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Abstract 
We trace the conceptual basis of the Multi-Band Approach (MBA) and recall 
the reasons for its wide following for composite superconductors (SCs). At-
tention is then drawn to a feature that MBA ignores: the possibility that elec-
trons in such an SC may also be bound via simultaneous exchanges of quanta 
with more than one ion-species—a lacuna which is addressed by the General-
ized BCS Equations (GBCSEs). Based on several papers, we give a concise ac-
count of how this approach: 1) despite employing a single band, meets the 
criteria satisfied by MBA because a) GBCSEs are derived from a tempera-
ture-incorporated Bethe-Salpeter Equation the kernel of which is taken to be a 
“superpropagator” for a composite SC-each ion-species of which is distin-
guished by its own Debye temperature and interaction parameter and b) the 
band overlapping the Fermi surface is allowed to be of variable width. 
GBCSEs so-obtained reduce to the usual equations for the Tc and Δ of an ele-
mental SC in the limit superpropagator → 1-phonon propagator; 2) accom-
modates moving Cooper pairs and thereby extends the scope of the original 
BCS theory which restricts the Hamiltonian at the outset to terms that cor-
respond to pairs having zero centre-of-mass momentum. One can now derive 
an equation for the critical current density (j0) of a composite SC at T = 0 in 
terms of the Debye temperatures of its ions and their interaction parame-
ters—parameters that also determine its Tc and Δs; 3) transforms the problem 
of optimizing j0 of a composite SC, and hence its Tc, into a problem of chemi-
cal engineering; 4) provides a common canopy for most composite SCs, in-
cluding those that are usually regarded as outside the purview of the BCS the-
ory and have therefore been called “exceptional”, e.g., the heavy-fermion SCs; 
5) incorporates s±-wave superconductivity as an in-built feature and can 
therefore deal with the iron-based SCs, and 6) leads to presumably verifiable  
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predictions for the values of some relevant parameters, e.g., the effective mass 
of electrons, for the SCs for which it has been employed. 
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1. Introduction 

We trace in Section 2 the backdrop of Multi-Band Approach (MBA) for het-
ero-structured, multi-gapped superconductors (SCs) based on numerous papers, 
for the gist of which [1] [2] [3] suffice. Gleaned from [1], summarized then are 
the reasons for its wide adoption. In Section 3, based on [4] [5] [6] [7] and [8], is 
given an account of the Generalized-BCS Equations (GBCSEs)-based approach 
(CA henceforth because it complements MBA), which also has been valuably 
employed to deal with such SCs. The last section is devoted to a discussion of the 
salient distinguishing features of the two approaches and conclusion.  

2. MBA 

At the root of MBA is the work of Suhl et al. [2] who dealt with the supercon-
ductivity of transition elements for which the occupation of the 4s orbitals be-
gins prior to complete filling of the 3d orbitals, leading to division of valence 
electrons between two bands. Pairing can therefore also be caused by cross-band 
scattering. Because the d-band has more vacant levels than the s-band, it makes a 
large contribution to the total density of states N(0). Two gaps and, in general, 
two Tcs arise in this approach because the BCS interaction parameter λ ≡  
[N(0)V] is now determined not via a single interaction energy “V”, but via a 
quadratic equation involving three such energies: Vs and Vd due to scattering in 
the two bands individually and Vsd due to cross-band scattering. Since in this 
model the equation employed to determine Tc—for each value of λ—is the fa-
miliar BCS equation for elemental SCs derived for one-band, weak-coupling (λ 
< 0.5) theory, it cannot per se explain the occurrence of high-Tcs. For this rea-
son, the multi-band concept is supplemented by the well-known Mig-
dal-Eliashberg-McMillan approach [3], which allows λ to be greater than even 
unity because it is based on an integral equation the expansion parameter of 
which is not λ, but (me/M), where me is the mass of an electron and M that of an 
ion. MBA has evolved around these basic ideas because anisotropic SCs necessi-
tate that [1]: 1) the BCS assumption of FE kθ  (EF = Fermi energy, k = 
Boltzmann constant; θ = Debye temperature) be abandoned; 2) different loca-
tions in k-space should be characterized by distinct pairing strengths and order 
parameters (i.e., gaps); and 3) the assumption that the Fermi surface is isotrop-
ic/spherical be dispensed with.  
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Indeed, numerous SCs have been listed in [1] for which MBA has found a 
useful application.  

3. CA: Physical Basis [4] 

A striking feature of all SCs that have Tcs greater than that of Nb (≈9 K) is that 
they are multi-component materials, suggesting naturally that Cooper pairs 
(CPs) in them may also be bound via simultaneous exchanges of phonons with 
more than one species of ions. It has been shown [4] that the BCS equation for 
Tc of an elemental SC can also be obtained via a Bethe-Salpeter equation (BSE) 
with a kernel corresponding to the one-phonon exchange mechanism (1PEM) in 
the ladder approximation. The first diagram in this series has one rung, the 
second two rungs, and so on. If the number of rungs between any two 
space-time points in each of these diagrams is doubled, then we have the 
2-phonon exchange mechanism (2PEM) in operation. Similarly—depending on 
composition of the SC—CPs may also be bound via a 3-phonon exchange me-
chanism (3PEM). It hence follows that in a composite SC, CPs may exist with 
different values of the binding energy (2|W|). Since the inequalities 

3PEM 2PEM 1PEMW W W> >  must hold, and since |W| = ∆ [4], we are naturally led 
to an explanation of why multi-component SCs are characterized by multiple 
gaps.  

3.1. GBCSEs Incorporating Chemical Potential in the 2PEM  
Scenario  

Employing  
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where chemical potential μ has been used interchangeably with EF, θ1 and θ2 > 
θ1 are the Debye temperatures of the ion-species that cause pairing and 

( )1 10N Vλ ≡     and ( )2 20N Vλ ≡     their interaction parameters, no distinc-
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tion is made between the values of μ and the λs at T = 0 and T = Tc, and Re en-
sures that the integrals yield real values even when μ < kθ2. Note that when λ2 = 
0, λ1 = λ, θ1 = θ, |W20| = |W| and kµ θ , (2) becomes identical with the BCS 
equation for Tc of an elemental SC, and (1) leads to ( )2 exp 1 1W kθ λ= −    

( )( )sinh 1kθ λ∆ = , where in the parentheses is noted the BCS equation for ∆. 
Via a detailed comparative study of these equations for six elemental SCs [4], it 
has been shown that the equation for |W| provides a viable alternative to the 
equation for ∆. We note that s±-wave feature is an inbuilt feature of (1) since it 
has been derived by assuming that the signature of W20 changes on crossing the 
Fermi surface. Such an assumption leaves the BCS equation for ∆ unchanged 
because it is quadratic in ∆.  

3.2. Critical Current Density j0 of an SC at T = 0 via CA in the  
2PEM Scenario  

It has been shown that [6],  

( ) ( )2 3* 1 3
1 ,F e g Fs E m m A v Eγ −≡ =  

( ) ( )2 ,s F g Fn E A v Eγ=  

( ) ( )( )1 3 2 3
0 3 ,F g FP E A y v Eθ γ −=  and 
( ) ( )( ) 1 3 1 3

0 4F g Fv E A y v Eθ γ
− −=  hence, from the definition, 

( ) ( )* *
0 0 0 02  2 ,sj n e v v P m= =  it follows that [6] [7]: 

( )( ) ( )2 3 2 3 4 4 3 1 3 1
0 5 5 6.146 10 C eV K s ,g Fj A y v E Aθ γ − − −= = × ⋅ ⋅ ⋅    (3) 

where  
10 1 3 2 4 3

1 3.305 10 eV cm K ,A − −× ⋅ ⋅  

7 2 2
2 2.729 10 eV K ,A −× ⋅  

6 4 3 1 3
3 1.584 10 eV cm K ,A − −× ⋅ ⋅  and 

8 2 3 1 5 3
4 1.406 10 eV sec K .A − −× ⋅ ⋅   

In these equations, θ is the Debye temperature of the SC and θ1 and θ2 the 
Debye temperatures of ion-species that cause pairing, m* (me) is the effective 
(free) electron mass, γ the electronic specific heat constant and vg the 
gram-atomic volume of the SC; (ns/2), e* (twice the electronic charge), v0, and 
P0 are, respectively, the number density, electronic charge, critical velocity 
and critical momentum of CPs (momentum at which ∆ vanishes), and 

( ) *
0 2 Fy k P m Eθ= , a dimensionless construct to be obtained by solving

( ){ } ( ) ( )1 1 1 1 1 1 2 1 21 ln 1 ln 1 ,r y r y r y r y r rλ λ λ ≅ − + − + → →  , where i ir θ θ= .  
This equation is derived via a BSE with the same kernel as employed for (1) 

and (2), except that now 
0iV = , unless ( ) ( )2 2* *

0 02 2 ,  2 2 .F i F iE k m m E kθ θ− ≤ + − ≤ +P p P q  
A more accurate (but rather elaborate) equation that additionally contains EF 

explicitly has been derived in [8]; the values of y obtained via these equations 
differ significantly only when μ/kθ ≈ 0.3 or less.  
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3.3. CA at Work, as Exemplified via Applications to a Cuprate and  
an Iron-Based SC  

1) Tl2Ba2CaCu2O8 (Tl-2212) [4] [6]: “Resolving” θ (Tl-2212) = 254 K, we ob-
tain θCa = 254 K, θTl = 289 K, θBa = 296 K. Assuming that pairing is due to the Ca 
and Tl ions and treating μ as an independent variable, we find via (1) and (2) 
that the empirical values |W20| = 23.9 meV and Tc = 110 K of the SC can be ex-
plained by a multitude of {μ, λCa, λTl}-values. For each such set of values, we solve 
the equation for y given above and then calculate j0 via (3), which leads to a mul-
titude of values for the larger set {μ, λCa, λTl, y, j0}. Appeal to the empirical value, 
j0 = 6.5 × 107 A/cm2, then fixes the set as: {μ = 49.8 meV, λCa = 0.4899, λTl = 
0.4543, y = 1.512}. As predictions, we have: s = 4.23, ns = 4.39 × 1020 cm−3, v0 = 
9.35 × 105 cm/sec. Repetition of the above procedure for pairing via the Ca and 
Ba ions, or the Ba and Tl ions, fixes λBa. Each of the sets {θCa, λCa}, {θBa, λBa} and 
{θT1, λT1} then leads to a value of |W10| in the 1PEM scenario, and to |W30| in the 
3PEM scenario when all these sets operative simultaneously. 

2) Ba0.6K0.4Fe2As2 (BaAs) [4] [5]: We obtain θBa = 124.6 K, θFe = 399.4 K and θAs = 
148.6 K from θBaAs = 274 K. From among the multitude of empirical gap-values 
that characterize it, , e.g., ≈ 0, 2.5, 3.3, 3.6, 4, 6, 7, 7.6, 8.5, 9, 12 meV, we choose 6 
and 12 meV as our starting point and take its Tc as 37 K, which are also the val-
ues commonly employed in MBA. We now assume that while the smaller gap 
and the Tc are due to the Ba and Fe ions, the larger gap pertains to the 3PEM 
scenario (involving also the As ions). This necessitates supplementing (1) and 
(2) by another equation, which follows from (1) by replacing |W20| by |W30| and 
adding ( )30 1 3 1 3; ; AsW λ λ θ θ θ→ → =  to its LHS; θ2 = θFe on the RHS remains 
unchanged because it is greater than either of θ1 (=θBa) and θ2 (=θAs). By solving 
three simultaneous equations, viz., (1), (2), and (3), as against the normal prac-
tice of appealing only to the Tc and Δ-values of the SC, we are now led to a mul-
titude of values for the set {μ, λBa, λFe, λAs, y, j0}. Appeal to j0 = 2.5 × 107 Acm−2 
then fixes this set as {μ = 14.2 meV, λBa = 0.1155, λFe = 0.3838, λAs = 0.2196, y = 
3.433}. Besides, we are thus led to a quantitative explanation of several empirical 
features of the SC, such as: EF/kTc = 4.45, gap-values other than 6 and 12 meV, 
e.g., ≈ 0 and 9 meV, (Tc)max (via 3PEM) as exceeding 50 K, and the “dome-like” 
structure of its Tc vs. a tuneable variable; and, as predictions, to values of s, ns, v0, 
and coherence length ξ as:  

( ) ( )20 3 4
00.420,  3.1 10 cm ,  50 10 cm sec, 7 .ss n v ξ−= = × = × = Å  

4. Discussion and Conclusions 

1) CA satisfies the criteria noted for MBA in Section 2 because: (1) and (2) 
hold for arbitrary values of EF, the ions responsible for pairing have been distin-
guished by distinct θ- and λ-values and the valence band overlapping the undu-
lating Fermi surface has been characterized by locally spherical values—reminiscent 
of the locally inertial frames employed in the general theory of relativity [9]. We 
recall that even though none of the elemental SCs has a perfectly spherical Fermi 

https://doi.org/10.4236/ojm.2018.82002


G. P. Malik 
 

 

DOI: 10.4236/ojm.2018.82002 12 Open Journal of Microphysics 
 

surface [10], such an assumption works for them—barring a few for which 

02 3.52ckT∆ ≠ . Finally, akin to MBA, CA too has been valuably employed for a 
wide variety of SCs, viz., several elemental SCs, MgB2, YBCO, Bi-2212 and 
Tl-2212 [4] [6] [7], SrTiO3, La2CuO4, CeCoIn5 [4], Ba0.6K0.4Fe2As2 [4] [5], and 
NbN [8].  

2) A salient feature of CA is that it invariably appeals to the ion-species that 
comprise an SC, whereas the number of bands invoked in MBA for the same SC 
differs from author to author [5]. Besides, by employing as input the values of 
any two gaps of an SC, CA goes on to shed light on several others, and puts its 
∆s, Tc and j0 under the same umbrella—which are features not shared by MBA. 

3) While (3) identifies the parameters that can enhance j0, and hence Tc [11], 
of an SC, their optimization in practice is not straightforward because, while y 
depends on EF, so do its constituents m* and P0. Besides, any attempt to increase 
the value of (γ/vg), which is also implicitly a function of EF, is bound to raise the 
problem of stability of the SC. Hence, in the quest for tangible clues to raise Tcs 
of SCs, we need to have a comprehensive catalogue that includes, besides their 
Tc- and ∆-values, the values of θ, j0, m*, v0, ns, γ and vg. 

4) To conclude, with s±-wave as an intrinsic feature of it, we have shown that 
CA transforms the problem of raising Tc into one of chemical engineering and that 
it is applicable to a wide variety of SCs, including the Fe-based SCs—without in-
voking a new state for them, as has been suggested via MBA [12]. Hence there is a 
need for its greater dissemination. Finally, both the approaches (without excluding 
others) need to be followed up since the cherished goal of room-temperature su-
perconductivity may be reached by appealing to different sets of axioms—as in 
Euclidean geometry. 
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