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ABSTRACT 

Is there an overriding principle of nature, hith-
erto overlooked, that governs all population be- 
havior? A single principle that drives all the re- 
gimes observed in nature—exponential-like gr- 
owth, saturated growth, population decline, po- 
pulation extinction, oscillatory behavior? In cur- 
rent orthodox population theory, this diverse 
range of population behaviors is described by 
many different equations—each with its own sp- 
ecific justification. The signature of an overrid-
ing principle would be a differential equation 
which, in a single statement, embraces all the 
panoply of regimes. A candidate such governing 
equation is proposed. The principle from which 
the equation is derived is this: The effect on the 
environment of a population’s success is to 
alter that environment in a way that opposes the 
success. 

Keywords: Population Dynamics; Ecology; Population 
Evolution; Exponential Growth; Eco-Evolutionary  
Dynamics; Biology 

1. INTRODUCTION 

What are the conceptual foundations in ecological stu- 
dies? Are there laws of nature governing ecological sys-
tems? What are they? 

Over the years there has grown a community of sch- 
olars who have grappled with these profound questions. 
[1-7] Some have concluded that concern for such laws is 
not the business of ecological research. [8,9] Others ha- 
ve concluded that Malthusian exponential growth con- 
stitutes an essential law [10]. That exponential growth 
and the logistics equation are of great conceptual utility 
but not laws of nature is argued cogently by still others 
[11,12]. 

Focussing on the lofty notion, Law of Nature, may be 
a distraction from a more elemental pursuit: to unders- 
tand nature. That is surely the goal of science. Progress 
in understanding is marked by conceptual coalescence: 

the quest to embrace an ever larger body of findings with 
ever fewer statements of principle. Paraphrasing Mark 
Twain, the task of science is to describe a plethora of 
phenomena with a paucity of theory.  

Newton showed that the motion of things on earth are 
governed by the same rules as the motions of heavenly 
bodies. Formerly these two had appeared to be unrelated 
domains. Newton showed that a single principle gover- 
ned them both. This synthesis was magnificently fruitful. 
It underlies our understanding of anything mechanical or 
structural. Much of our material well being depends on 
it. 

Darwin’s principle of natural selection explained a 
wealth of biological phenomena by a single idea. Throu- 
gh his synthesis the concept of evolution became part of 
our intellectual heritage. 

Wegener showed us that continental drift—plate tecto- 
nics—is the underlying reason for such diverse phenom- 
ena as the distribution of fossils in the world, the shape 
of continents, earthquake belts and volcanic activity. That 
insight has proved remarkably beneficial.  

Mendeleev gave structure to the chaos of chemistry 
with his table of the elements. He consolidated a profu- 
sion of chemical data into an all encompassing tabular 
statement of principle. This undertaking led to the under- 
standing that matter was made of atoms. (Mendeleev, 
himself, never believed this!) 

James Maxwell brought electricity and magnetism 
together by an overriding formalism that covered them 
both. The undertaking gave rise to an understanding of 
the nature of light.  

Laws of Nature are not immutable. They may lose 
their status. This process of conceptual coalescence is an 
ever evolving one. Newton’s laws on mechanical motion 
and Maxwell’s on electromagnetism are incompatible. In 
1905 Einstein produced a theory that embraced both of 
these vaste domains. In it Newton’s principles become a 
limit behavior of a more all inclusive theory—relativity. 
So a law of nature can be dethroned—albeit still cher-
ished and useful. It can be subsumed under a principle 
which embraces a larger domain of phenomena. The 
broader the scope of applicability the more valuable is 
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the theory. Einstein’s laws of nature absorbed Newton’s. 
Relativity spawned nuclear energy, a deeper understand- 
ing of stellar processes and much more.  

All of these examples have in common that a wide 
breadth of empirical observation is accounted for by a 
single idea. We see in them that conceptual coalescence 
is a foundation stone of scientific understanding. In that 
spirit, offered here is a candidate synthesis: a single equ- 
ation that brings together the disparate domains of popu- 
lation behavior. We suggest that the panoply of popula- 
tion behaviors all issue from a single principle. 

In current orthodox population theory, the diverse ran- 
ge of population behaviors is described by many differ- 
ent equations—each with its own specific justification. 
Every regime has its own special theoretical rationale. 
Exponential growth has a limited range of validity. The 
Logistics Equation describes another restricted regime. 
Oscillatory behavior demands that a new paradigm be 
requisitioned; the Lotka-Volterra equations [13,14] or, 
because their solutions are not structurally stable, their 
later modifications [15,16]. And none of these describe 
population decline, nor population extinction. Contem- 
porary theory offers no overriding principle that governs 
the entire gamut of population behaviors. 

As long ago as 1972 [17], in a challenge to orthodox 
convention, L. R. Ginzburg took the bold step of pro-
posing that population dynamics is better represented by 
a second order differential equation. All accepted for-
mulations relied on first order differential equations as 
they still do today. He developed his thesis over the 
years [18-21] culminating in the pithy and persuasive 
book, “Ecological Orbits” [4].  

When the family of solutions to a differential equation 
is found to fit empirical reality then that equation is ex- 
pressing a truth about nature. It can give us insights and 
enable us to make predictions. Producing a second order 
equation whose solutions characterize a variety of popu- 
lation behavior is equivalent to uncovering a principle of 
nature governing those populations.  

In the following we take a route different from Gin- 
zburg’s and arrive at a substantially different equation - 
albeit a second order one. We procede from a guess at 
what may be the underlying principle and then derive the 
second order differential equation that expresses that 
principle. If empirical reality is well fit by the progeny 
of that equation then we may conclude that the principle 
is true. And we will have produced a conceptual coales- 
cence: a tool for better understanding nature. 

2. TRADITIONAL PERSPECTIVE 

Call the number of members in the population, n. At 
each moment of time, t, there exist n individuals in the 
population. So we expect that n = n(t) is a continuous 

function of time.  
The rate of growth of the population is dn/dt; the in-

crease in the number of members per unit time. That this 
is proportional to population number, n, is the substance 
of Malthus’ idea of “increase by geometrical ratio”. Call 
the constant of proportionality, R. Then the well known 
differential equation that embodies the idea is:  

dn dt =Rn                  (1) 

It is a first order differential equation and when R is 
constant, its solution yields the archetypical equation of 
exponential growth. 

Now, common experience tells us that exponential gr- 
owth cannot proceed indefinitely. “Most populations do 
not, in fact, show exponential growth, and even when 
they do it is for short periods of time in restricted spatial 
domains,” writes R.D. Holt [12]. No population grows 
without end.  

The first efforts to expand the breadth of applicability 
of theory to observation—to acheive some conceptual 
coalescence—was to allow R to vary with time. The 
motivation was to retain that appealing exponential-like 
form and seek to explain events by variations in R. “The 
problem of explaining and predicting the dynamics of 
any particular population boils down to defining how R 
deviates from the expectation of uniform growth” [10]. 
The concept is that exponential growth is always taking 
place but at a rate that varies with time. The idea is 
ubiquitous in textbooks [15,22-24]. 

An object example of this process is provided by the 
celebrated Verhulst equation.  

 dn n
=nR n =nr 1

dt K
 
 


             (2) 

Here the constant, r, is the exponential growth factor 
and K is the limiting value that n can have - “the carry-
ing capacity of the environment” [16]. The equation in-
sures that n never gets larger than nMAX = K. A popula-
tion history, n vs. t, resulting from this first order differ-
ential equation is the black one of Figure 1. The Ver-
hulst equation—often cited as the Logistics Equation—is 
regularly embedded in research studies [25-30]. 

3. SHORTCOMINGS OF THE  
TRADITIONAL PERSPECTIVE 

The textbook mathematical structure outlined in the 
last section has acquired the weight of tradition. Keeping 
the exponential-like form by allowing R to vary is cer- 
tainly appealing. But it has this serious failing: the prac- 
tice forbids description of several known regimes of po- 
pulation behavior. It denies further conceptual coales- 
cence. For example, unless R is taken as imaginary the 
observation of population oscillations cannot be descri- 
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bed in this formalism. 
Another proscribed regime is extinction. A phenome- 

non well known to exist in nature is the extinction of a 
species. “... over 99% of all species that ever existed are 
extinct” [31]. But there exists no finite value of R—posi- 
tive or negative—that yields extinction! It cannot be rep- 
resented by R except for the value negative infinity; –∞. 
So, in fact, there is good reason to avoid R as the key 
parameter of population dynamics.  

In the continuous n perspective the mathematical con- 
ditions for extinction are these: n = 0 and dn/dt < 0. No 
infinities enter computations founded on these statements. 
Hence embracing n(t) itself as the key variable directly 
allows one to explore the dynamics of extinction. 

Next consider the eponymous Verhulst Eq.2, the Lo-
gistics Equation. As Verhulst himself pointed out [32] it 
is motivated only by the observation that populations 
never grow to infinity. They are bounded. 

But there are other ways—not describable by Verhul- 
st’s equation—in which population may be bounded. For 
example, n(t) may exhibit periodicity. Or, as in Figure 1, 
a curve essentially the same as Verhulst’s may arise from 
an entirely different theory where no K = nmax limit ex-
ists. One of the possible population histories resulting 
from the alternative theory offered below—which con-
tains no nmax—is shown in blue. Data fit by one curve 
will be fit just as well by the other. The limited validity 
of r/K Selection Theory has been noted by researchers 
over the years [33,34]. 

Thus the accepted Malthusian Structure of population 
dynamics has, and will always have, only a limited do- 
main of validity. Many population histories cannot be fit 
with this structure no matter how R is allowed to vary. 

So, in current orthodox population theory, to describe 
the entire range of population behaviors requires many 

 

 

Figure 1. Two population histories: number vs. time. The black 
curve is the Verhulst (Logistics) Equation. The blue curve is one 
of the solutions to the Opposition Principle differential Equation 
(8). Where one curve fits data so will the other. 

different equations—each with its own specific justifica-
tion. Exponential growth has a limited range of validity, 
as does the Logistics Equation, and any other equation of 
first order. Oscillatory behavior demands that a new pa- 
radigm be requisitioned; the Lotka-Volterra equations. 
And none of these describe population decline, nor ex-
tinction.  

No structure exists that embraces—in one single sta- 
tement—all possible behaviors. Contemporary theory of- 
fers no overriding principle that governs the gamut of 
population behaviors. To produce such a structure is the 
aim of what follows. 

4. CONCEPTUAL FOUNDATIONS FOR 
AN OVERRIDING STRUCTURE 

We seek a mathematical structure to embrace all of the 
great variety of population behaviors. The equation is 
built on some foundational axioms. Empirical verifica- 
tion of the equation they produce is what will measure 
the validity of these axioms. The axioms are: 

First: Variations in population number, n, are due en-
tirely to environment. 

Conceptionally we partition the universe into two: the 
population under consideration and its environment. We 
assume that the environment drives population dynamics; 
that the environment is entirely responsible for time 
variations in population number—whether within a sin- 
gle lifetime or over many generations.  

The survival and reproductive success of any individ- 
ual is influenced by heredity as well as the environment 
it encounters. This statement doesn’t contradict the axi- 
om. The individual comes provisioned with heredity to 
face the environment. Both the environment and the po- 
pulation come to the present moment equipped with their 
capacities to influence each other; capacities derived fr- 
om their past histories.  

That the environment molds the population within a li- 
fetime is clear; think of a tornado, a disease outbreak, or a 
meteor impact. That the environment governs population 
dynamics over generations is precisely the substance of 
“natural selection” in Darwinian evolution.  

N
um

be
r 

That principle may be summarized as follows: “... the 
small selective advantage a trait confers on individuals 
that have it...” [31] increases the population of those 
individuals. But what does ‘selective advantage’ mean? 
It means that the favored population is ‘selected’ by the 
environment to thrive. Ultimately it is the environment 
that governs a population’s history. Findings in epigene- 
tics that the environment can produce changes transmit-
ted across generations [35,36] adds further support to 
this notion.  

Time

Much productive research looks at traits in the pheno- 
type that correlate with fitness or LRS (Lifetime Repro- 
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ductive Success) [37,38]. The focus is on how the orga- 
nism fits into its environment. So something called “fit- 
ness” is attributed to the organism; the property of an 
organism that favors survival success. But environmen- 
tal selection from among the available phenotypes is 
what determines evolutionary success. The environment 
is always changing so whatever genetic attributes were 
favorable earlier may become unfavorable later. Hence 
there is an alternative perspective: fitness, being a matter 
of selection by the environment, is induced by it and 
may, thus, be seen as a property of the environment.  

Although, fitness, in some sense, is “carried” by the 
genome, it is “decided” by the environment. Assigning a 
fitness to an organism rests on the supposition of a static 
environment; one into which an organism fits or does not 
fit. A dynamic environment incessantly alters the “fitness” 
of an organism.  

This is the perspective underlying the axiom that va- 
riations in population number, n, are due entirely to en-
vironment.  

In this view, although birth rates minus death rates 
yield population growth they are not the cause of popu- 
lation dynamics; rather birth and death rates register the 
effect of the environment on the population. This view 
parallels that of N. Owen-Smith who writes: [39] “... 
population growth is not the result of a difference be- 
tween births and deaths (despite the appearance of this 
statement in most text-books), but rather of the differ-
ence between rates of uptake and conversion of reso- 
urces into biomass, and losses of biomass to metabolism 
and mortality.” 

Second: An increasing growth rate is what measures a 
population’s success.  

The “success” of a population is an assertion about a 
population’s time development; it concerns the size and 
growth of the population. A reasonable notion of success 
is that the population is flourishing. We want to give 
quantitative voice to the notion that flourishing growth 
reveals a population’s success.  

Neither population number, n, nor population growth, 
dn/dt, are adequate to represent “flourishing”. Population 
number may be large but it may be falling. Such a popu-
lation cannot be said to be flourishing. So we can’t use 
population number as the measure of success. Growth 
seems a better candidate. But, again, suppose growth is 
large but falling. Only a rising growth rate would indi- 
cate “flourishing”. This is exactly the quantity we propo- 
se to take as a measure of success; the growth in the gr- 
owth rate. By flourishing is meant growing faster each 
year. That the rate of change of growth is a fundamental 
consideration in population dynamics has been advoca- 
ted in the past [4].  

A corollary of these two foundational hypotheses is 
that change is perpetual. Equilibrium is a temporary 

condition. What we call equilibrium is a stretch of time 
during which dn/dt = 0. Hence “returning to equilibrium” 
is not a feature of analysis in this model. “Biological 
persistence (is) more a matter of coping with variability 
than balancing around some equilibrium state.” [40]  

Another corollary is this: The environment of one 
population is other populations. It’s through this mecha- 
nism that interactions among populations occur: via reci- 
procity—if A is in the environment of B, then B is in the 
environment of A. So the structure offers a natural set- 
ting for “feedback” [41]. It provides a framework for the 
analysis of competition, of co-evolution and of preda- 
tor-prey relations among populations. These obey the sa- 
me equation but differ only in the signs of coefficients 
relating any pair of populations. 

5. THE OPPOSITION PRINCIPLE: 
QUANTITATIVE FORMULATION 

Based on the understandings outlined above we pro- 
pose that an overriding principle governs the population 
dynamics of living things. It is this: The effect on the 
environment of a population’s success is to alter that 
environment in a way that opposes the success. In order 
to refer to it, I call it the Opposition Principle. It is a 
functional principle [42] operating irrespective of the 
mechanisms by which it is accomplished. In the way that 
increasing entropy governs processes irrespective of the 
way in which that is accomplished. 

The Principle applies to a society of living organisms 
that share an environment. The key feature of that soci-
ety is that it consists of a number, n, of members which 
have an inherent drive to survive and to produce off-
spring with genetic variation. Their number varies with 
time: n = n(t). 

Because we don’t know whether n, itself, or some 
monotonically increasing function of n is the relevant 
parameter, we define a population strength, N(n). Any 
population exhibits a certain strength in influencing its 
environment. This population strength, N(n), expresses 
the potency of the population in affecting the environ-
ment—its environmental impact.  

N. Owen-Smith [39] urges us to “assess abundance” 
in terms of biomass rather than population. What is here 
named “population strength” is related to that idea. 
Population number, itself, may not be a measure of en-
vironmental potency.  

Perhaps this strength, N, is just the number n, itself. 
The greater n is, the more the environmental impact. But 
it takes a lot of fleas to have the same environmental 
impact as one elephant. So we would expect that the 
population strength is some function of n that depends 
upon the population under consideration. Biomass is one 
such function. 
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Two things about the population potency, N, are clear. 
First, N(n) must be a monotonically increasing function 
of n; dN/dn > 0. This is because when the population 
increases then its impact also increases. Albeit, perhaps 
not linearly. Second, when n = 0 so, too, is N = 0. If the 
population is zero then certainly its impact is zero. One 
candidate for N(n) might be n raised to some positive 
power, p. If p = 1 then N and n are the same thing. An-
other candidate is the logarithm of (n + 1). 

We need not specify the precise relationship, N(n), in 
what follows. Via experiment it can be coaxed from na-
ture. The only way that N depends upon time is para-
metrically through its dependence on n. In what follows 
we shall mean by N(t) the dependence N(n(t)). We may 
think of N as a surrogate for the number of members in 
the population.  

The population strength growth rate, g = g(t), is de-
fined by  

dN
g:=

dt
                 (3) 

Like N, g too acquires its time dependence paramet- 
riccally through n(t). g = (dN/dn)(dn/dt). 

To quantify how the environment affects the popula- 
tion we introduce the notion of “environmental favorabi- 
lity”. We’ll designate it by the symbol, f. It represents 
the effect of the environment on the population. 

A population flourishes when the environment is favo- 
rable. Environmental favorability is what drives a popu- 
lation’s success. We may be sure that food abundance is 
an element of environmental favorability so f increases 
monotonically with nutrient amount. It decreases with 
predator presence and f decreases with any malignancy 
in the environment—pollution, toxicity.  

But in the last section we arrived at a quantitative 
measure of success. The rate of growth of the population 
strength—“the growth of growth” or dg/dt—measures 
success. Hence, that a population’s success is generated 
entirely by the environment can be expressed mathema- 
tically as: 

dg
=f

dt
                 (4) 

By omitting any proportionality constant we are de-
claring that f may be measured in units of (time)–2. Since 
Eq.4 says that success equals the favorability of the en-
vironment, it follows that f measures not only environ-
mental favorability but also population success. One can 
gauge the favorability of the environment—the value of 
f—by measuring population success. 

We’re now prepared to caste the Opposition Principle 
as a mathematical statement. The Principle has two parts: 
1) Any increase in population strength decreases favora- 
bility; the more the population’s presence is felt the less 

favorable becomes the environment. 2) Any increase in 
the growth of that strength also decreases favorability.  

Put formally: That part of the change in f due to an 
increase in N is negative. Likewise the change in f due to 
an increase in g is negative. Here is the direct mathema- 
tical rendering of these two statements:  

f
0  and 0

N g

f 
 

 
              (5) 

We can implement these statements by introducing 
two parameters. Both w and  are non-negative real 
numbers and they have the dimensions of reciprocal time. 
(Negative w values are permitted but are redundant.) 

2f f
 and 

N g
w  

 
 

 

t

             (6) 

These partial differential equations can be integrated. 
The result is: 

 2f N g Fw                 (7) 

The “constant” (with respect to N and g) of integra-
tion, F(t), has an evident interpretation. It is the gratui-
tous favorability provided by nature; the gift of nature. 
Eq.7 says that environmental favorability consists of two 
parts.  

One part depends on the number and growth of the 
population being favored: the N and its time derivative, 
g. This part has two terms both of which always act to 
decrease favorability. These terms express the Opposi- 
tion Principle.  

The other part—F(t)—is the gift of nature. There must 
be something in the environment that is favorable to 
population success but external to that population else 
the population would not exist in the first place. This gift 
of nature may depend cyclically on time. For example, 
seasonal variations are cyclical changes in favorability. 
Or it may remain relatively constant like the presence of 
air to breathe. It may also exhibit random and sometimes 
violent fluctuations like a volcanic eruption or unex- 
pected rains on a parched earth. So it has a stochastic 
component. All of these are independent of the popula-
tion under consideration. In fact, however, dF/dt may 
depend on population number since this is the rate of 
consumption of a limited food supply.  

Inserting Eq.3,4,7 we arrive at the promised differen-
tial equation governing population dymics under the 
Opposition Principle. It is this. 

 
2

2
2

d N dN
+ + N=

dtdt
w F t           (8) 

In the world of physical phenomena this equation is 
ubiquitous. Depending upon the meaning assigned to N 
it describes electrical circuits, mechanical systems, the 
production of sound in musical instruments and a host of 
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other phenomena. So it is very well studied. The exact 
analytical solution to (8), yielding N(t) for any given F(t), 
is known. 

6. FITS TO EMPIRICAL DATA 

To explore some of the consequences of this differen-
tial equation we consider the easiest case; that the gift 
favorability is simply constant over an extended period 
of time. Assume F(t) = c independent of time. Non-peri- 
odic solutions arise if ≥ 2w. As displayed in Figure 1 
these produce results similar to the Verhulst equation— 
the Logistics equation. And like that equation they exhi- 
bit an exponential-like growth over a limited range. 

Empirical data on such an exponential-like growth is 
exhibited in Figure 2 showing the population of musk 
ox (Ovibos moschatus) isolated on Nunivak Island in Al- 
aska [43]. The data, gathered every year from 1947 to 
1968, is in Table 1 of Spencer and Lensink’s paper. It is, 
indeed, well fit by an exponential curve showing the 
formidable growth rate of 13.5% per year.  

The population cannot possibly fit such a curve in-
definitely. Nothing grows without end. The exponential 
curve fits the population data only in the domain shown. 
But, in this domain, the data is also well fit by an Oppo-
sition Principle curve where = 0.02 per year, w = 
0.0076 per year and n = N. 

If < 2w the solutions to (8) are periodic and are 
given by: 

   2
2

N t Ae sintc
t

w
    a

Principle curve may be fit to the data.

gnated time, say 

        (9) 

where the amplitude, A, and the phase, a, depend upon 
 

 

Figure 2. Data points, gathered every year from 1947 to 1968, 
reporting the number of musk ox on Nunivak Island, Alaska. 
The curves show that both an exponential and an Opposition 

 

the conditions of the population at a desi
t = 0. And the oscillation frequency, is given by: 

2 
: 1

2
w

w

        
            (10) 

In Figure 3, Eq.9 is compared to empirical data. The 
fig

set 
eq

fluctuations are so large the authors plot-
te

ed are these: 
s of 

bu

ces in which popu- lation 
ex

 

ure shows the population fluctuations of larch bud-
moth density [44] assembled from records gathered over 
a period of 40 yr. The data points and lines connecting 
them are shown in black. The smooth blue curve is a 
graph of Eq.9 for particular values of the parameters. 

We assumed is negligibly small so it can be 
ual to zero. The frequency, is taken to be 2/(9 yr) = 

0.7 per year. The vertical axis represents N. In the units 
chosen for N, the amplitude, A, is taken to be 0.6 and c 
is taken to be 0.6 per year2. The phase, a, is chosen so as 
to insure a peak in the population in the year 1963; a = 
3.49 radians.  

Because the 
d n0.1 as the ordinate for their data presentation. The 

ordinate for the smooth blue theoretical curve is N. 
Looking at the fit in Figure 3, suggests how population 
potency may be deduced from empirical data. One is led 
to conclude that the population strength, N(n), for the 
budmoth varies as the 0.1 power of n. But the precision 
of fit may not warrant this conclusion. 

The conclusions that may be warrant
Considering that no information about the detail
dmoth life have gone into the computation the gra- 

phical correspondence is noteworthy. It suggests that 
those details of budmoth life are nature’s way of imple- 
menting an overriding principle. The graphical corres- 
pondence means that, under a constant external environ- 
mental favorability, a population should behave not un- 
like that of the budmoth.  

Eq.9 admits of circumstan
tinction can occur. If A > c/w2 then N can drop to zero. 

Societies with zero population are extinct ones. (On at- 
 

P
op

ul
at

io
n 

 
Year

Figure 3. Observational data on the population fluctuations of 
larch budmoth density is shown as black circles and squares. 
The smooth blue curve is a solution of Eq.9. 
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ing differential 

 initial conditions; fr- 
om

se explored reveals that periodic population os-
ci

he plethora of solutions to the governing dif- 
fe

monds) of Figure 5 record the 
po

taining zero, N remains zero. The govern
Eq.8, doesn’t apply when N < 0.) 

But the value of A derives from
 N(t = 0) and g(t = 0). So depending upon the seed 

population and its initial growth rate the population may 
thrive or become extinct even in the presence of gift fa- 
vorability, c. This result offers an explanation for the ex- 
istence of the phenomenon of “extinction debt” [45] and 
a way to compute the relaxation time for delayed exti- 
ncttion. 

The ca
llations can occur without a periodic driving force. Ev- 

en a steady favorability can produce population oscilla-
tions. 

Among t
rential Eq.8, is this one: Upon a step increase in envi-

ronmental favorability—say, in nutrient abundance—the 
population may overshoot what the new environment 
can accommodate and then settle down after a few cy-
cles. Figure 4 illustrates this behavior. That there are 
such solutions amounts to a prediction that population 
histories like that of Figure 4 will be found in nature. In 
fact it has been found. 

The data points (dia
pulation of Escherichia coli (using optical density, OD, 

to measure it) maintained over 30,000 generations on a 
nutrient containing citrate which it could not exploit [46]. 
Around generation 33,100 a mutation arose allowing a 
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Figure 5. Fit of Opposition Principle curve to the data on a str-

occurs in the favorability of its environment.
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