x n y n  is monotone decreasing to zero as 
→∞n , then ( )x n  is a unique almost periodic solution and its module is 

contained in the module of ( ),F n x . 
Example 1. Consider the variational linear difference equation  

( ) ( ) ( )1 ,+ =w n A n w n                      (49) 

where  

( )
( )

( ) ( )
2 .

2
2

α

α
α

 − 
 =
 − − 
 

p n
A n

p n q n
 

We now assume that ( ) ( )( )0 0,u n v n  is at least one bounded solution of (49) 
on Z  and ( ) ( )( ),u n v n  is any solution of (49) on Z , and ( )p n , ( )q n  are 
some bounded functions on Z  such that  

( ) ( )1 22 and ,α β β≥ ≤ ≤p n q n  

for some positive constants 1,α β  and 2β  such that 2
22α β≥ . We can verify 

that ( )A n  satisfies all assumptions in Corollary 1. First of all, ( )A n  is 
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bounded in the future for ∈Zn , because ( )p n  and ( )q n  are bounded 
function on Z . It is clear that the diagonal elements of ( )A n  are negative and  

( ) ( ) 1det on .β= ≥ ZA n q n  

The diagonal dominance condition (38) for ( )A n  requires that  

( ) ( ) ( )2 0, and 0,
2 2
α α

α
− + − ≤ − + − ≤p n p n q n  

which is equivalent to  

( ) ( )α≤q n p n  

and this is satisfied by  

( ) ( )2
2 2 .β α α≤ ≤ ≤q n p n  

Therefore, by Theorem 3, the zero solution of (49) is U.A.S. and  

( ) ( ) ( ) ( )0 0 0 as ,− + − → →∞u n u n v n v n n  

where the convergence is monotone decreasing by Lemma 11. Thus, applying 
Lemma 12 to system (49), we find that there exists a unique almost periodic 
solution with the module contained in the module of ( )A n . 

7. Conclusion 

In this paper, we obtain the existence and stability property of almost periodic 
solutions in discrete almost periodic systems. First, in Section 1, the research 
background is introduced. In Section 2, the fundamental concepts of the almost 
periodic solutions in discrete almost periodic systems is given. In Section 3, we 
are introduced to the several lemmas and have uniformly asymptotically stability 
theory of the linear system, and moreover, in Section 4, we consider the 
generalized gas almost periodic system, and if linear part is irreducible matrix, 
then we obtain the existence of almost periodic solutions of this system. Finally, 
in Sections 5 and 6, we consider and obtain an uniformly asymptotically stability 
criterion for solutions of a linear system with coefficient matrix of diagonal 
dominance conditions, and this result applies to meaningful example of a linear 
discrete system. 
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