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Abstract 
This paper considers pricing European options under the well-known of SVJ 
model of Bates and related computational methods. According to the 
no-arbitrage principle, we first derive a partial differential equation that the 
value of any European contingent claim should satisfy, where the asset price 
obeys the SVJ model. This equation is numerically solved by using the implicit- 
explicit backward difference method and time semi-discretization. In order to 
explain the validity of our method, the stability of time semi-discretization 
scheme is also proved. Finally, we use a simulation example to illustrate the 
efficiency of the method. 
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1. Introduction 

It is well known in the standard Black-Scholes [1] model that the log-normal 
stock diffusion with constant volatility is not consistent with the market price 
movement. More importantly, there are evidences to indicate that the B-S model 
cannot describe real stock price behavior. Sometimes sudden changes of prices 
could happen at a random time and these changes cannot be captured by the 
log-normal distribution characteristic of the stock price in the Black Scholes 
model. In order to overcome these shortcomings of the Black-Scholes model, a 
variety of alternative models are proposed in the financial literature. Among 
these, the jump diffusion models proposed by Merton [2] and Kou [3] are widely 
used models. Furthermore, the SVJ model of Bates can not only make up for the 
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shortcomings of the B-S model but also can describe the financial market in a 
more suitable way. 

In order to reflect the effect of stochastic volatility on the market volatility, we 
have two ways, one assumes that the volatility is determined, and the volatility 
function is then determined by calibration to market price. The other assume 
that the stochastic volatility approach [4] [5]. In this model the volatility of the 
stock price is considered to be a mean reverting diffusion process, which is 
usually related to the stock process itself. A general approach, originally sug-
gested by Bates, can be much more preferable to describe the financial market.  

The valuation of option under jump diffusion process satisfies a partial inte-
gro-differential equation with boundary conditions. There are several numerical 
methods available to approximately solve the above equation. For example, in 
[6], Almendral and Osterlee presented an implicit second order accurate time 
discretization with finite difference. Recently, Patidar [7] developed an efficient 
method for pricing Merton jump diffusion option. The scheme proposed by 
Halluin [8] required to use an iterative procedure to solve discrete equations. In 
particular, an approach based on implicit-explicit schemes in which integral 
term is treated explicitly was proposed by YongHoon Kwon [9]. This article 
aims to solve the pricing financial derivatives with jumps which based on time 
semi-discretization. 

The paper is organized as follows. In Section 2, mathematical models for 
pricing option with jump diffusion process are given in terms of partial inte-
gro-differential equations and provide a brief review of both the Merton and 
Kou jump diffusion models, then the SVJ model of Bates was presented. Section 
3 deals with the construction of time level implicit explicit scheme to discretize 
the jump diffusion model. The discretization method is called IMEX-BDF2 me-
thod with three time levels. Section 4 we consider the penalized nonlinear equa-
tion to approximate the LCP system. In Section 5, we will give a numerical si-
mulation example. Finally the paper ends with some discussion and conclusive 
remarks in Section 6. 

2. The Mathematical Model 

In this part, we briefly discuss the mathematical model for pricing option with 
jump diffusion process. Consider an asset which the asset price is S, and then the 
movement of stock price is modeled by the following stochastic differential equ-
ation. 

\
( ) ( ) ( )

0

d
d d 1 d ,dt

t
t

S t W N t
S

µ λκ σ η η
−

∞
= − + + −∫           (2.1) 

where μ is drift rate, t as the time to maturity, σ represents the constant volatility, 
d tW  is generally satisfied with the Gauss process. The constant λ is the intensity 
of the independent Poisson process, κ used to express the relative size of the ex-
pected jump ( )1η − . 
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The price of risk asset can be described by the Brown movement. However, 
the Brown movement is subject to normal distribution, and its value can be neg-
ative, which does not conform to the nature of the price. According to the geo-
metric Brown motion obeying the lognormal distribution, which avoids the de-
fect that Brown motion may take negative value. The geometric Brown motion 
has been widely applied when we establish the financial asset price model.  

The distribution of the risk asset which obeys the lognormal distribution is 
symmetric. However, the empirical analysis shows that the price is asymmetric. 
The log-double-exponential distribution can make up for the shortage of the 
lognormal distribution. It can simulate the financial market more vividly. 

If we define that ( )g η  is probability density function of the jump with ampli-
tude η, under Merton’s model ( )g η  is given by the log-normal density, and un-
der Kou’s jump-diffusion model ( )g η  is the following log-double-exponential 
density. The function ( )g η  can be written as: 

( )

( )

( ) ( )( )

2

2

1 2

ln

2

ln ln
1 2

1 e
2π:

1 e ln e ln

j

j

jg

p q

η µ

σ

η η η η

σ ηη

η η η η
η

−
−

−



= 

 + −


 

         (2.2) 

In Merton’s model, 

( )
2

21 e 1
J

J

E
σµ

κ η
 
 + 
 = − = −                    (2.3) 

In Kou’s model, where 1 21, 0, 0, 1p q pη η> > > = − , and ( )⋅  is the Heavi-
side function, we can show that 

 1 2

1 1

1
1 1

p qη η
κ

η η
= + −

− +
                     (2.4) 

although the model is well, there are still some shortcomings, there is no consid-
eration that the volatility is also random. 

In order to fit the financial market well, it should be noted that the volatility 
rate σ is a random fluctuation. Then the model of Merton is popularized to get 
the SVJ (stochastic volatility-jump) model of Bates. 

( ) ( ) ( )
0

d
d d 1 d ,dt

t t
t

S t V W N t
S

µ λκ η η
−

∞
= − + + −∫  

 ( )d dt
v

tt tDV V t V Wκ α σ= − +                  (2.5) 

( ) ( )2d d d , ln ~ ,v
t t j jW W t Nρ η µ σ=

 
 

where the , , ,µ λ κ η  are same as the above, tV  represents the instantaneous 
variance or volatility of the rate of return on assets, which is described by a 
square root process. It can guarantee the nonnegativity of tV . ρ is the correla-
tion coefficient of asset price shock tW  and volatility impact on the v

tW , 
0ρ <  reflects the leverage effect of asset price. According to Ito lemma, the 
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SDE equation of the logarithmic asset price satisfaction is: 

1d ln d d d
2t t t t t tS V t V W Y Nγ = − + + 

               
 (2.6) 

 [ ]1Eγ µ λ η= − −                       (2.7) 

Let ( ),S tϕ  represent the value of a contingent claim that depends on the 
underlying asset price S with current time t, then ( ),S tϕ  satisfy following 
backward partial integration differential equation. 

( )
( )

( ) ( )

2 2
2

2 2

2

1 1 1
ln 2 2 2ln

ln ln 0
ln

t t t t
t t tt

t t t t
t t

V V V V
t S V VS

V E S Y S
S V

ϕ ϕ ϕ ϕ ϕ
γ κ α σ

ϕ
ρσ λ ϕ ϕ

∂ ∂ ∂ ∂ ∂ + − + − + + ∂ ∂ ∂ ∂  ∂

∂
 + + + − = ∂ ∂

   (2.8) 

where ( ) ( ) ( ) ( )ln , , e , , ,S t V K T t V S T S
K

ϕ= = − =    and the price of a 

European put option which the initial condition and asymptotic behavior are 
described by 

( ) ( ),0 max e ,0K Kϕ = −   

 
( ) e e

,
0

rtK K
tϕ

− − → −∞
= 

→∞

 



               (2.9) 

3. Discretization 

In this section, we will discuss the stability of some implicit-explicit (IMEX) time 
semi-discrete methods. For non-linear partial differential equations, a class of such 
IMEX methods have already been discussed in [10]. But now it is entirely different 
in the sense of analysis and applications. We shall construct an implicit-explicit 
backward difference method of order two time semi-discretization, which can fit 
the original equation much more properly. 

Let { }0 1 10 ; , 1, 2, ,N n nt t t T t t k n N−= < < < = − = =� �  be a partition of the 
interval [0, T]. We will consider the following three time semi-discretization. 

IMEX-BDF2 (Implicit-explicit backward difference method of order two) 

( )( )
1 1

1
1 0

3 12
2 2 1 ; 1 1

n n n

nn n n
n

u u u
L u E u f n n N

k
η

+ −

+
+

− +
= + − + ≤ ≤ ≤ −  (3.1) 

where the ( ) ( ), ,u t T tϕ= −  , 12n n nEf f f −= − , ( ) ( ),n
nf x f x t=  and 

12n n nEu u u −= − , In order to prove the stability of the time semi-discretization, 
we will need the following lemmas. 

Lemma 1: (Discrete Gronwall’s inequality) Let { } { } { }, ,n n na b α  and { }nβ  
be four non-negative sequences, such that for non-negative integers 0n  & N 

0

1

0 0, , 1, , ,
n

n n n i i
i n

a b a n n n Nα β
−

=

+ ≤ + = +∑ �             (3.2) 

then, ( ) ( )0 0

1
0max exp , :n

n n n l n l ii na b n n n Nα β−
≤ ≤ =

+ ≤ ∀ ≤ ≤∑ , where the summa-
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tion the 
0

1n

i n

−

=∑  is assumed to be zero if 0n n≥ . This lemma can be easily 

proved by mathematical induction. 
The Discrete Gronwall’s inequality illustrates that the function which satisfies 

the integro-differential equation, and then there is a corresponding inequality. 
Lemma 2: For IMEX-BDF2, there exists an 0N ∈  such that 0N N∀ ≥  & 

0 1n m N+ ≤ ≤ , we have 

0

0 0 0

0

2 2

1
1

12 2 2 21
01 1

, 1 1,

m
m n

n n

m
n n n n

n n

u k u

C k u u k u k Ef n m

δ

δ

= +

−
−

=

 
 

+

≤  + + + ≤


≤


−

∑

∑
    (3.3) 

and  

( )

0

0 0 0 0 0

0

2 2

2 1
1

2 2 2 2 22 1 1

1

1 2 2

01
, 2 1.

m
m n

n n

n n n n n

m
n n

n n

u k u

C k u k u u u u

k Ef E f n m

δ

δ δ

δ

= +

− − −

−

−
=




+


≤ + + + +



+ + 


≤ ≤ −

∑

∑
       

 (3.4) 

Proof: From relation IMEX-BDF2 we see that, 1
0Hυ∀ ∈ , 

( ) ( ) ( )( ) ( )1 1
13 , 2 , 2 , 2 ,n n n n n n

nu u L u E j u Efδ δ υ υ ν υ+ +
+− − = +      (3.5) 

which implies that  

( ) ( ) ( )
( )( ) ( ) ( )

1 1 1
1 13 , 2 , 2 ,

2 , 2 , , .

n n n
n n

n n n n

u A u B u

E j u Ef u

δ υ υ υ

υ υ δ υ

+ + +
+ ++ +

= + +
            (3.6) 

By taking 1n nu uυ += −  and using symmetry of ( ),nA u υ , we have 

( ) ( ) ( )
( ) ( )( ) ( ) ( )

21 1 1 1 1
1 1 1

1 1 1 1 1
1

2 , , ,

2 , 2 , 2 , , .

n n n n n n n n n
n n n

n n n n n n n n n
n

k u A u u A u u A u u u u

kB u u k E j u u k Ef u k u u

δ

δ δ δ δ δ

+ + + + +
+ + +

+ + + + +
+

+ − + − −

= − + + +
 (3.7) 

We can get  

( )
( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

21 1 1
1

1 1
1 1

1 1 1

3 ,

, , , 2 ,

2 , 2 , ,

n n n
n

n n n n n n n n
n n n n

n n n n n n n

k u A u u

A u u A u u A u u kB u u

k E j u u k Ef u k u u

δ

δ

δ δ δ δ

+ + +
+

+ +
+ +

+ + +

+

≤ + − −

+ + +

    (3.8) 

Now by using Lemma1, we have 

( )
( ) ( )

21 1 1
1

2 2 2 2 21 1
1 21 1 1

2 2 ,

2 ,

n n n
n

n n n n n n n
n

k u A u u

A u u k u kC u u u kC Ef

δ

δ

+ + +
+

− +

+

≤ + + + + +
   (3.9) 

for some generic constants 1 2, 0C C > . 
After summing from 0n n=  to 1m − , 02 1n m N≤ + ≤ ≤ , we get 
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( )
0

0 0 0

0 0

2 2

3 1
1

2 2 21
1 11 1

12 2

1 21
1

2

2

m
n m

n n

n n n

m m
n n

n n n n

k u M u

kC u M kC u k u

kC u kC Ef

δ

δ

= +

−

−

= + =

+

≤ + + +

+ +

∑

∑ ∑

           (3.10) 

Hence there exists an 0N N∈  such that 0N N∀ ≥  above relation with the 
use of Discrete Gronwall’s inequality gives 

0 0 0

0 0

12 2 22 2 21

1 1 1
1

m m
n n nm n n

n n n n
u k u C k u u k u k Efδ δ

−
−

= + =

+ ≤ + +
 
 


+ 


∑ ∑   (3.11) 

Further, we have 

( ) ( )
( ) ( )( ) ( )

1 1 1
1

1 1 1

3 4 , 2 ,

2 , 2 ,

n n n n n
n n

n n n n n n

u u u L u L u

E j u E j u Ef Ef

δ δ δ υ υ

υ υ

+ − +
+

− − −

− + − −

= − + −
 

By taking 1nuυ δ +=  and using the relation: 

( )
2 2 2 2 2

2 3 4 ,

2 2 2

u u

u u u

υ ω

υ υ υ ω υ ω

− +

= − + − − − + − +
 

we get  

( )
( ) ( ) ( ) ( )( )

2 2 2 21 1 1 1 1
1

1 1 1 1 1
1

2 2 4 ,

4 , 4 , 4 ,

n n n n n n n n
n

n n n n n n n n n n
n n

u u u u u u k L u u

L u L u u k E f u E j u E j u u

δ δ δ δ δ δ δ δ

δ δ δ δ

+ + − + +
+

+ + − − +
+

− + − − − −

≤ − + + −
 (3.12) 

Again by using Lemma 1, we can get 

( )
( )

2 2 2 2 21 1 1 1
2 1

2 2 2 21 1 1
2 31

2 2 2 22 1
4 51 1

2 2 4

3

n n n n n n n

n n n n

n n n n

u u u u u u kM u

kM u kC u u u

kC u u u kC E f

δ δ δ δ δ δ δ

δ δ δ δ

δ

+ + − +

+ − +

− −

− + − − − +

≤ + + +

+ + + +

   (3.13) 

for some generic constants 3 4 5, , 0C C C > . 
After summing from 0n n=  to 1m − , 03 1n m N≤ + ≤ ≤ ,  

we get 

( )
( )

0

0 0 0 0 0

0 0 0

0

0 0

2 2

2 1
1

2 2 2 21 1
3

2 2 2 22 1
4 31

1

1 12 2

4 51 1
1

2 2

2 3 3

3 .

m
m n

n n

n n n n n

m
n n n n

n n

m m
n n

n n n n

u kM u

u u u kC u u

kC u u u kC u

kC u kC E f

δ δ

δ δ δ δ δ

δ

δ

= +

− −

− −

= +

− −

= + =

+

≤ + − + +

+ + + +

+ +

∑

∑

∑ ∑

�

    

 (3.14) 

Thus there exists an 0N N∈  such that 0 0,3 1N N n m N∀ ≥ ≤ + ≤ ≤ , above 
relation with the use of Lemma 1 gives 
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( )
( )

0

0 0 0 0 0

0

2 2

1
1

2 2 2 2 22 1 1

1

1 2 2

1
.

m
m n

n n

n n n n n

m
n n

n n

u k u

C k u u u u u

k Ef E f

δ δ

δ δ

δ

= +

− − −

−

=

+


≤ + + + +




+ + 


∑

∑

       (3.15) 

Finally with the help of this above relation, we have 

( )
( )

0

0 0 0 0 0

0

2 2

2 1
1

2 2 2 2 22 1 1

1

1 2 2

1

m
m n

n n

n n n n n

m
nn

n n

u k u

C k u u u u u

k Ef E f

δ

δ δ

δ

= +

− − −

−

=

+


≤ + + + +




+ + 


∑

∑
     

 (3.16) 

Now Lemma1, Lemma2, imply the following result: under the assumptions 
made in above, all the three time semi-discrete IMEX methods are stable. 

4. Unconditional Stability 

The types of initial and boundary conditions can be properly defined as different 
types of options. It is different from that the American option can be exercised at 
any time up to the maturity date. The types of initial and boundary conditions 
can not be defined easily, but it can be formulated as the linear complementarity 
problem (LCP) of the form. 

( ) ( )

( ) ( )( )

0

, 0

, 0

t
t

t
t

ϕ
ϕ

ϕ

ϕ
ϕ ϕ

∂
− ≥

∂ − ≥
 ∂  − − =  ∂ 



  

   
              

 (4.1) 

 In combination with the above equation and the linear complementarity 
problem, we can make a transformation to simplify the operation. 

( ) ( )

( )
( ) ( )

2 2 2
2

2 2

1,
ln 2

1 1
2 2 lnln

ln ln 0

s s t t
t t

t t t
t ttt

t t t

x t V V
t S V

V V V
S VVS

E S Y S

ϕ ϕ ϕ
ϕ γ κ α

ϕ ϕ ϕ
σ ρσ

λ ϕ ϕ

∂ ∂ ∂ = + − + − ∂ ∂ ∂ 

∂ ∂ ∂
+ + +

∂ ∂∂∂

 + + − ≤ 



 

( ) ( ) ( ) ( ) ( )( )* *, and , , 0s s s s sx t x x t x t xϕ ϕ ϕ ϕ ϕ≥ ⋅ − =  

( ) ( ) ( ) [ ), max e ,0 , 0,Lx
s L s Lx t x K t Tϕ ϕ= = − ∈  

( ) ( ) ( ) [ ), max e ,0 , 0,Lx
s L s Lx t x K t Tϕ ϕ= = − ∈  

( ) ( ) ( ) ( )*, max e ,0 , ,x
s s L Rx T x K x x xϕ ϕ= = − ∈

         
 (4.2) 
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where K is the strike price of the options, for all s S∈ , and ,L Rx x  are the low-
er and upper truncated boundary respectively. 

Since fractional derivative is nonlocal operator, the truncation error cannot be 
ignored for the nonhomogeneous Dirichlet boundary condition. The boundary 
condition of FPDEs can be transformed to homogeneous Dirichlet boundary 
condition. 

Let ( )sF x  is defined by  

( ) ( ) ( ) ( ) ( )e e
e e

L
R L

s R s L xx
s s Lx x

x x
F x x

ϕ ϕ
ϕ

−
= − +

−
            (4.3) 

using the new variable ( ) ( ) ( ), ,s s sU x t F x x tϕ= − , then we have 

( ) ( ), ,s s sU x t f x≥  

where ( ) ( )s s sf x F x=  , the boundary and terminal conditions will become 

( ) ( ), ,s s sf x U x t≤   

( ) ( )*, ,s sU x t U x≤                       (4.4) 

( ) ( )( ) ( ) ( )( )*, , 0.s s s sf x U x t U x U x t− ⋅ − =  

We have discussed that American options are described by the linear com-
plementarity problem. Then we consider the following penalized nonlinear equ-
ation to approximate the LCP system (4.4), 

( )( ) ( ) ( )*, 0,s s s sf x U U x t U xρ ρρ
+

 − + − =             (4.5) 

where ( ) ( ) ( ) ( )( )* *, max , ,0s s s sU x t U x U x t U xρ ρ

+
 − = −  , and (4.5) converges to 

(4.2) as ρ goes to infinity. A semi-implicit finite difference scheme is proposed to 
discretize the nonlinear FPDEs system (4.5). 

Now divide the intervals [ ],L Rx x  and [ ]0,T  into N + 1 subintervals and M 
subintervals, respectively. The spatial and temporal meshes are defined as follows 

, for 0,1,2, , 1,n Lx x nh n N= + = +�  

, for 0,1,2, , ,mt T m m Mτ= + = �  

where , 0
1

R Lx x Th
N M

τ
−

= = − <
+

, ,N M  are positive integers and ρ is chosen 

such that ( )1τρ = . 

Denoting ( ) ( ) ( )* *
, ,, ,m

n s s n m n s s nu U x t u U xρ≈ =  and ( ),n s s nf f x= , we obtain the 
following finite difference scheme for the nonlinear FPDE system 

( ) ( )( )1 1 *
, , , ,max ,0 0m m

n s s n s n s n sf u u uρ+ +− + ⋅ − =
            

 (4.6) 

Lemma 3: The nonlinear scheme above is unconditionally stable. 
Proof: Let ( ) ( ) ( ) ( ) T

1, 2, ,, , ,m m m m
s s s N su u u u =  �  be the solution of above in the m-th 

time step. Let ( )
0 ,
m

i su  be the i0-th entry of ( )m
su  such that 

( ) ( ) ( )
0 , ,1

maxm m m
i s i s si N

u u u
≤ ≤ ∞

= =                    (4.7) 

thus, ( ) ( )
0, , , 1, 2, ,m m

i s i su u i N≤ = � . Then, the proof will be completed by discussing 
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the following two cases. 
Case 1: for ( )

0 0

*
, ,

m
i s i su u≥ , in view of above, we have  

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

, , ,

*
, , , ,

*
, , , ,

m m m m
s i s i i i s i j i s

j i

m m m
i i i s i j j s i s i s

j i

m m m
i i i s i j j s i s i s

j i

u u m u m u

m u m u u u

m u m u u u

τρ

τρ

∞ ≠

≠

≠

= ≤ −

≤ − + −

≤ + + −

∑

∑

∑

 

( ) ( )( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

* *0 0 0 0*

* *
*

*
, , ,

*
, , ,

1 1 1
, , , , ,

1 1
, ,

1

m m
i j j s i s i s

m m
i j j s i s i s

m m m
i s i s ss i s s s i s

s s

m m
s s s s s s s

s s

m u u u

m u u u

u f q u q u

f q u q u

τρ

τρ

τ τ τ

τ τ τ

− − −

≠

− −
∞ ∞ ∞

≠

= + −

= − −

= + − −

≤ + + +

∑

∑

∑

∑

        (4.8) 

Case 2: For sufficiently small tδ  such that 
1

1
2 4 2

t
C

δ
α λ

≤
+ +

，we have 

( )2 2 2 20 1
2e e e max , 2m j

j m
TC m
t

δ
δ≤ ≤≤ + + ∀ ≤ ≤ ,  

( )
22

2

2

2
2

2

r k rσ λ λ σ
α

σ

 
− − − + 

 =  

and C is generic constant depending on the parameter 1, , ,C r σ λ  and T. 
This case can be proved (see Theorem1 in [11]). 

5. A Numerical Simulation Example 

In this section, we present several numerical experiments to illustrate the effi-
ciency and accuracy of proposed method. 

Example: We will simulate the HS300 to fit the SVJ model. The sample num-
ber is 10,000. For the convenience of simulation, we will eliminate half of the 
abnormal data. The stability and effectiveness of time-discretization are verified 
by the simulation of the remaining data. All numerical experiments result at 
strike price with parameters as provided in Table 1. 

The s-d and MC-error indicates the error of the simulation. In Table 1, we can 
find that the data are so small that it can be ignored. 

Finally, through the above data simulation, we proved that the proposed me-
thod is much more efficient and accurate. 

6. Discussion and Conclusion 

In this article, it has proposed and analyzed three implicit-explicit (IMEX) time  
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Table 1. Numerical simulation analysis. 

 
mean s-d MC-error val2.5pc median val97.5pc start sample 

kappa 0.05509 0.01017 0.00109 0.03635 0.05551 0.07426 5001 5000 

sigma 0.00919 0.00264 2.39E−4 0.00474 0.00896 0.01465 5001 5000 

lambda 0.02675 0.00727 4.06E−4 0.01404 0.02622 0.04216 5001 5000 

mu 0.03036 0.01347 0.00104 0.00499 0.03033 0.05626 5001 5000 

eta 2.07 0.03849 0.03717 1.439 2.058 2.881 5001 5000 

muj 1.238 0.06931 0.07306 −2.478 −1.24 0.182 5001 5000 

rho 0.9447 0.04573 0.00513 0.8254 0.9565 0.9909 5001 5000 

sigmaj 0.1469 0.05217 0.04144 −1.147 −0.1515 0.9061 5001 5000 

 
semi-discretization namely, IMEX-BDF2, for solving partial integro-differential 
equations which arise in option pricing theory when the underlying asset follows 
a jump diffusion process. All the IMEX time semi-discretization is shown to be 
stable. The American option whose types of initial and boundary conditions 
cannot be defined easily, but it can be formulated as the linear complementarity 
problem (LCP). The numerical simulation with European put/call under SVJ 
model has been carried out. 
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