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Abstract 
Statistical methods for analyzing economic data need to be timely, accurate 
and easy to compute. To accomplish this, parametric models are often as-
sumed, but they are at best approximate, and often lack a good fit in the tails 
of the distribution where much of the interesting data are concentrated. 
Therefore, nonparametric methods have been extensively examined as alter-
natives to the constrictive assumptions of parametric models. This paper ex-
amines the use of Sequential Normal Scores (SNS) for transforming time se-
ries data with unknown distributions into time series data that are approx-
imately standard-normally distributed. Particular attention is directed toward 
detecting outliers (out-of-control values), and applying subsequent analytic 
methods such as CUSUMs and Exponentially Weighted Moving Average 
(EWMA) schemes. Two examples of stock market data are presented for illu-
stration. 
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1. Introduction 

Many popular statistical methods for detecting outliers and change points in 
time series data fall into the category of Statistical Process Management (SPM), 
also known as Statistical Process Control (SPC), and include Shewhart Charts, 
Cumulative Sums (CUSUMs), and Exponentially Weighted Moving Averages 
(EWMA). This paper is the first to apply a new method of SPM, called Sequen-
tial Normal Scores, to economic time series. The Sequential Normal Scores 
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transformation transforms any sequence of independent and identically distri-
buted random variables to independent and identically distributed scores that 
are approximately standard normal random variables. Sequential Normal Scores 
can easily identify outliers, and allow CUSUM and EWMA methods to be ap-
plied to data, without assuming any distributional form, and are thus distribu-
tion-free, or nonparametric. Advantages of Sequential Normal Scores over other 
SPM procedures in analyzing economic time series are demonstrated. 

1.1. Sequential Normal Scores 

Parametric methods for analyzing time series involve assuming a probability 
distribution with parameters estimated from the data. These methods suffer 
from the fact that assumed distributions are approximate at best, with weak-
nesses in the fit generally in the tails of the distribution where the outliers occur. 
The most popular nonparametric methods usually involve ranks, and many 
nonparametric methods are computationally intensive. “Sequential ranks” were 
introduced in [1] to greatly reduce the computational complexity, because only 
the most recent observation is ranked (relative to the previous observa-
tions)—the previous sequential ranks remain unchanged. Reference [2] and 
others have developed methods of analysis such as CUSUMs based on sequential 
ranks. These methods are not simple to use, and thus counteract the speed and 
convenience intended by using sequential ranks. This complexity has perhaps 
been the chief reason methods based on sequential ranks are not popular in time 
series analysis. 

Sequential ranks in this study are converted to normal scores, called Sequen-
tial Normal Scores [3], to alleviate this problem of complexity in statistical me-
thods. That is, each new observation is converted to a rank relative to the n pre-
vious observations in the series, or in a fixed-width moving window of previous 
observations, but the previous ranks are not changed. This is called a sequential 
rank.  

The sequential rank is converted to a rankit, (Rank − 0.5)/n, and then to a 
Normal Score using the inverse function of a standard normal distribution, as 
described in more detail in [3]. These are called Sequential Normal Scores (SNS) 
and are approximately standard normal random variables that are highly corre-
lated with the original data, so parametric methods that assume normality can 
easily be used for analysis without the need for estimating any unknown para-
meters.  

The ordinary ranks for a sequence of observations have a one-to-one rela-
tionship with the sequential ranks for that same sequence of observations. That 
is, knowledge of only the ordinary ranks for a sequence of observations enables 
one to construct the sequential ranks for that same sequence, and vice-versa. The 
same is true for the Normal Scores computed from the ranks, and the Sequential 
Normal Scores computed from the Sequential Ranks. Thus all the information 
about the original data that is captured by the ordinary ranks, is also captured by 
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Normal Scores computed from the original ranks, and by the sequential ranks, 
and by the Sequential Normal Scores. It is with this principle in mind that we 
propose using Sequential Normal Scores to perform nonparametric analyses of 
data when the probability distribution of the original data is unknown. 

1.2. Statistical Process Management (SPM) Methods 

Shewhart Charts. In this paper, we convert time series observations to Sequen-
tial Normal Scores and use standard Shewhart Charts with 3-sigma limits. That 
is, observations are declared to be outliers if they exceed the 3-sigma limits from 
the mean, in either direction. Because Sequential Normal Scores are approx-
imately standard normal in distribution, they are declared outliers if they are 
greater than 3.0 in absolute value.  

Most sequential analysis methods in Statistical Process Management assume a 
Phase I series of observations when the process is known to be “in control”, to 
establish parameters sufficient for setting control limits. Then the subsequent 
observations are matched against those control limits to determine when a 
process is out of control. With economic data there is no “in control” set of ob-
servations, so “self-starting” methods are appropriate, to begin the analysis at 
any time.  

Sequential Normal Scores are self-starting, and do not require a Phase I to set 
the parameters. However, when using 3-sigma control limits, more than 370 ob-
servations (trading days) are required before a new observation can have a se-
quential rank small enough or large enough for the subsequent standard normal 
score to exceed 3 in absolute value. In economic data with daily observations this 
converts to 18 months of data, during which time Sequential Normal Scores are 
collected but all will be within the 3-sigma (equal to plus or minus 3 in our case) 
limits. We suggest at least two years of data to establish “recent history” against 
which new observations are matched. Our examples will use two years of data (a 
moving window of 500 trading days) but the results are similar to the results us-
ing longer moving windows.  

Although there is nothing preventing the use of the complete available history 
of observations, comparing new observations with values from distant history 
may not be as meaningful as comparing observations with only more recent data. 
Therefore we will look at eight cases of moving windows of past observations. 
With a moving window, observations are matched against only values in the 
previous w = 250k days, for k = 1 through 8. With stock market data 250 trading 
days equals approximately one calendar year, so our windows correspond roughly 
to years of history, from one year to eight years.  

If the variance of a sequence increases sharply, the new observations have a 
greater probability of being declared outliers. Thus an increase in the frequency 
of outliers may be an indication of an increase in the variability in the sequence, 
whether it be measured by z-scores or by sequential ranks. Because the observa-
tions (daily yields) are assumed to be independent, the sequential ranks and 
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therefore the Sequential Normal Scores will be independent.  
Although Shewhart Chart outliers indicate unusual activity regarding the daily 

yield relative to historical values, it is also of interest to detect smaller changes in 
mean yield that are sustained over a period of time. Two popular methods for 
measuring sustained changes in mean yield are the cumulative changes as meas-
ured by a method known as CUSUMs [4] or exponentially weighted moving av-
erages known as EWMA methods [5]. The purpose of this examination is not to 
evaluate the merits or failings of the CUSUM or EWMA procedures, but to 
demonstrate that the CUSUM (or EWMA) on the Sequential Normal Scores re-
sembles the CUSUM (or EWMA) on the z-scores of the raw data in many re-
spects, but eliminates many of the alarms that are likely to be false alarms, 
caused by outliers in the original data. In this sense the CUSUM (or EWMA) on 
the Sequential Normal Scores can be used to determine analytics on the original 
data, and may be superior to the analytics obtained by calculating the CUSUM 
(or EWMA) on the original data. 

Cumulative Sums. The CUSUM method examines cumulative sums in the 
positive direction S-pos as well as cumulative sums in the negative direction 
S-neg for independent standard normal random variables , 1, 2,jZ j =  , using 
the equations 

( ) ( ) ( )( )1 1- 0,  - max 0, - , 1j j jS pos Z S pos Z Z S pos Z k j−= = + − >        (1) 

( ) ( ) ( )( )1 1- 0,  - min 0, - , 1j j jS neg Z S neg Z Z S neg Z k j−= = + + >        (2) 

for some suitably chosen constant k. The rationale behind the CUSUMs is to 
accumulate z scores that are indicating a possible shift in the mean, either up or 
down. A penalty of k standard deviations is applied at each step, and the accu-
mulation is not allowed to change signs. We are using k = 0.5 and declaring 
“significance” if S-pos > +4.774 or if S-neg < −4.774 because, according to the 
R-program spc, this will result in a probability of declaring a false positive (Type 
1 error) of 0.0027, matching the 3-sigma limits for the Shewhart charts. That is, 
the average run length between successive CUSUM outliers is about 370 for 
standard normal data, the same as we are using in the Shewhart Charts.  

Exponentially Weighted Moving Averages. The EWMA Ej on the jth ob-
servation Zj is given by 

( )1 10 and 1  for 1i j jE E Z E jλ λ −= = + − >                 (3) 

for some suitably chosen value λ. According to Table 5.1 on page 188 of [6] the 
choice of λ = 0.2 and ρ = 2.859 will result in boundaries of ±0.953 to attain a 
false positive probability of 0.0027, again matching the 3-sigma limits for the 
Shewhart charts, if the observations are independent standard normal random 
variables. 

1.3. Outliers 

First we will concentrate on identifying outliers, or out-of-control observations, 
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defined as observations whose Sequential Normal Scores are greater than 3 in 
absolute value, corresponding to 3-sigma limits with normal data. There are 
many ways of classifying observations as outliers and they all involve much sub-
jective reasoning. We feel that the qualities of a good outlier test include the fol-
lowing basic characteristics. 

1) The results should be consistent with other tests for outliers. 
2) The results should include “obvious” outliers. 
3) The results should not include too many false positives. 
4) The results should not include too few declared outliers (too many false 

negatives). 
5) The method should be intuitive to the average person. 
Therefore we will examine several methods for identifying outliers and com-

pare them on their merits as defined above. These methods are all self-starting, 
and therefore do not require “Phase 1” observations to estimate parameters or 
distributions. The four basic methods are as follows. 

1) USING THE RAW DATA: The daily yield will be converted to a z-score by 
subtracting the mean of the previous observations (as few as 2 are required) and 
dividing by the standard deviation of the previous observations, and declared an 
outlier if the result is greater than 3 in absolute value. Only previous observa-
tions within a moving window of fixed width are used, to keep the comparison 
current. If the z-scores agree with the normality assumption the probability of 
being declared an outlier is close to 0.0027, a very small number.  

2) USING THE LOG-TRANSFORMED DATA: The log transformation is 
popular for financial data of this type for two reasons. First, if the data have out-
liers resulting from a right-skewed distribution, the log transformation may 
make the data resemble more closely a normal distribution. Second, as prices 
tend to trend upwards or downwards over time the percentage change may be a 
more realistic statistic to use over long time periods rather than a simple arith-
metic difference. Therefore the difference between the log price for one day, 
minus the log price for the previous trading day, which equals the log of the ratio 
of the two prices, will be the basic observation, and will be treated as above. That 
is, it will be converted to z-scores and compared with 3 in absolute value. This 
method may not be as intuitive as the previous method, but it may be superior 
for other reasons. If the transformed data are approximately normal, the proba-
bility of an observation being declared an outlier is close to 0.0027. 

3) SEQUENTIAL NORMAL SCORES: The data may be converted to Sequen-
tial Normal Scores (SNS), which are approximately standard normal in distribu-
tion, and which are highly correlated with the original raw data. An observation 
is declared an outlier if its SNS is greater than 3 in absolute value. This is a non-
parametric method whose exact probability of declaring an outlier can be com-
puted easily as a function of the length of the sequence, or the window size of the 
previous observations used in the ranking. 

4) z-SCORES OF SEQUENTIAL NORMAL SCORES: In the event that SNS 
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values may stray by chance from their presumed mean of zero or standard devi-
ation of one due to randomness, the z-scores of the SNS values may achieve 
more intuitive results. That is, the z-score of each SNS is computed by subtract-
ing the mean of the previous SNS values and dividing by the standard deviation 
of the previous SNS values, to bring the mean and standard deviation closer to 
zero and one respectively. 

All of these methods are self-starting, so they begin on the second or third (in 
the case of z-scores) observation in the series. Once they reach the desired size of 
the moving window, be it as few as 250 observations, or as many as 2000 obser-
vations, z-scores and Sequential Normal Scores are computed only on the ob-
servations in that moving window. With four different methods for declaring 
outliers, and eight different window sizes, comparisons can be made with the 
desired qualities stated above for 32 methods that identify outliers. 

1.4. Economic Time Series 

The value of a stock or a portfolio of investments continually changes over time. 
This paper examines only investments that are traded openly on the market, 
with the closing price on each trading day, listed on yahoo.financial, as the data 
being analyzed. Although stock prices are highly auto-correlated, the changes in 
stock prices from one trading day to the next appear to be independent observa-
tions, driven by the tendency for the market to be “efficient”. Actually, changes 
in stock prices, like many economic time series, have an almost negligible serial 
correlation, and appear to have no “memory”, like a random series, but their 
absolute values usually have a non-negligible serial correlation, unlike a random 
series.  

We will show that Sequential Normal Scores convert original data to data that 
appear to have come from a standard normal distribution, while maintaining a 
high correlation with the original data, and retaining the non-random characte-
ristics of the original data such as a slight serial correlation, a large serial correla-
tion of absolute values, and a tendency for extreme observations to cluster. The 
result is a data sequence with a “known” probability distribution, that of the 
standard normal distribution, so statistical methods designed around standard 
normal random variables may be used to analyze the original time series.  Our 
analysis is restricted to the change in price from one trading day to the next, and 
the percentage change from one trading day to the next, called the “yield” or the 
“relative yield”, which may be positive (a gain, or profit) or negative (a loss). 

Although the change in price appears to be a sequence of independent obser-
vations, it has been known for many years that almost all financial or economic 
sequences have subtle dependencies that can be exploited to assist in predicting 
subsequent values. As noted in [7], “large changes tend to be followed by large 
changes, of either sign, and small changes tend to be followed by small changes.” 
This phenomenon has come to be known as “volatility clustering” and has been 
studied by many researchers. GARCH models such as presented in [8] and [9] 
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are among the first to be applied to this phenomenon, so sometimes this volatil-
ity clustering is called the GARCH effect. Other models such as those studied in 
[10], [11], and [12] produce values with little or no serial correlations, but whose 
absolute values or squares have substantial serial correlations and thus result in 
volatility clustering. Another theory, advanced in [13] and [14], attributes vola-
tility clustering to the “herd” behavior of investors who respond almost simulta-
neously to other economic indicators. Our interest in this paper is not in pro-
ducing models that simulate volatility clustering, but rather in detecting the 
presence of volatility clustering in observed sequences. 

When dealing with autocorrelated processes, Statistical Process Management 
techniques make use of the marginal distribution of the stationary process under 
monitoring to detect outlying observations. We can see this approach in [15]. 
This situation is extended when we use SNS on an autocorrelated process as long 
as this process is stationary.  

From [3] we see that SNS can be expressed as a function of sequential empiri-
cal quantiles. It was proven that empirical quantiles converge to the true quan-
tiles when dealing with a series of independent observations. This fact was used 
to prove that SNS converge to the quantiles of a standard normal distribution. If 
we are dealing with autocorrelated observations, the results in [3] can be ex-
tended to stationary time series, using the theoretical results in [16]. From [16] 
we know that, within some general conditions usually satisfied by ARMA and 
GARCH processes, the empirical quantiles used in the calculation in SNS are 
unbiased and consistent estimators of the true quantiles of the marginal distri-
bution of the stationary process. As a corollary, when observations in a statio-
nary time series are transformed into SNS, SNS quantiles still converge to quan-
tiles of the normal distribution, but this normal distribution represents the 
transformation of the marginal distribution of the stationary process.  

1.5. Ordinary Ranks Compared with Sequential Ranks 

There are three major differences between ordinary ranks and sequential ranks. 
1) Speed of computation. In a sequence of observations, each time a new ob-

servation appears a new ordinary ranking involves re-computing the ranks of all 
previous observations and all of the statistics based on those ranks, while a new 
sequential ranking involves computing the rank of only the new observation – 
the previous observations retain their previous sequential ranks and the previous 
statistics computed on those ranks retain their previous values. In a sequence of 
hundreds of observations the computing time for re-ranking and re-computing 
is hundreds of times greater for ordinary rank methods than the computing time 
for sequential rank methods. Also, if an ordinary ranking procedure detects an 
outlier at some time point, a more extreme observation occurring later in the 
sequence may be declared an outlier at the expense of the new rank of the pre-
vious observation, which may no longer meet the definition of an outlier. Simi-
larly, CUSUM procedures build on the previous observation’s CUSUM, and if 
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the previous observation’s rank has changed, its CUSUM based on ranks has 
changed also, complicating any analysis based on CUSUMs. The same is true for 
EWMAs. Analyses based on SNS have none of these disadvantages. 

2) Independence. Sequential ranks, and their derived Sequential Normal 
Scores, in a series of independent observations are independent of each other, 
while ranks, and their derived Normal Scores, are not independent. They have a 
slight negative covariance and thus a slight negative correlation. Analytic me-
thods based on the assumption of independent observations may no longer be 
accurate when applied to statistics based on ordinary ranks. This is not a prob-
lem with statistics based on sequential ranks or sequential normal scores, be-
cause they constitute a series of independent statistics if they are derived from 
independent observations. 

3) Flexible number of outliers. A sequence of n = 371 observations, when 
converted to Normal Scores through “rankits” (rank − 0.5)/n using ordinary 
ranks, is guaranteed to have exactly one Normal Score less than −3.0 (the obser-
vation with rank 1) somewhere in the sequence and exactly one Normal Score 
greater than +3.0 (the observation with rank 371). Thus it is guaranteed to have 
two and only two outliers (i.e., Normal Scores greater than 3 in absolute value) 
until the sequence reaches a length of 1112 or more, at which point it will have 
exactly 4 outliers. When the sequence reaches 1852 observations in length it will 
then have exactly 6 outliers using ordinary ranks, and so on. That is not the case 
with Sequential Normal Scores, which may have 0 or 1 SNS less than −3, and 0 
or 1 SNS greater than +3 when it reaches 371 observations in length. A sequence 
with more than 371 observations, say 370 + k, (k > 1), observations, may have up 
to k values of SNS less than −3 (because previous ranks of 1 remain ranks of 1) 
or greater than +3 (because previously declared “outliers” do not change their 
designation). That is, a sequence with 370 or fewer observations will not have 
any SNS greater than 3 in absolute value, but a sequence with 370 + k observa-
tions may have up to k SNS greater than 3 in absolute value. Thus SNS have 
more flexibility in declaring outliers than ordinary ranks. 

The z-scores may have a slight dependence built in which we will ignore. In 
general the occurrence of outliers should be independent Bernoulli random va-
riables with probability close to 0.0027 of occurring. Unlikely clusters of outliers 
may be the result of a violation of the independence assumption. 

Clusters of outliers, statistically significant in their close proximity to each 
other, may signify an increase in variability in the sequence, or a sharp increase 
in the mean, or a sharp decrease in the mean. A simple nonparametric test may 
be used to determine if a cluster of outliers is statistically significant, as follows. 

2. The Cluster Test for Outliers 

For independent events (like out-of-control days) the binomial distribution can 
be used to find the probability of k or more out-of-control days (one minus the 
probability of k − 1 or fewer out-of-control days) in any given set of n observa-
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tions, such as observations following an observed out-of-control day. In other 
words, the probability that an out-of-control observation is the beginning of a 
statistically significant cluster of k or more out-of-control observations within n 
consecutive trading days is given as follows. Let X equal the SNS or the z-score, 
let t be the trading day when abs(X) > 3, and let Y equal the number of addition-
al out-of-control days observed within the next n − 1 consecutive trading days. 
Then: 

(
)

( )
( )

( )

is the first day in a cluster of at least out-of-control days

within trading days

1| is binomial with parameters 0.0027 and 1

1 2 | is binomial with parameters 0.0027 and 1

1 BINOMDIST 2, 1,0.0027,1

P X k

n

P Y k Y p n

P Y k Y p n

k n

= ≥ − = −

= − ≤ − = −

= − − −

   (4) 

using Excel’s BINOMDIST function that produces cumulative binomial proba-
bilities. We refer to this as the cluster test. A brief table of statistically significant 
clusters is given in Table 1.  

A cluster of k outliers (observations >3 or <−3) within n observations for pa-
rametric methods (column N(0,1)) and for SNS using various window sizes w, is 
significant at alpha = 0.05 using Equation (4), for different probabilities p. Reject 
the hypothesis of randomness at the 5% level if there are k or more outliers 
within the number of consecutive trading days given in Table 1. 

This points out one advantage of using Sequential Normal Scores: the outlier 
probability is known exactly, and is distribution-free, for each choice of window 
size w, while the exact outlier probability is not known for the other methods 
because their distribution is not known exactly, just assumed to be approx-
imately standard normal. 

For example, according to Table 1 the occurrence of 5 or more outliers within 
507 consecutive trading days (approximately 2 years) is statistically significant at 
the 5% level for independent standard normal random variables. The p-value for 
an observed cluster of k outliers within n trading days is given by Equation (4). 
The value n = 507 changes in the SNS case, depending on the exact probability of 
an outlier for the corresponding window size. 
 

Table 1. Length of a cluster of k or more observations to be significant at the 0.05 level. 

Window N (0,1) w = 500 w = 750 w = 1000 w = 1250 w = 1500 w = 1750 w = 2000 

p = 0.0027 2/500 2/750 2/1000 4/1250 4/1500 4/1750 6/2000 

k = 2 19 13 20 26 17 20 23 18 

k = 3 132 90 134 179 112 134 156 119 

k = 4 304 206 308 410 257 308 359 274 

k = 5 507 343 514 684 428 514 599 457 

k = 6 969 494 740 987 617 740 863 658 
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The occurrence of a significant cluster indicates an increased level of variabil-
ity in daily yields, or a sharp upward or downward trend in the mean yield, or a 
combination of both. In short, it indicates a marked instability in the sequence of 
yields relative to the historical values. 

The Poisson distribution can be also used to find the probability of k or more 
out-of-control days, as an approximation to the binomial distribution if the 
probability of success is small and the trials are either independent or “weakly 
dependent” [17]. Let X and Y be defined as in the Binomial test, then: 

(
)

( )( )
( )( )

( )( )

1| is Poisson

is the first day in a clust

with

er of at least o

0.0027

ut-of-control day

1

1 2 | is Poisson with 0.0027 1

1 POISSON.DIST 2,0.0027 1

s

within a time p

,TR

eriod of ay

U

d s

E

P Y k Y n

P Y k Y n

k n

P X k

n

λ

λ

= ≥ − = −

= − ≤ − = −

= − − −

 

using Excel’s POISSON.DIST function that produces cumulative Poisson proba-
bilities. A comparison of the Poisson probabilities with the binomial probabili-
ties leading to Table 1 shows no appreciable difference. 

3. Example Using Host Hotel and Resorts, Inc. Data 

Reference [18] uses real data from the closing stock price of shares of Host Hotel 
and Resorts, Inc. (HST) found on the website https://www.hosthotels.com/. It 
uses data from January 3, 2000 to March 30, 2007 to detect change-points in the 
daily returns. We are using data from January 3, 2000 to December 29, 2017 to 
bring the example closer to current times. The data have a definite quarterly effect, 
and steady growth. It is a good typical stock to study. The additional years we 
added to the study cover the real-estate “bust” of 2007, the recession years, and 
the recovery years until recently. 

We find this stock especially interesting because [18] states that the daily re-
turns follow a normal distribution, and uses that model in its analysis. It “proves” 
this assumption with a Q-Q plot that shows clearly that the bulk of the daily re-
turns is indeed Gaussian, but there is a definite departure in the tails, which it ig-
nores. It is the tails that interest us. The tails prove to be “fatter” than the Gaus-
sian model would suggest and are likely to affect our methods for detecting out-
liers. This stock is also interesting because of the wide range of ups and downs of 
the stock over the past 18 years. 

This example looks at 18 years of data on the price per share of Host Hotel and 
Resorts, obtained from the website https://finance.yahoo.com/. According to [18], 
HST is “the largest American lodging and real estate investment trust.” It assumes 
a normal distribution for the daily change in price. Indeed, the bar chart in Fig-
ure 1 for the first year (250 trading days, representing year 2000) of yields could 
easily be mistaken for being approximately normal, with the exception of the two 
obvious outliers.  

The entire series of 18 years of closing prices shows a highly autocorrelated se-
ries of observations, and is given in Figure 2. The time series of closing prices in  
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Figure 1. Bar chart of daily change in the first year of HST data examined. 

 

 
Figure 2. Graph of daily stock prices for 18 years for HST data. 
 
Figure 2 clearly shows the dependence from one market day to the next, with a 
serial correlation (lag 1) over the 18 years of 0.998. However, the change in price 
from one market day to the next is a series of essentially independent observa-
tions with a serial correlation of only -0.075. Also the daily change is also almost 
uncorrelated with the closing price in Figure 2 (0.031). The z-scores may change 
the dependence in the sequence. In this data set the z-scores, using a 500-day 
window, have a serial correlation of −0.015, much smaller than that for the origi-
nal sequence of daily changes. 

Sequential Normal Scores are independent if they are calculated on indepen-
dent observations (as are sequential ranks), and since they are calculated on the 
daily change they may be regarded as essentially independent. The serial correla-
tion of Sequential Normal Scores (using a 500-day window) for this sequence is 
−0.021, between the serial correlation of the original data (−0.075) and the 
z-scores on the daily changes (−0.015). Note that these serial correlations are 
small, almost negligible, but statistically significantly different from zero because 
of the length of the series (4528 observations).  

It is also interesting to note that the serial correlation of the absolute values of 
the daily yields is 0.249, large enough to account for the phenomenon called vola-
tility clustering, and large enough to contain possibly useful information for the 
prediction of subsequent observations. Using a 500-day window on both series, 
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the z-scores have a serial correlation of absolute values equal to 0.141 and the 
serial correlation of the SNS is 0.137, almost the same. Truly independent obser-
vations in a sequence this long will have a serial correlation much closer to zero, 
as will any function of those observations such as absolute values or squared val-
ues.  

The cross correlation of the Sequential Normal Scores with the z-scores of the 
raw data, both relative to the previous 500 trading day window, is 0.966, almost 
perfect correlation. Thus the Sequential Normal Scores are an almost perfect rep-
lication of the z-scores of the original data with regard to cross correlation as well 
as serial correlation of the observations, and serial correlation of the absolute val-
ues of the observations, for the 18 years from 2000 to 2017, and have the advan-
tage of a known distribution, the standard normal distribution, so the probability 
of an outlier can be measured more accurately. Sequential Normal Scores convey 
basically the same information as the daily profits, but have the distinct advantage 
of being approximately standard normal, in contrast to the daily profits, which 
have an unknown distributional form. Thus the Sequential Normal Scores allow 
probability statements to be made regarding the size of the original observations. 

Analysis of the logarithms of the stock prices results in more dependence. The 
serial correlation of the daily changes in the logarithms for this sequence is -0.127, 
a substantial correlation, and the serial correlation of the absolute values of the 
changes in logarithms is 0.420, an even more substantial correlation. For this 
reason we will not attempt to convert changes in logarithms to Sequential Normal 
Scores. 

A histogram of Sequential Normal Scores for the first 250 trading days is given 
in Figure 3, for comparison with the bar graph of the raw data in Figure 1. Note 
the general shape of a standard normal density, but with randomness due to the 
data. A histogram of Normal Scores from ordinary ranks of these same observa-
tions would follow a rigid bell-shaped curve with no randomness. The correlation 
coefficient of these 250 Sequential Normal Scores in Figure 3 with the 250 values 
of daily profit on which they were based in Figure 1 is 0.964, a very close correla-
tion, even though the two figures (Figure 1 and Figure 3) might suggest other-
wise. 
 

 
Figure 3. Histogram of the first year’s sequential normal scores of the HST data. 
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A self-starting Shewhart graph may be obtained from the daily profits, starting 
as early as the third trading day, by subtracting the sample mean of the previous 
observations and dividing by the sample standard deviation of the previous ob-
servations. This results in a series of z-scores with approximate mean of zero, and 
approximate standard deviation of 1.0. When the z-scores are compared with the 
Shewhart bounds of ±3 it is obvious that the tails of the distribution are much 
fatter than the tails of the standard normal distribution. A moving window of 500 
observations is used in this example, so the first 500 observations are not counted 
in the interest of fairness, even though they could be used. Thus the data 
represent the years 2002-2017. 

An examination of the z-score values shows that 31 of the 4025 z-scores are less 
than −3, for 0.77%, much greater than the theoretical 0.135% for the standard 
normal distribution. The same holds true to a lesser extent for the upper tail, 
where 16 z-scores exceed +3 for 0.40%, again much larger than the target 0.135%. 
This indicates that even after converting to z-scores, the number of identified 
“outliers” using z-scores is 47, 1.17% of the total, more than four times the 10.9 
(0.27% of the total) that one would expect from a standard normal random varia-
ble. It would be misleading to declare all 47 observations to be outliers. 

An easy way to determine the statistical significance of the daily variations in 
profit is obtained by converting the daily profits to Sequential Normal Scores. 
Now it is easy to spot 3-sigma deviations in a Shewhart graph of Sequential Nor-
mal Scores. There are 11 Sequential Normal Scores less than −3 and 8 Sequential 
Normal Scores greater than +3, for a total of 19 out of 4025 days, or 0.47%, much 
closer to the target 0.27% for the two tails combined. In fact, the actual probabili-
ty can be computed exactly for a 500-day window of SNS, because of their distri-
bution-free nature, to be 2/500 = 0.40%, in good agreement with the observed 
value of 0.47%. The observed difference in percentages for the z-scores may be 
attributed to the fact that the original data are not well approximated by a normal 
distribution in the tails. This discrepancy is corrected almost entirely by using 
Sequential Normal Scores. 

For purposes of discussion, let’s look at the significant values of SNS using a 
2-year window, listed as “YES” in the “500 trading day window” column in Table 
2. The outliers (“YES”) in boldface mark a statistically significant cluster of out-
liers has occurred. The symbol * means that during startup the window was 
shorter than designated. Starting from day 1 in the series (instead of day 501 as 
we did above) there are a total of 21 “outliers” detected (values greater than 3 in 
absolute value), as compared to the expected number of 12.2 using the standard 
normal probability of 0.0027 for the total of 4525 observations. But here the ad-
vantage of being completely distribution-free can be utilized to compute the exact 
probability of getting a Sequential Normal Score above 3 (in absolute value) for a 
window of 500 observations. The sequential ranks are equally likely to be any in-
teger from 1 to 500 (barring ties), and only the integers (ranks) 1 and 500 result in 
Sequential Normal Scores outside the (−3, +3) interval, for an exact probability of  
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Table 2. Dates of statistically significant outliers in HST daily yields. 

Trade Day Date DECLARATION OF “OUTLIER” BY WINDOW SIZE: SEQUENTIAL NORMAL SCORES  (* = short window) 

Start 1/3/2000 CLOSE 500 750 1000 1250 1500 1750 2000 Direction 

426 9/17/2001 $8.86 YES* YES* YES* YES* YES* YES* YES* NEGATIVE 

482 12/5/2001 $9.13 YES* YES* YES* YES* YES* YES* YES* POSITIVE 

645 7/31/2002 $11.25 YES YES* YES* YES* YES* YES* YES* POSITIVE 

1258 1/5/2005 $16.27 YES NO NO NO NO* NO* NO* NEGATIVE 

1475 11/14/2005 $16.65 YES YES NO NO NO* NO* NO* NEGATIVE 

1621 6/15/2006 $20.86 YES YES NO NO NO NO* NO* POSITIVE 

1650 7/27/2006 $21.53 YES YES YES NO NO NO* NO* NEGATIVE 

1703 10/11/2006 $22.52 YES YES YES YES YES YES* YES* NEGATIVE 

1731 11/20/2006 $24.94 YES YES YES YES YES YES* YES* POSITIVE 

1783 2/7/2007 $28.71 NO NO NO YES YES YES YES* POSITIVE 

1787 2/13/2007 $28.71 NO NO NO NO YES YES YES* POSITIVE 

1885 7/5/2007 $26.01 YES YES YES YES YES YES YES* POSITIVE 

1911 8/10/2007 $22.35 NO NO NO YES NO NO YES* NEGATIVE 

1996 12/11/2007 $18.56 NO NO NO YES YES NO YES* NEGATIVE 

2024 1/23/2008 $17.41 NO NO NO YES YES YES YES POSITIVE 

2071 4/1/2008 $17.01 NO NO NO NO NO NO YES POSITIVE 

2189 9/17/2008 $13.56 NO NO NO YES YES YES YES NEGATIVE 

2190 9/18/2008 $17.00 YES YES YES YES YES YES YES POSITIVE 

2192 9/22/2008 $14.48 YES YES YES YES YES YES YES NEGATIVE 

2197 9/29/2008 $12.39 YES YES YES YES YES YES YES NEGATIVE 

2205 10/9/2008 $7.85 YES YES YES YES YES YES YES NEGATIVE 

2206 10/10/2008 $9.28 NO NO NO NO NO NO YES POSITIVE 

2218 10/28/2008 $8.98 NO NO NO NO NO NO YES POSITIVE 

2241 12/1/2008 $5.92 NO NO NO YES YES YES YES NEGATIVE 

2917 8/8/2011 $11.86 YES NO NO YES YES YES YES NEGATIVE 

3666 7/31/2014 $21.74 YES NO NO NO NO NO NO NEGATIVE 

3805 2/19/2015 $21.87 YES YES YES YES YES YES YES NEGATIVE 

3936 8/26/2015 $17.71 YES YES NO NO NO NO NO POSITIVE 

4148 6/29/2016 $16.05 YES YES YES NO NO NO NO POSITIVE 

4244 11/14/2016 $17.38 YES YES YES YES NO NO NO POSITIVE 

4357 4/28/2017 $17.95 YES NO NO YES NO NO YES NEGATIVE 

 
Total 

 
21 17 14 20 18 17 23 
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2/500 = 0.004, slightly above the target of 0.0027. So the actual expected number 
of outliers in SNS is 18.1, in good agreement with the observed number of 21. 

Continuing on in Table 2 down the column for the 500 day window, in the 
first six and a half years (January 2000 through September 2006) there are exactly 
seven 3-sigma shifts; the first is a drop caused by the terrorist attacks on Septem-
ber 11 2001, and six others. Over a period of about 1700 trading days (the first six 
and a half years) an event expected to occur once every 370 days (or 250 days, 
using the exact probability) occurred only seven times. That is reasonable, in fact 
expected. None of these are clustered close enough to be statistically significant.  

Then the next significant outlier occurred on October 11, 2006, trading day 
number 1703 in our series. This is only 82 trading days from the outlier on June 
15, 2006, and there was another outlier between the two, on July 27, 2006. That 
means three outliers occurred in 83 trading days, which is statistically significant 
at the 5% level according to the cluster test and Table 1, to mark the first signifi-
cant cluster of outliers in almost seven years. If that was not enough to ring an 
alarm bell, 28 trading days later another outlier occurred, on November 20, 2006. 
That means four outliers occurred within 111 trading days, which has a p-value of 
0.01 according to Equation (4). Two of the four were positive outliers and two 
were negative, suggesting a change in variation rather than a shift in the mean. 
Maybe it is a coincidence that the real estate bubble burst three months later in 
February 2007, sending stock prices into a steep slide that lasted several years, and 
maybe not. We have to leave that conclusion up to the experts in the field.  

Five more outliers (two positive and three negative) occurred in the next two 
years (2007 and 2008) maintaining a “code red” alert, culminating with four out-
liers in the month from September 18, 2008 to October 9, 2008. This period of 
two unstable years coincides with the decline in stock price from about $28 to 
about $3. Then there are no more outliers for almost three years, while the stock 
price turned around and started a two year climb, peaking again in February 2011 
at about $20. During this climb, the “red alert” sign came down on trading day 
2397, which is July 16, 2009, because of a lack of outliers. Then there are no sig-
nificant clusters for the remainder of our series. Note that for longer windows, 5 
years to 8 years, another significant cluster occurred on December 1, 2008. 

Six outliers over a span of almost three years, as occurs near the end of the se-
ries for the 500-day window, would be statistically significant for standard normal 
random variables according to Table 1. This may not be of interest from a prac-
tical standpoint because of the long time span, even though it is statistically sig-
nificant. We are arbitrarily assuming in this paper that clusters less than one year 
(250 trading days) in duration from beginning to end are of more interest to fi-
nancial analysts than clusters that span longer periods of time, so we are marking 
in boldface in Table 2 only outliers that mark a significant cluster of total length 
less than 250 trading days (approximately one year) in length. Then it becomes 
apparent that for all window sizes of length 2, 3, or 4 years the outliers mark sta-
tistically significant clusters on November 20, 2006. Even though the windows of 
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longer length (5, 6, 7, and 8 years) had outliers on November 20, 2006, they did 
not mark statistically significant clusters until their next outlier which occurred 
on February 7, 2007, shortly before the collapse of the real estate market that 
month. All seven windows signaled statistically significant clusters of outliers 
shortly before the two year collapse in the market for this stock. This agreement 
in identifying outliers across the choice of window size is apparent in Table 2, as 
well as the agreement in declaring significant clusters of outliers. For this reason 
the SNS approach to identifying outliers is recommended. 

Table 3 emphasizes the year-by-year comparison of significant SNS and 
z-scores (using a 500-day window), showing that years with many significant out-
liers, especially negative outliers, coincide with steep declines in the price of HST 
stock values. A day-by-day comparison of declared outliers in Table 4 shows that 
of the 21 days identified as outliers using SNS, 20 are also identified as outliers by 
the z-scores, for excellent agreement. 
 
Table 3. Year by year comparisons of numbers of high and low SNS outliers with high 
and low z-scores, for HST data. 

YEAR LOW SNS 
HIGH 
SNS 

LOW 
z-score 

HIGH 
z-score 

Starting 
Price 

Change 
in year 

2000 0 0 1 1 8.4375 4.375 

2001 1 1 6 1 12.8125 −3.6125 

2002 0 1 1 1 9.2 −0.3 

2003 0 0 0 0 8.9 3.35 

2004 0 0 0 1 12.25 4.75 

2005 2 0 3 4 17 2.18 

2006 2 2 3 2 19.18 5.38 

2007 0 1 5 3 24.56 −7.28 

2008 3 1 4 3 17.28 −9.55 

2009 0 0 0 0 7.73 4.09 

2010 0 0 0 0 11.82 6.53 

2011 1 0 4 0 18.35 −3.48 

2012 0 0 0 0 14.87 1.27 

2013 0 0 0 0 16.14 3.12 

2014 1 0 1 0 19.26 4.55 

2015 1 1 6 0 23.81 −8.65 

2016 0 2 3 2 15.16 3.97 

2017 1 0 1 0 19.13 0.72 

TOTAL 12 9 38 18 19.85 (12/29/2017) 
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The point here is that by using Sequential Normal Scores there is no need to 
continually estimate the mean and the variance, as usual in Shewhart charts, be-
cause the mean is zero and the standard deviation is one in a stable period. An 
unstable period with unusual variability is easy to detect, and the likelihood of 
false positives is greatly reduced. 

A comparison of the SNS method with the z-score methods for all eight choices 
of window sizes is interesting as shown in Table 5. For a fair comparison, the first 
2000 trading days are not considered, and the comparison begins only after all the 
various window sizes are complete.  

The first difference is that the Shewhart Chart on the original raw data identi-
fies more than twice as many outliers as the SNS method, about four to seven 
times as many as expected if the probability of an outlier is truly 0.27%. This sug-
gests that the true probability of a z-score being declared an outlier is much 
greater than 0.27%, but unknown. The second difference is that with this many 
declared outliers the cluster test on z-scores is practically useless. Almost every 
declared outlier raises the alarm of a cluster occurring. This suggests that the 
Shewhart Chart on the raw data is declaring many false positives. Using the log 
transformation results in even more outliers declared which exacerbates the 
problem of false positives. These results are consistent for all eight choices of 
window length for z-scores on the raw data. We do not list all the z-score outliers 
in this paper because there are so many. 
 
Table 4. A frequency table of the day by day comparisons of “Outliers” as declared by SNS 
with “Outliers” as declared by z-scores, for HST data 2000-2017. 

 
High z Low z Neither TOTAL 

High SNS 8 0 1 9 

Low SNS 0 12 0 12 

Neither 10 26 4468 4504 

TOTAL 18 38 4469 4525 

 
Table 5. The number of HST declared outliers from trading day 2001 to the end of the se-
ries. 

Window size 250 500 750 1000 1250 1500 1750 2000 

Raw data 20 24 26 28 40 43 46 46 

(Expected count) 6.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82 

log(data) 38 58 76 87 89 91 82 78 

(Expected count) 6.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82 

Seq. Normal Scores 0 11 8 7 11 9 9 13 

(Expected count, exact) 0.00 10.11 6.74 5.05 8.09 6.74 5.78 7.58 

z-scores on SNS 11 10 12 10 11 10 6 1 

(Expected count) 6.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82 
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Analysis of the raw data shows not only an excessive numbers of outliers, very 
much in excess of the expected number for a 3-sigma chart, but also that there is 
no consistency in results over the different window sizes, almost doubling the 
number of outliers as the window size goes from 500 trading days to 2000. The 
same is true for the log-transformed data. In contrast, the Sequential Normal 
Scores are consistent in their more modest results over all seven window sizes 
(not including the 250-day window because it cannot declare SNS outliers). Con-
verting SNS to z-scores brings in a different level of inconsistency, where the 
number of outliers diminishes dramatically as the window size increases. The 
conclusion seems to be that for a reasonable number of false positives, and a con-
sistent declaration of outliers, the Sequential Normal Scores method appears to be 
the best of the various methods examined. 

4. CUSUM and EWMA with Sequential Normal Scores 

Next we compare the CUSUM method on Sequential Normal Scores for detect-
ing changes in the mean yield, with the CUSUM method on the z-scores of the 
raw data. We use the 500-day window for this comparison, but the results are 
very similar for all the other window sizes examined in this paper. 

The preceding analysis looked at variability, and showed that Sequential 
Normal Scores are good for identifying outliers, without producing as many 
false positives as the original observations produce. Outliers may indicate un-
usual volatility, or they may indicate a large shift (positive or negative) in the 
mean. The CUSUM method and the EWMA method were invented to detect 
smaller, but consistent, changes in the mean yield. Sequential Normal Scores al-
so allow for CUSUM and EWMA analyses, unlike ordinary rank methods where 
the previous ranks, and therefore the previous CUSUMs and EWMAs, change 
with each new observation. 

We performed a CUSUM analysis on the z-scores of the raw data (500-day 
moving window) to see if the CUSUMs detect a shift in the mean daily profit. 
For comparison we performed the same analysis on the Sequential Normal 
Scores (500-day moving window) to see if we can detect a shift in the mean daily 
profit. As stated earlier, we used k = 0.5 as the adjustment in Equations (1) and 
(2), and h = ±4.774 as the boundaries, which results in the probability of a Type I 
error close to the 0.0027 that results from 3-sigma limits in a Shewhart Chart for 
normally distributed data. 

The correlation coefficient of the positive CUSUMs for the z-scores on the 
raw data with the positive CUSUMs of the Sequential Normal Scores is a very 
high 0.961, and the corresponding negative CUSUMs have a correlation of 0.945. 
This indicates that the CUSUMs on the Sequential Normal Scores convey much 
of the same information that the CUSUMs on the z-scores of the raw data con-
veys. The advantage of the nonparametric approach is that the boundary value is 
distribution-free, while the probability of exceeding the z-score boundaries is 
dependent on the underlying distribution. 
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Tables 6-8 present a comparison of the CUSUMs and EWMA for HST data in 
the years 2002-2017 (4027 days). Both series used 500-day windows. Table 6 
gives the yearly totals, and shows that for the years 2002-2017 the raw data 
z-scores resulted in 110 days with significant CUSUMs (25 positive, 85 negative) 
out of 4027 days total, for 2.7%, ten times the 0.27% expected for normal dis-
tributions. The SNS resulted in 73 days with significant CUSUM values (20 
positive, 53 negative), for 1.8%, also much larger than, but much closer to, the 
target.  
 
Table 6. Yearly comparisons of numbers of significant values of CUSUMs and EWMA. 

 
CUSUMs EXP. WT.MOVING AVE. 

SNS z-SCORE SNS z-SCORE 

YEAR HIGH LOW HIGH LOW HIGH LOW HIGH LOW 

2002 2 0 1 1 3 2 1 0 

2003 1 0 0 0 1 0 0 0 

2004 0 0 0 0 0 0 0 0 

2005 0 1 0 2 0 0 0 1 

2006 0 1 2 4 1 1 3 1 

2007 4 21 9 25 4 6 5 8 

2008 0 16 1 17 0 3 1 2 

2009 0 0 0 0 0 0 0 0 

2010 0 0 0 0 0 0 0 0 

2011 0 11 0 18 0 3 0 6 

2012 0 0 0 0 0 0 0 0 

2013 0 0 0 0 0 0 0 0 

2014 9 0 9 0 1 0 1 2 

2015 3 3 2 17 2 2 1 7 

2016 1 0 1 1 1 0 1 2 

2017 0 0 0 0 0 0 0 0 

TOTAL 20 53 25 85 13 17 13 29 

EXPECTED 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 

 
Table 7. Daily agreements and disagreements with CUSUMs for SNS and z-scores. 

 
Low z High z Neither TOTAL 

Low SNS 51 0 2 53 

High SNS 0 17 3 20 

Neither 34 8 3913 3955 

TOTAL 85 25 3918 4028 
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Table 8. Daily agreements and disagreements with EWMA for SNS and z-scores. 

 
Low z High z Neither TOTAL 

Low SNS 13 0 4 17 

High SNS 0 8 5 13 

Neither 16 5 3977 3998 

TOTAL 29 13 3986 4028 

 
Table 7 is a frequency table of the number of days where there is agreement 

between the CUSUMs on the z-scores and the CUSUMs on the SNS in declaring 
outliers for the HST data over the 18 years examined. It shows that shows that of 
those 73 days with significant CUSUMs on the SNS, 68 were the same days iden-
tified by using the z-scores on the raw data (17 of the 20 “high” and 51 of the 53 
“low”), for a pretty good agreement. Most of the excess in significant CUSUMs 
for the z-scores occurs immediately following an unusually large (in absolute 
value) z-score, a “carryover effect” not shown by the SNS analysis. 

Table 8 shows that the day-by-day agreement for EWMA is also very good. Of 
the 30 outliers identified by EWMA on SNS, 21 are the same days identified by 
EWMA on the raw data z-scores. The correlation of the EWMA on the z-scores 
and the EWMA on the SNS is a near-perfect 0.980. 

A CUSUM or EWMA chart built specifically for detecting scale changes might 
also be found useful in practice, and the results obtained in this research can be 
used analogously. 

5. Example Using the S & P 500 Index 

The previous example examined the behavior and analysis of a single company’s 
stock, known as HST. This example looks at a portfolio of 500 stocks, the S & P 
500, that is one basis for representing the entire market with a single number. 
Shares in the S & P 500 cannot be bought or sold, but many companies have 
mutual funds trying to mimic the makeup of the S & P 500 which makes this an 
important example. The S & P 500 is a weighted average of the price per share of 
500 different companies that represent in some sense the entire economy of 
publicly traded companies. The S & P 500 seems to be a logical place to start, to 
see if Sequential Normal Scores can be useful in analyzing a portfolio of stocks.  

To demonstrate the versatility of Sequential Normal Scores we will analyze the 
daily percent change of the closing price of the S & P 500, rather than the actual 
daily change in price which we analyzed with the HST data in the previous ex-
ample. Otherwise our approach is the same as described in the HST example. 
The historical closing price of the S & P 500 is obtained from the website 
https://finance.yahoo.com/ for 21 years from January 2, 1997 to December 29, 
2017, amounting to 5285 trading days. The closing price is highly dependent on 
the previous day’s closing price, but the change in closing price (the yield) ap-
pears to behave as a series of independent random variables. Rather than analyze 
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the actual daily change we will divide the daily change by the previous day’s 
closing price to get a percentage change each day. This will allow a fairer com-
parison as prices go up and down. 

The first order serial correlation of the daily yields for S & P 500 data over the 
21 years is a low −0.058, but the serial correlation of the absolute values of these 
same data is a more substantial 0.172, illustrating the principle of “volatility 
clustering” described earlier. On the other hand the percentage change of the 
closing prices has a slightly greater (in absolute value) serial correlation, −0.070, 
as do the absolute values of the percentage change, 0.237, compared with the raw 
data. The z-scores on the percentage change in the raw data, using a 500-day 
window, have a serial correlation of −0.062, and the serial correlation of the ab-
solute values is 0.189, both close to, but between, the corresponding numbers for 
the actual daily changes and the percentage changes. 

The Sequential Normal Scores calculated on the percentage change (500-day 
window) are highly correlated (0.971) with the z-scores on the percentage 
change in raw data (500-day window), indicating that conclusions based on the 
analysis of the SNS may be carried over to the raw data itself. The sequence of 
Sequential Normal Scores using a 500-day window has a serial correlation of 
-0.052 and the absolute values of the SNS have a serial correlation of 0.149, both 
in keeping with the percentage changes in the original data (−0.070 and 0.237), 
and the z-scores using a 500-day window (−0.062 and 0.189), but slightly smaller 
in absolute value. 

The histogram of the percentage yield of the first 250 trading days (representing 
the year 1997) is given in Figure 4. Besides a slight skewness, there are two ob-
vious extreme outliers that challenge the assumption of normality. Nevertheless 
we will proceed with the analysis as we did in the previous example, comparing 
the results of assuming normality in the measurements with the nonparametric 
approach that uses Sequential Normal Scores.  

The closing value of the S & P 500 over the 21 years from January 3, 1997 to 
December 29, 2017 is the basis for Figure 5. Figure 5 shows the range of values 
from a low of about 750 to a high of over 2600, suggesting that looking at per-
centage change might result in a more reasonable analysis than looking at abso-
lute change.  

One quality of interest is identifying the percentage daily yield as an “outlier” 
or not, as in the previous example. We will declare a day’s percentage return as 
an outlier if its z-score or SNS falls outside the 3-sigma limits for a standard 
normal random variable. As before, this will correspond to converting percen-
tage yields to z-scores, by subtracting an estimate of the mean and dividing by an 
estimate of the standard deviation (Method 1), by converting the logarithm of 
the closing price to percentage daily log yields, and then converting to z-scores 
(Method 2), by converting the daily percentage yield to Sequential Normal 
Scores (Method 3) and finally by converting the SNS to z-scores (Method 4). 
Eight different windows of history will be used for each, ranging from one year  
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Figure 4. Histogram of the daily percent changes of S & P 500 representing the year 1997. 

 

 
Figure 5. The closing value of the S & P 500, 1997-2017. 

 
to eight years, as with the previous example, for 32 different methods of identi-
fying outliers. 

A histogram of the Sequential Normal Scores for the first 250 percentage daily 
yields representing year 1997 of the S & P 500 is given in Figure 6. It is seen to 
be approximately the shape of a standard normal density function, with varia-
tions due to randomness of the data. The outliers obvious in Figure 4 become 
part of the curve because of the nature of ranks pulling in the outliers. 

To examine the longer term distributions, the z-scores on the percentage 
yields, using a 500-day window, are compared with the Shewhart bounds for the 
years 1999 to 2017. For the 4784 trading days examined after the first 500 obser-
vations, representing years 1999-2017, the expected number of observations ex-
ceeding +3 is 6.46, while the observed number of z-scores exceeding +3 is 35. 
The same is true for the lower tail, where the expected count is again 6.46 but the 
observed count is 46. Thus the tails are much “fatter” than expected. 

By comparison the exact exceedance probability for SNS using a 500-day 
window is 1/500 = 0.002 in each tail, compared with the standard normal value 
of 0.00135. The actual number of exceedances for the SNS with a 500-day win-
dow is 14 above +3, and 10 below −3, in closer agreement with the exact  
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Figure 6. Histogram of the SNS of the S & P 500, representing Year 1997. 

 
expected counts of 9.56 in each tail. As for agreement with the z-scores, 23 of the 
24 significant Sequential Normal Scores are also significant z-scores on the raw 
data (all of the 14 above +3, and 9 of the 10 below −3) showing good agreement 
of the two methods. 

The total number of outliers resulting from each of the four methods, under 
the eight different window sizes, over 3284 trading days from trading day 2001 
(December 15, 2004) to trading day 5284 (December 29, 2017) for 13 years of S 
& P index daily percent changes, which includes all but the first 2000 trading 
days (8 years), for a fair comparison, is given in Table 9. It is seen again, as in 
the HST example, that the number of outliers identified is quite large for the raw 
data and for the logs of the data, at times seven times the expected value of 8.9 
days, suggesting the occurrence of many false positives. The Sequential Normal 
Scores have the lowest number of outliers identified, but still slightly more than 
the expected number. The z-scores on the SNS result in slightly larger numbers 
of observed values, but not as consistent over the eight different windows as we 
would like. 

Large numbers of outliers suggest underestimation of the probability of an 
outlier. The number of outliers identified by the SNS method is consistent over 
all window sizes, and closer to the target values, so this method appears to be the 
most satisfactory method, of the ones examined, for identifying outliers.  

Table 10 shows the dates of the outliers identified by the Sequential Normal 
Scores method for S & P-500 percentage yields over the various window sizes, 
like Table 2 showed for HST data. These dates are determined by 3-sigma limits 
on a Shewhart Chart of Sequential Normal Scores (5284 trading days from Janu-
ary 2, 1997 to December 29, 2017). The outliers (“YES”) in boldface indicate a 
statistically significant cluster of outliers has occurred. The asterisk (*) indicates 
outliers that occurred during startup while the window was shorter than desig-
nated. Table 10 shows good agreement among the seven (ignoring the 250 day 
window, which cannot produce an outlier) different windows for determining  
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Table 9. A comparison of the number of outliers identified by the 32 different methods. 

Window size 250 500 750 1000 1250 1500 1750 2000 

Raw z-scores 56 70 74 72 68 60 50 51 

Target % 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 

Actual % 0.0170 0.0213 0.0225 0.0219 0.0207 0.0183 0.0152 0.0155 

log z-scores 57 72 73 74 67 57 52 53 

Target % 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 

Actual % 0.0174 0. 0219 0. 0222 0. 0225 0. 0204 0. 0174 0. 0158 0. 0161 

Seq. Nor. 
Scores 

0 22 16 13 14 11 10 12 

Target % 0.0000 0.0040 0.0027 0.0020 0.0032 0.0027 0.0023 0.0030 

Actual % 0.0000 0.0067 0.0049 0.0040 0.0043 0.0033 0.0030 0.0037 

z-scores on 
SNS 

18 26 33 40 44 30 21 17 

Target % 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 

Actual % 0.0055 0.0079 0.0100 0.0122 0.0134 0.0091 0.0064 0.0052 

 
outliers using Sequential Normal Scores on the 21 years of S & P 500 data. It also 
shows that the summary of detected outliers reduces to only 32 different trading 
days out of the 5284 days in the sequence. For example, using a window of size 
500 results in 24 significant outliers being detected. The total of the other win-
dow sizes includes only 8 additional days that are considered outliers. 

Many of these outliers trigger alarms using the cluster test. Those outliers that 
trigger cluster alarms are given in boldface type. For example, the first outlier in 
the table occurred on trading day 1010 (January 3, 2001), but it is not in boldface 
in Table 10 because it does not trigger the occurrence of a significant cluster of 
outliers. The next two outliers occur 18 months later in July 2002, within five 
days of each other, triggering a cluster alarm for the longer windows (5 - 8 years) 
using Table 1. The next significant outlier cluster is signaled on June 29, 2006, 
for the 500 day window, and the S & P index began a 20% climb in the next 15 
months. Then two more outliers in August 2007 announce a significant outlier 
cluster in the shorter windows (2 - 4 years). Four months later the S & P 500 
dove from over 1500 to about 700 in 16 months. During this period there are 
many significant outlier clusters identified in all seven windows. In March 2009 
the significant clustering ended, and the S & P 500 turned around and started a 
six year recovery during which no new outlier clusters are identified. Maybe 
these are coincidences, but they are interesting to observe. 

A recent paper [19] used a non-parametric test for variance to study the S & P 
500 based on monthly averages from July 2004 to June 2009. It found (using a 
retrospective analysis) a significant change in variance occurred in February 
2006, which is close to the finding in our study of a significant cluster of outliers 
in June 2006, without using a retrospective analysis.  
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Table 10. Dates of statistically significant outliers (“YES”) in S & P 500 daily percent changes. 

Trade 
  

Window Size 
      

Day Date Close 500 750 1000 1250 1500 1750 2000 Direction 

1010 1/3/01 1347.56 YES NO NO NO* NO* NO* NO* POSITIVE 

1397 7/24/02 843.43 YES YES YES YES YES* YES* YES* POSITIVE 

1400 7/29/02 898.96 NO NO NO YES YES* YES* YES* POSITIVE 

2277 1/20/06 1261.49 YES NO NO NO NO NO NO NEGATIVE 

2378 6/15/06 1256.16 YES NO NO NO NO NO NO POSITIVE 

2388 6/29/06 1272.87 YES NO NO NO NO NO NO POSITIVE 

2553 2/27/07 1399.04 YES YES NO NO NO NO NO NEGATIVE 

2664 8/6/07 1467.67 YES YES YES NO NO NO NO POSITIVE 

2673 8/17/07 1445.94 YES YES YES NO NO NO NO POSITIVE 

2694 9/18/07 1519.78 YES YES YES NO NO NO NO POSITIVE 

2814 3/11/08 1320.65 YES YES YES YES NO NO NO POSITIVE 

2819 3/18/08 1330.74 YES YES YES YES NO NO NO POSITIVE 

2940 9/9/08 1224.51 NO NO NO YES NO NO NO NEGATIVE 

2944 9/15/08 1192.70 YES YES YES YES YES YES YES NEGATIVE 

2946 9/17/08 1156.39 YES YES YES YES YES YES YES NEGATIVE 

2947 9/18/08 1206.51 YES YES YES YES YES NO NO POSITIVE 

2954 9/29/08 1106.42 YES YES YES YES YES YES YES NEGATIVE 

2955 9/30/08 1166.36 YES YES YES YES YES YES YES POSITIVE 

2960 10/7/08 996.23 NO NO NO YES YES YES YES NEGATIVE 

2962 10/9/08 909.92 NO NO NO YES YES YES YES NEGATIVE 

2964 10/13/08 1003.35 YES YES YES YES YES YES YES POSITIVE 

2966 10/15/08 907.84 YES YES YES YES YES YES YES NEGATIVE 

2975 10/28/08 940.51 NO NO NO YES YES YES YES POSITIVE 

2987 11/13/08 911.29 NO NO NO NO NO NO YES POSITIVE 

2998 12/1/08 816.21 NO NO NO YES YES YES YES NEGATIVE 

3074 3/23/09 822.92 NO NO NO NO NO NO YES POSITIVE 

3672 8/4/11 1200.07 YES NO NO NO NO NO NO NEGATIVE 

3674 8/8/11 1119.46 YES NO NO NO NO NO NO NEGATIVE 

3675 8/9/11 1172.53 YES NO NO NO NO NO NO POSITIVE 

4690 8/21/15 1970.89 YES YES NO NO NO NO NO NEGATIVE 

4691 8/24/15 1893.21 YES YES YES NO NO NO NO NEGATIVE 

4693 8/26/15 1940.51 YES YES NO NO NO NO NO POSITIVE 

  
TOTAL 24 17 14 16 13 12 14 

 

  
Expected 21.1 14.1 10.6 16.9 14.1 12.1 15.9 
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Table 11 shows the agreement between the SNS outliers and the z-score out-
liers on a year by year basis, where both are using a 500 day window. It is inter-
esting to see the agreement between the two methods, and the fact that the most 
outliers occur during the worst-performing S & P 500 years.  

Table 12 details the exact days of the outliers, comparing the SNS with the 
z-scores again, both with 500-day windows, for 5284 trading days of the S & P 
500 from January 2, 1997 to December 29, 2017. Note that 23 of the 24 SNS 
“outliers” are also declared “outliers” by the z-scores, for excellent agreement. 
The results for the other window lengths are consistent with these results. 
 
Table 11. Year-by-year comparisons of high and low SNS outliers with high and low 
z-scores, and current value of the S & P-500 index, with the yearly change. 

Year 
Low 
SNS 

High 
SNS 

Low 
z-score 

High 
z-score 

Starting 
Value 

Change 
in year 

1997 0 0 2 2 737.01 238.03 

1998 0 0 3 3 975.04 253.06 

1999 0 0 0 0 1228.1 227.12 

2000 0 0 2 2 1455.22 −171.95 

2001 0 1 2 2 1283.27 −128.6 

2002 0 1 0 3 1154.67 −245.64 

2003 0 0 0 0 909.03 199.45 

2004 0 0 0 0 1108.48 93.6 

2005 0 0 0 0 1202.08 66.72 

2006 1 2 0 2 1268.8 147.8 

2007 1 3 11 5 1416.6 30.56 

2008 4 5 18 12 1447.16 −515.36 

2009 0 0 0 2 931.8 201.19 

2010 0 0 0 0 1132.99 138.88 

2011 2 1 4 3 1271.87 5.19 

2012 0 0 0 0 1277.06 185.36 

2013 0 0 0 0 1462.42 369.56 

2014 0 0 2 1 1831.98 226.22 

2015 2 1 6 3 2058.2 −45.54 

2016 0 0 1 0 2012.66 245.17 

2017 0 0 0 0 2257.83 415.78 

TOTAL 10 14 51 40 2673.61 (12/29/2017) 

 
Table 12. Daily comparisons of “Outliers” as detected by SNS and z-scores. 

 
High z Low z Neither TOTAL 

High SNS 14 0 0 14 

Low SNS 0 9 1 10 

Neither 26 42 5192 5260 

TOTAL 40 51 5193 5284 
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6. CUSUM and EWMA Analyses on the S & P 500 Data 

Because the original daily percentage changes are considered to be independent 
observations, the Sequential Normal Scores are also considered to be indepen-
dent observations, and both sets of observations lend themselves to analysis us-
ing CUSUMs and EWMA. Tables 13-15 compare the CUSUM and EWMA 
computations on the z-scores using a 500-day window, with the SNS using a 
500-day window, starting with trading day 501 (December 28, 1998) and ex-
tending through December 29, 2017. Similar results occur with the other win-
dow sizes but are not reported here.  
 
Table 13. Yearly totals of significant CUSUMs and EWMA. 

 
CUSUMs EWMA 

SNS z-SCORES SNS z-SCORES 

YEAR HIGH LOW HIGH LOW HIGH LOW HIGH LOW 

1999 0 0 0 0 0 0 0 0 

2000 0 0 3 1 0 2 0 2 

2001 0 2 1 2 0 2 0 4 

2002 5 5 11 3 0 3 1 3 

2003 0 0 0 0 0 0 0 0 

2004 0 0 0 0 0 0 0 0 

2005 0 0 0 0 0 0 0 0 

2006 0 0 0 0 0 0 0 0 

2007 0 0 1 13 0 1 0 9 

2008 5 17 15 32 0 7 0 15 

2009 0 0 1 0 0 0 0 0 

2010 0 0 0 0 0 0 0 0 

2011 0 4 1 10 0 2 0 4 

2012 0 0 0 0 0 0 0 0 

2013 0 0 0 0 0 0 0 0 

2014 1 0 4 4 0 0 0 1 

2015 1 5 3 7 0 3 0 3 

2016 0 2 0 9 0 1 0 3 

2017 0 0 0 0 0 0 0 0 

TOTAL 12 35 40 81 0 21 1 44 

EXPECTED 6.46 6.46 6.46 6.46 6.46 6.46 6.46 6.46 

 
Table 14. Daily agreements and disagreements with CUSUMs for SNS and z-scores. 

 
Low z High z Neither TOTAL 

Low SNS 33 2 0 35 

High SNS 0 11 1 12 

Neither 48 27 4658 4733 

TOTAL 81 40 4659 4780 
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Table 15. Daily agreements and disagreements with EWMA for SNS and z-scores. 

 Low z High z Neither TOTAL 

Low SNS 21 0 0 21 

High SNS 0 0 0 0 

Neither 23 1 4685 4759 

TOTAL 44 1 4735 4780 

 
Table 13 gives the yearly totals, where it is evident that years with high num-

bers of outliers using the SNS correspond to years with high numbers of outliers 
using z-scores, for both the CUSUMs and the EWMA. As shown in Table 13 
there are 121 statistically significant CUSUMs on the z-scores of the raw data, 40 
positive, 81 negative. This is more than double the number (47) of statistically 
significant CUSUMs on the Sequential Normal Scores, which had 12 positive 
and 35 negative. Note that the years of clusters of significant CUSUMs agree 
with the periods of clusters of significant outliers, but are more sensitive to 
changes in means, rather than changes in variance.  

Table 14 gives the daily agreement figures for CUSUMs. It is interesting to 
note that out of the 47 significant CUSUMs on the SNS, 44 of them were in-
cluded as significant in the raw data, 11 of the 12 “high” and 33 of the 35 “low”. 
The excess of significant CUSUMs on the raw data can be traced back in almost 
every case to the occurrence of an unusually large CUSUM that carried over to a 
number of successive trading days that were not counted by the SNS, which mi-
nimizes the effect of an unusually large value by virtue of using ranks.  

The correlation between the positive CUSUMs (z-scores vs. SNS) is 0.944, and 
the correlation between the negative CUSUMs is 0.939, indicating an almost 
perfect proxy using the SNS. These CUSUM values computed from Sequential 
Normal Scores can be used for further analysis, such as determining “change 
dates” and other interesting phenomena just as CUSUMs on the raw data are 
often used, because they mimic the CUSUMs on the raw data without being 
overly sensitive to unusually large observations spilling over to subsequent dates.  

Table 15 is a frequency table that shows the day-by-day agreement and disa-
greement between the EWMA computed on the SNS versus the EWMA com-
puted on the z-scores, using 500-day windows for both. All 21 significant 
EWMA values computed on the SNS are also significant EWMA values for the 
z-scores. 

It is curious to note that there are no EWMA values above the threshold 0.953 
for the SNS values, and only 1 for the z-scores, but this is consistent with a simi-
lar analysis on the actual daily differences instead of the percentage daily differ-
ences. The total of 21 significant EWMA values is closer to the expected count of 
12.9 expected from a sequence of independent normal random variables, than is 
the 45 significant EWMA values observed on the z-scores. The correlation be-
tween the EWMA on the z-scores and the EWMA on the SNS is a near-perfect 
0.972. 
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7. Conclusion 

Sequential Normal Scores provide a fast and simple way of converting any time 
series of independent and identically distributed random variables into a stream 
of independent apparently standard normal random variables. Even for financial 
data such as yields of individual stocks or changes in the S & P-500 index where 
the data are not exactly independent, the Sequential Normal Scores are highly 
correlated with the original data, even mimicking the serial correlation of lag 
one and the serial correlation of absolute values. The identification of outliers 
using SNS agrees across seven different windows, and is in agreement with me-
thods based on z-scores of the original data, but without as many false positives. 
Also the CUSUM and EWMA computations on SNS agree with similar compu-
tations on the z-scores of the raw data, without as many false positives. The Se-
quential Normal Scores provide a distribution-free method of analysis with 
known probabilities, while the original data have an unknown distribution, sim-
ilar to a normal distribution, but with tail probabilities much different than 
normal probabilities. Therefore statistical methods that require exotic methods 
of analysis perhaps can be replaced by simpler methods based on the analysis of 
Sequential Normal Scores. 

References 
[1] Parent Jr., E.A. (1965) Sequential Ranking Procedures. Doctoral Dissertation, Stan-

ford University, Dept. of Statistics, Palo Alto. 

[2] McDonald, D. (1990) A Cusum Procedure Based on Sequential Ranks. Naval Re-
search Logistics, 37, 627-646. 
https://doi.org/10.1002/1520-6750(199010)37:5<627::AID-NAV3220370504>3.0.CO
;2-F  

[3] Conover, W.J., Tercero-Gómez, V.G. and Cordero-Franco, A.E. (2017) The Se-
quential Normal Scores Transformation. Sequential Analysis, 36, 397-414. 
https://doi.org/10.1080/07474946.2017.1360091  

[4] Page, E.S. (1961) Cumulative Sum Control Charts. Technometrics, 3, 1-9. 
https://doi.org/10.1080/00401706.1961.10489922  

[5] Roberts, S.V. (1959) Control Chart Tests Based on Geometric Moving Averages. 
Technometrics, 1, 239-250. https://doi.org/10.1080/00401706.1959.10489860  

[6] Qiu, P. (2014) Introduction to Statistical Process Control. CRC Press, London. 

[7] Mandelbrot, B.B. (1963) The Variation of Certain Speculative Prices. Journal of 
Business, XXXVI, 392-417. https://doi.org/10.1086/294632  

[8] Bollerslev, T., Chou, R. and Kroner, K. (1992) ARCH Modeling in Finance. Journal 
of Econometrics, 52, 5-59. 
https://doi.org/10.1016/0304-4076(92)90064-X  

[9] Engle, R. (1995) ARCH Models. Oxford University Press, Oxford. 

[10] Ding, Z., Granger, C. and Engle, R. (1983) A Long Memory Property of Stock Mar-
ket Returns and a New Model. Journal of Empirical Finance, 1, 83-106. 
https://doi.org/10.1016/0927-5398(93)90006-D  

[11] Ding Z. and Granger, C.W.J. (1996) Modeling Volatility Persistence of Speculative 
Returns: A New Approach. Journal of Econometrics, 73, 185-215. 

https://doi.org/10.4236/jamp.2018.64069
https://doi.org/10.1002/1520-6750(199010)37:5%3c627::AID-NAV3220370504%3e3.0.CO;2-F
https://doi.org/10.1002/1520-6750(199010)37:5%3c627::AID-NAV3220370504%3e3.0.CO;2-F
https://doi.org/10.1080/07474946.2017.1360091
https://doi.org/10.1080/00401706.1961.10489922
https://doi.org/10.1080/00401706.1959.10489860
https://doi.org/10.1086/294632
https://doi.org/10.1016/0304-4076(92)90064-X
https://doi.org/10.1016/0927-5398(93)90006-D


W. J. Conover et al. 
 

 

DOI: 10.4236/jamp.2018.64069 816 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.1016/0304-4076(95)01737-2  

[12] Cont, R., Bouchaud, J.-P. and Potters, M. (1997) Scaling in Stock Market Data: Sta-
ble Laws and Beyond. In: Dubrulle, B., Graner, F. and Sornette, D., Eds., Scale Inva-
riance and Beyond, Springer, Berlin, 75-85.  
https://doi.org/10.1007/978-3-662-09799-1_5  

[13] Lux, T. and Marchesi, M. (2000) Volatility Clustering in Financial Markets: A Mi-
crosimulation of Interacting Agents. International Journal of Theoretical and Ap-
plied Finance, 3, 675-702. https://doi.org/10.1142/S0219024900000826  

[14] Kirman, A. and Teyssiere, G. (2002) Microeconomic Models for Long-Memory in 
the Volatility of Financial Time Series. Studies in Nonlinear Dynamics and Econo-
metrics, 5, 281-302. https://doi.org/10.1162/10811820160130260  

[15] Lu, C.W. and Reynolds, M.R. (1999) Control Charts for Monitoring the Mean and 
Variance of Autocorrelated Processes. Journal of Quality Technology, 31, 259-274.  
https://doi.org/10.1080/00224065.1999.11979925  

[16] Dominicy, Y., Hörmann, S., Ogata, H. and Veredas, D. (2013) On Sample Marginal 
Quantiles for Stationary Processes. Statistics & Probability Letters, 83, 28-36.  
https://doi.org/10.1016/j.spl.2012.07.016  

[17] Ross, S.M. (2014) Introduction to Probability Models. Academic Press, New York. 

[18] Pepelyshev, A. and Polunchenko, A. (2017) Real-Time Financial Surveillance via 
Quickest Change-Point Detection Methods. Statistics and its Interface, 10, 93-106.  
https://doi.org/10.4310/SII.2017.v10.n1.a9  

[19] Villanueva-Guerra, E.C., Tercero-Gόmez, V.G., Cordero Franco, A.E. and Conover, 
W.J. (2017) A Control Chart for Variance Based on Squared Ranks. Journal of Sta-
tistical Computation and Simulation, 87, 3537-3562. 
https://doi.org/10.1080/00949655.2017.1376327  

 
 

https://doi.org/10.4236/jamp.2018.64069
https://doi.org/10.1016/0304-4076(95)01737-2
https://doi.org/10.1007/978-3-662-09799-1_5
https://doi.org/10.1142/S0219024900000826
https://doi.org/10.1162/10811820160130260
https://doi.org/10.1080/00224065.1999.11979925
https://doi.org/10.1016/j.spl.2012.07.016
https://doi.org/10.4310/SII.2017.v10.n1.a9
https://doi.org/10.1080/00949655.2017.1376327

	A Look at Sequential Normal Scores and How They Apply to Financial Data Analysis
	Abstract
	Keywords
	1. Introduction
	1.1. Sequential Normal Scores
	1.2. Statistical Process Management (SPM) Methods
	1.3. Outliers
	1.4. Economic Time Series
	1.5. Ordinary Ranks Compared with Sequential Ranks

	2. The Cluster Test for Outliers
	3. Example Using Host Hotel and Resorts, Inc. Data
	4. CUSUM and EWMA with Sequential Normal Scores
	5. Example Using the S & P 500 Index
	6. CUSUM and EWMA Analyses on the S & P 500 Data
	7. Conclusion
	References

