
Journal of Applied Mathematics and Physics, 2018, 6, 901-909 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2018.64077  Apr. 27, 2018 901 Journal of Applied Mathematics and Physics 
 

 
 
 

Numerical Solution of the Schrödinger Equation 
for a Short-Range Potential with Any ℓ Angular 
Momentum 

A. J. Sous1, M. I. El-Kawni2 

1Department of Mathematics, Faculty of Technology and Applied Sciences, Al-Quds Open University, Nablus, Palestine 
2Department of Science, Faculty of Technology and Applied Sciences, Al-Quds Open University, Nablus, Palestine 

 
 
 

Abstract 
Recently, the Asymptotic Iteration Method (AIM) was used to calculate the 
energy spectrum for a short-range three parameters central potential which 
was introduced by H. Bahlouli and A. D. Alhaidari. The S-orbital wave solu-
tion of the Schrödinger equation was obtained for different parameters of the 
potential. In this work, a non-zero angular momentum term is introduced to 
the problem and the energy eigenvalues were obtained for different potential 
parameters. Our results show very good agreements compared with other 
methods such as potential parameter spectrum method (PPSM) and the com-
plex scaling method (CSM). 
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1. Introduction 

In quantum mechanics, the most basic problem is to solve the Schrödinger equ-
ation for the energy eigenvalues En and the associated energy Eigen functions. 

There are a number of important cases for which the stationary Schrödinger 
equation can be solved analytically. However, analytic solutions are possible only 
for a few simple quantum systems such as the hydrogen atom, the harmonic os-
cillator and others [1] [2]. In most cases, many quantum systems can be treated 
only by approximation methods. Among such approximation methods include 
Pekeris approximation [3], Semi-classical method [4], and asymptotic iteration 
method [5]-[10]. 

Recently, the study of exponential-type potentials has attracted much atten-
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tion from many authors [11] [12] [13]. These potentials include the Hulthén po-
tential [14], the multi parameter exponential-type potentials [15], the Man-
ning-Rosen potential [13] and the Eckart-type potential [16]. It should be men-
tioned that most contributions appearing in the literature are concerned with the 
s-wave case. 

In this work, we study the arbitrary -state solutions of the Schrödinger equa-
tion with a short rang three parameters central potential which was introduced 
by H. Bahlouli and A. D. Alhaidari [17] [18] 

( ) 0
e
e 1

r

rV r V
λ

λ

γ− −
=

−
                        (1) 

where 0V  is the potential strength, and the range parameter λ is positive with 
an inverse unit length. The dimensionless parameter γ is in the open range 
0 1γ< < . This potential is short-range with 1/r singularity at the origin. It is also 
interesting to note that, at short distance and with 0 1γ< < , there is a clear re-
semblance of this potential with 0 0V >  to the attractive Coulomb potential [5] 
with non-zero angular momentum. The potential valley here is not due to the 
centrifugal force attributed to the angular momentum. Moreover, it does not 
have the long-range behavior of the Coulomb potential [17] [18]. In [18], Alhai-
dari argued that in contrast to the Coulomb potential, the number of bound 
states for this potential is finite and that it could be used as a more appropriate 
model for the description of an electron interacting with an extended molecule 
whose electron cloud is congregated near the center of the molecule. The authors 
of [17] [18] [19] found the “potential parameter spectrum” (PPS) for the hyper-
bolic single wave potential and for potential (1). The concept of a PPS was in-
troduced for the first time in the solution of the wave equation in [20] where for 
a given energy, the problem becomes exactly solvable for a discrete set (finite or 
infinite) of values of the potential parameters. If the map that associates the pa-
rameter spectrum with the energy is invertible, then in principle one could ob-
tain the energy spectrum for a given choice of potential parameters [20]. 

In a previous article [19], we used the Asymptotic Iteration Method (AIM) to 
find the energy spectrum for the s-wave (zero angular momentum) Schrodinger 
Equation with potential in (1) which was introduced by Bahlouli and Alhaidari 
[17] [18]. In the present work, we apply the same technique in [5]-[10] to the 
same potential in (1), and we will find the eigenvalues for the time-independent 
radial Schrödinger equation for any angular momentum . 

The paper has the following structures. In Section 2, we briefly present an 
overview of the AIM which introduced to find the solutions for the second-order 
differential equation. In Section 3, change of variables and approximation 
scheme has been done which allows as transforming Schrödinger equation to 
another form in order to apply the method to solve the equation with the short 
rang three parameters central potential. In Section 4, our numerical calculation 
results have been presented for the eigenvalues. 
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2. Concept of Asymptotic Iteration Method 

In this section we shall outline the general procedure of the AIM for determining 
the eigenvalues differential equation. The AIM has been proposed and used to 
solve the homogenous linear second-order differential equation of the form 
[5]-[10],  

( ) ( ) ( ) ( ) ( )0 0f x x f x s x f xλ′′ ′= +                 (2) 

where ( )f x  is a function of x, ( ) ( ),f x f x′ ′′  are the first and second deriva-
tives with respect to x; ( ) ( )0 0,x s xλ  are arbitrary functions in ( ),C a b∞  and 

( )0 0xλ ≠ . If we differentiate Equation (2) with respect to x, we find that; 

( ) ( ) ( ) ( ) ( )1 1f x x f x s x f xλ′′′ ′= +                    (3) 

where,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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λ λ λ

λ
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And we continue with the same way for higher derivatives ( )1 thk +  and 
( )2 thk +  where 1,2,3,k =   is the iteration number, and we get, 
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where 
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Iterations will continue until we get the convergence condition of the AIM [5].  
Equation (5) is called the recurrence relation of Equation (2). Taking the ratio 

of the ( )2 thk +  and ( )1 thk +  derivatives we get; 
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Assuming that for sufficiently large k; 
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holds, which is the “asymptotic aspect” of the method, Equation (6) reduces to 
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Substituting ( )k xλ  from Equation (5) and then using ( )xα  in the right 
hand side of Equation (8) we obtain; 

( ) ( ) ( )
( ) ( ) ( ) ( )1

1 1 1 0 1 1
1

exp d exp d
x

k k
k

k

x
f x C x C x x x x
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∫ ∫  (9) 
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in which 1C  is the integration constant. Inserting Equation (9) into Equation (4) 
and solving for ( )f x , we obtain the general solution of Equation (2) as 

( ) ( ) ( ) ( )
1

1 2 1 0 2 2 2 1exp d exp 2 d d
xx x

f x x x C C x x x xα λ α
   

= − + +            
∫ ∫ ∫   (10) 

The energy eigenvalues can be determined by the quantization condition giv-
en by the termination condition in Equation (7). Thus, one can write the quan-
tization condition combined with Equation (5) as 

( ) ( ) ( ) ( ) ( )1 1k k k k kx x s x x s xλ λ− −∆ = −                (11) 

If the eigenvalues problem is an exactly solvable problem, an explicit expres-
sion for energy can directly be obtained from the roots of this equation that de-
pends only on the eigenvalues E. In this case, for any given quantum number n, 
the energy eigenvalues can be calculated from the roots of the Equation (11) at 
some suitable 0x  point. The chosen value of 0x  is arbitrary in principle and 
can be critical only to the speed of the convergence of the method. This starting 
value may be determined generally as the minimum value of the potential or the 
maximum value of the asymptotic wave function [19]. 

3. Solution and Energy Spectrum 

For a given energy E and angular momentum l, time-independent radial 
Schrödinger equation for the reduced radial wave function, ( )R r , can be writ-
ten as 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2

d 11
2 d 2

R r l l
R r V r R r ER r

r r
 +−

+ + =  
 

       (12) 

where the potential ( )V r  given in equation (1); and we have adopted the 
atomic units 1h m= = .  

In order to solve Equation (12) for 0l ≠ , we need to apply the approximation 
scheme to the centrifugal term given by [21] 

( )
2

2 2

1 1 e
12 e 1

r
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λ

λ
λ

 
 ≈ +  − 

                  (13) 

Substituting Equation (13) into Equation (12), we obtain the following equa-
tion 

( ) ( )
( )
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 (14) 

Now introducing the change in variable 1 2e rx λ−= −  whose range is between 
−1 and +1, transforms Equation (14) into the desired Equation (1) where we can 
apply the AIM with 

( )0
1

1
x

x
λ =

−
                          (15) 
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( )
( ) ( )

( )3 2
0 02 22

1 12
12 1 1

s x V x x x
x x

η ξ ν
λ

= + + +
+ −

         (16) 

where 

( ) ( )2
01 12 2 1 24l l V Eη λ γ= + + − −                  (17) 

( ) 2
022 1 12 48l l V Eξ λ= − + − −                   (18) 

And 
( ) ( )2

025 1 12 24 24l l V Eν λ γ= + + − −                 (19) 

In order to obtain the energy eigenvalues from equation the (14), using Equa-
tion (5), we obtain the ( )k xλ , and ( )ks x  in terms of ( )0 xλ , and ( )0s x . 
Then, using the quantization condition of the method given by Equation (11), 
we obtain the energy eigenvalues. This straightforward application of AIM gives 
us the energy eigenvalues. We have observed that the energy eigenvalues con-
verge within a reasonable number of iterations. This result agrees with the prin-
ciple of AIM; as the number of iteration increases, the method should converge 
and should not oscillate. 

4. Results and Discussion 

The arbitrary -state solutions of the Schrödinger equation with short rang three 
parameters central potential have been obtained. To show the accuracy of our 
results, we have calculated the eigenvalues numerically for many -states and 
found that the results obtained by Equation (11) are in good agreement with 
those obtained by other methods. 

Our numerical results for the short rang three parameters central potential are 
listed in Tables 1-3. They show a comparison between the CSM and AIM eigen 
states. The results are in full agreement in the ground states, and agree very well 
for the higher states.  

We used the data in Table 4 to draw the relation between the angular mo-
mentum  and the corresponding eigen states. Figure 1 shows that the ground 
states E0 and E1 are very deeply bounded. Figure 2 shows the same behavior for  
 
Table 1. A comparison of the energy eigenvalues En of the potential (1) obtained here by 
the AIM and compared to those obtained by the complex scaling Method (CSM) in [17]. 

We took 0 100V = − , 3 10γ = , 2λ =  and for various values of the angular momen-

tum . 

 n En by CSM En by AIM 

0 

0 −1094.42109160 −1094.42109160 

1 −187.97359168 −187.973591677 

2 −36.02622806 −36.0262280564 

1 
0 −185.38841241 −185.3881967 

1 33.95322592 −33.95168758 

2 0 −29.64332195 −29.63997992 
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Table 2. A comparison of the energy eigenvalues En of the potential (1) obtained here by 
the AIM and compared to those obtained by the complex scaling Method (CSM) in [17]. 
We took 0 160V = − , 5 10γ = , 2λ =  and for various values of the angular momen-

tum . 

 n En by CSM En by AIM 

0 

0 −1406.11040577 −1406.11040577 

1 −223.29635015 −223.296350148 

2 −27.18320883 −27.1832088304 

1 
0 −219.66959141 −219.6694254 

1 −24.21918006 −24.21795546 

2 0 −18.01714564 −18.01447261 

 
Table 3. A comparison of the energy eigenvalues En of the potential in equation (1) ob-
tained here by the AIM and compared to those obtained by the complex scaling Method 
(CSM) in [17]. We took 0 200V = − , 7 10γ = , 2λ =  for various values of the angu-

lar momentum . 

 n En by CSM En by AIM 

0 
0 −679.95986643 −679.959866430 

1 −32.96147955 −32.961479552 

1 0 −27.29186980 −27.29153038 

 

 

Figure 1. The energy eigenvalues as function of angular momentum  for the gound (Eo) 
and first (E1) excited states. 
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Table 4. The energy eigenvalues for different angular momentum ; calculated by AIM. 

The values of the potential parameters are 0 200V = − , 7 10γ = , 2λ = . 

 E0 E1 E2 E3 

0 −2.948040331 × 105 −7813.547139 −1748.849560 −640.0248682 

1 −2.859760644 × 105 −2.428306994 × 105 −637.9431013 −265.3244481 

2 −633.7598994 −261.5672734 −33.72115660 −4.266342233 

3 −255.8552832 −99.68104017 −29.72230919 −1.541952406 

4 −92.89079567 −24.18745837 2.003775523 2.116254874 

5 −16.85605236 2.897862067 4.531566676 6.360648382 

 

 

Figure 2. The energy eigenvalues as function of angular momentum  for the second (E2) 
and third (E3) excited states. 

 

higher eigen states. As the angular momentum increases the energy eigen states 
increased until  is greater than 2, we reached like a continuous state or we can 
say that the potential is not affecting any more. 

5. Conclusion 

We used the AIM as a powerful engine to solve the Schrödinger equation for a 
short range three parameters potential with any angular momentum values. Our 
results are considered to be excellent compared to the CSM. We also introduced 
a new idea by studying the change of angular momentum with energy eigenva-
lues and clarifying the relation by Figure 1 and Figure 2. This relation was not 
being able to reach by other methods especially for higher  values. 
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