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Abstract 
In this research article, two finite difference implicit numerical schemes are 
described to approximate the numerical solution of the two-dimension mod-
ified reaction diffusion Fisher’s system which exists in coupled form. Finite 
difference implicit schemes show unconditionally stable and second-order 
accurate nature of computational algorithm also the validation and compari-
son of analytical solution, are done through the examples having known ana-
lytical solution. It is found that the numerical schemes are in excellent agree-
ment with the analytical solution. We found, second-implicit scheme is much 
faster than the first with good rate of convergence also we used NVIDA de-
vices to accelerate the computations and efficiency of the algorithm. Numeri-
cal results show our proposed schemes with use of HPC (High performance 
computing) are very efficient and reliable. 
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1. Introduction 

Reaction diffusion (RD) equations rise up naturally in systems consisting of 
many interacting factors, such as chemical reactions and are widely used to 
identify pattern formation phenomena in diverseness of biological and physical 
systems [1]. The primary ingredients of all these models are in the form of 
mathematical balance equation [1] which is in two dimensions  

( ) ( )2 ,tu u u∂ = ∇ + Rβ                       (1) 

where ( ), ,u u x y t=  is a vector of concentration variables, R(u) describes a local 
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reaction kinetics and the Laplace operator 2∇  acts on the vector u component 
wise, also β denotes a diagonal diffusion coefficient matrix [1]. Noted that we 
suppose the system to be isotropic and uniform, so β is represented by a scalar 
matrix, independent on coordinates of the system [1]. Research in this field 
starts form the classical papers of [1] [2] [3], incited by population dynamics 
issues, where researchers made modified diffusion equation:  

( ) ( ) ( ), ,t xx yyu x y t u u u∂ = + + Rβ                  (2) 

with a nonlinear source term ( ) 2R u u u= −  [2] [3] [4]. A typical solution of the 
Equation (1), a propagating front, separating two non-equilibrium homogeneous 
states, one of which ( )1u =  is stable and another one ( )0u =  is unstable, 
such fronts behavior is often said to be propagation into stable state and also 
other referred to as waves (or fronts) of transition from an unstable state [3] [4] 
[5]. The interest in these fronts was stimulated in the early 1980s, such as these 
fronts can be found in various physical, chemical as well as biological systems [5] 
[6]. 

The reaction diffusion Equation (2) represents a model equation for the 
evolution of a neutron population in a nuclear reactor and also arises in 
chemical engineering applications, such equation allows for the effects of linear 
diffusion by means of xx yy+u u  and nonlinear local multiplication or reaction 
through ( )uR  [7] [8]. 

Researchers have studied these model problems such as the stability of 
symmetric traveling waves in the Cauchy problem for a more general case than 
Equation (2); also some researchers explained perturbation method and found 
an approximate solution by expanding the solution in terms of a power series 
and in terms of some small parameters [8]. 

In this paper, we suggest a reaction diffusion system, which agree to several 
physical phenomena, the most common is the change in space and time of the 
concentration of one or more chemical substances. Local chemical reactions in 
which the metamorphosed into each other, and diffusion which causes the 
substances to spread out over a surface in space. Reaction diffusion systems are 
naturally applied in chemistry. However, the system can also describe dynamical 
processes of non-chemical nature. Mathematically, reaction diffusion systems 
take the form of semilinear parabolic partial differential equations. The general 
form of our proposed reaction diffusion system in two dimension, is  

( ) ( ) ( )2 , , , , 0t xx yyu u u u v u x y t= + + − ∈ −∞ ∞ ≥β α          (3) 

( ) ( ) ( )2 , , , , 0t xx yyv v v v u x y t= + − ∈ −∞ ∞ ≥β            (4) 

where β is diffusion coefficient and α is a reactive factor, and ( ),u x t  is 
concentration and ( ),v x t  is the velocity of the chemical reaction. The aim of this 
work is to look into the viability of finite difference schemes for the numerical 
solution of two-dimension coupled reaction diffusion system. The proposed 
finite difference schemes show good agreement with analytical solution along 
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efficiency in time. Comparison of two finite difference (FD) schemes is also 
mentioned with CPU efficiency. 

The outlook of the paper is in Section 2 analytical solution, Section 3 
smoothness and uniqueness, Section 4 numerical methods, Section 5 numerical 
results and Section 6 discussion.  

2. Analytical Solution 

To derive the analytical solution of the given system in (3), (4), we assume the 
solution of the two dimension coupled reaction diffusion system, in the following 
form  

( ) 2, , e
t x y

u x y t
− −

=
α

                         (5) 

( ) 2, , e
t x y

v x y t
− + +

=
α

                         (6) 

3. Smoothness and Uniqueness of the Reaction Diffusion  
System 

In order to guarantee the smoothness and uniqueness of a positive solution and 
to obtain upper and lower bounds of the solution, it is necessary to impose some 
general assumptions on the various physical parameters and the reaction 
function [9] [10]. Throughout this paper, we always assume that the diffusion 
coefficient β is positive in domain Ω also at 0t =  the initial values 0 0,u v  are 
non-negative, where the smoothness hypothesis is used only for the existence 
problem of the corresponding linear system, and the non-negative hypothesis on 
the data is to obtain non-negative solutions [9] [10]. Let us consider the system,  

( ) ( )
( ) ( )

( ) ( )
[ ] ( )
[ ] ( )

( )
( ) ( )
( ) ( )

( )

2

1 1

2 2

0

0

,

,

where 1, , and ,

,

,

Boundary Conditions, 0, ,

0, , ,

0, , ,

Initial Conditions, ,

m
t

m
t

u u u f u v

v v u g u v

m f u v uv g u v v

B u h x y

B v h x y

t x y

u x y u x y

v x y v x y

x y

α

−∇ ⋅ ∇ = −  
−∇ ⋅ ∇ = 


≥ = − = 


= 


= 


> ∈Ω 

=  
 =  

∈Ω 

β

β

            (7) 

motivated by the nonlinear reaction functions given by Equation (7), we make 
the following basic assumption on functions f and g [9] [10].  

3.1. Assumption or Hypothesis (H) 

f v∂ ∂  exists and is bounded subsets of domain Ω and there exists a function with 
( ), 0oc x y ≥ , such that ( ) ( ) ( )1 20 , , ,of u v f u v c x y≤ ≤ ≤  for 1 20 v v≤ ≤ ≤ ∞  [9] 

[10]. This definition implies that the function f is monotone non-decreasing in v 
and is uniform bounded for 0v ≥  [9] [10]. Clearly this condition is satisfied by 
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both functions f and g, thus this property leads to  

( ) ( )
( ) ( )

1

2

, , , ,

, , , , ,

m

m

F x y u v u f u v

F x y u v u g u v

= − 


= + 
                  (8) 

where above Equation (8) represents 1 2,F F  are quasi monotone non-increasing 
and quasi monotone non-decreasing functions in Ω respectively [9] [10]. 
According to classification of the reaction functions, 1 2,F F  are typed III functions 
[9] [10], which leads to the following definition of the solutions.  

3.2. Definition 

A smooth pair of two vector functions ( ),u v  , ( ),u v  defined in + ×ΩR  are 
called upper and lower solutions respectively, if they satisfy the following 
inequalities  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
[ ] [ ]
[ ] [ ]

( )
( ) ( )

2

1 1 1

2 2 2

0

, 0 , ,

, 0 , ,

where 1, , , and , ,

( , )

( , )

Boundary Conditions, 0, ,

0, , , 0,

m m
t t

m m
t t

u u u f x v u u u f x y v

v v u g x v v v u g x y v

m f x y v uv g x y v v

B u h x y B u

B v h x y B u

t x y

u x y u x y u x

α

−∇ ⋅ ∇ + ≥ ≥ −∇ ⋅ ∇ + 


−∇ ⋅ ∇ − ≥ ≥ −∇ ⋅ ∇ − 
≥ = − =

≥ ≥ 


≥ ≥ 
> ∈Ω

≥ ≥

   

    









β β

β β

( )
( ) ( ) ( )

( )
0

,

0, , , 0, ,

Initial Conditions, ,

y

v x y v x y v x y

x y














 
 ≥ ≥  

∈Ω 



    (9) 

In the above definitions the smoothness of ( ),u v  , ( ),u v  is in the sense that 
these functions are continuously differentiable to the order appeared in 
Equations (7) and (8) respectively [9] [10]. Hypothesis and above definition 
leads to the following theorem.  

3.3. Theorem 

Let f and g satisfy above hypothesis (H). If there exist upper and lower solutions 

( ),u v  , ( ),u v  of system 7, such that u u≤  and v v≤  in + ×ΩR , then the 

sequence { },k ku v  , { },k ku v  converges monotonically from above and below, 

respectively, to a unique solution (u, v) of system (7) [9] [10]. Moreover  

( ) ( ) ( )
( ) ( ) ( )

( )
, , , , , ,

0, ,
, , , , , ,

u t x y u t x y u t x y
t x y

v t x y v t x y v t x y

≤ ≤  > ∈Ω
≤ ≤ 





        (10) 

The usefulness of the above theorem is that through suitable construction of 
upper and lower solutions, not only can the existence problem be ensured, but 
the stability and the asymptotic behavior of the time dependent solution can also 
be established from the behavior of the upper and lower solutions [9] [10]. Thus, 
the definition of stability of a steady state solution is in the usual sense of Lya-
punov function [9] [10]. Unlike scalar systems or coupled systems with qua-
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si-monotone increasing function, the upper and lower solutions for the present 
system are interconnected and to be determined simultaneously from relations 
in Equation (9). This makes the determination of these functions more delicate, 
especially in relation to the stability property of non-homogeneous systems [9] 
[10]. Nevertheless, for the global existence problem or the stability problem with 
homogeneous boundary conditions the construction of those functions is not 
very difficult [10].  

4. Numerical Methods 

We consider the numerical solution of the nonlinear system in (5), (6) and (7) in 
a finite domain ( ){ }, | ,x y a x b c y dΩ = < < < < , where the first step is to 
choose integers n and m to define step sizes ( )h b a n= −  and ( )k d c m= −  
[11] [12]. Partition the interval [a, b] into n equal parts of width h and the 
interval [c, d] into m equal parts of width k and place a grid on the rectangle R 
by drawing vertical and horizontal lines through the points with coordinates 
( ),i jx y , where ix a ih= +  for each 0,1,2, ,i n=   and jy c jk= +  for each 

0,1,2, ,j m=   also the lines ix x=  and jy y=  are grid lines, and their 
intersections are the mesh points of the grid [12] [13] [14] [15] [16]. For each 
mesh point in the interior of the grid, ( ),i jx y , for 1, 2, , 1i n= −  and 

1,2, , 1j m= − , also we assume , 0,1,nt nt n= =   where t is the time grid step 
size [16]. We denote the analytical and numerical solutions at the grid point 
( ),m nx t  by n

mu  and n
mU  respectively.  

4.1. Second Order Implicit Scheme  

The Crank Nicolson scheme for the system in (3) and (4) can be displayed as 
follows:  

( ) ( ) ( )

1
, ,

1
, ,
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+

+
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=
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=
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( ) ( )1 2 2 2
, 1 ˆ ˆ ˆ 0,

8
n n

l m x y
kv v v uδ δ+






















− − + + = 

R

          (11) 

where 1 2

k
h
β

=R  [17] [18]. The scheme in Equation (11) is a nonlinear implicit  
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scheme with block linear penta diagonal structure [17] [18]. The Newton's 
iterative method is used to solve this linear system, such scheme is of second 
order accuracy in both directions, space and time respectively [17] [18]. The 
scheme is unconditionally stable using the von Neumann stability analysis [18]. 

4.2. Computationally Efficient Implicit Scheme 

In search of a time efficient alternate, we analyzed the naive version of the Crank 
Nicolson scheme for the two dimensional equation, and find out that that 
scheme is not time efficient such that to get time efficiency, the common name 
of Alternating Direction Implicit (ADI) method can be used [19] [20]. In ADI 
scheme, the two steps are as follows:  

( )
2 2

, , ,

, , , ,
2 1 2

, , ,

2 2
, , ,

2 1 2
,

ˆ1 1
2 2

ˆˆ1 1
2 2

ˆ1 1
2 2

1 1
2 2

n n
x l m y l m l m

n n n n
l m l m l m l m

n
y l m x l m l m

n n
x l m y l m l m

n
y l m x

r ru u tf
f u u v

r ru u tf

r rv v tg

r rv

δ δ
α

δ δ

δ δ

δ δ

+

+

   − = + + ∆         = −
    − = + + ∆        

   − = + + ∆   
   
   − = +  
   

( ), , , ,

, ,ˆ ˆ

n n n n
l m l m l m l m

l m l m

g u v v
v tg









 
  = −

+ ∆  

   (12) 

The trick used in constructing of ADI scheme, is to split time step into two 
sweeps and apply two different stencils in each half time step, therefore to 
increment time by one time step in grid point , we first compute both of these 
stencils, such that the resulting linear system is block tridiagonal [20] [21] [22]. 
The scheme in Equation (12) is a nonlinear implicit scheme of second order 
accuracy in space and time. According to Von Neumann stability analysis, such 
scheme is also unconditionally stable [22] [23] [24] [25]. 

4.3. Algorithm 

The nonlinear system of Equation (12), can be written in the form:  

( ) 0,R W =                         (13) 

where ( )1 2 3 2, , , , t
nR r r r r=  , ( )1 1 1 1 1 1

1 1 2 2, , , , , ,n n n n n n
m mW u v u v u v+ + + + + +=   and  

1 2 3 2, , , , nr r r r  are the nonlinear equations obtained from the system in 
Equation (12). The system of Equations in (12) is solved by Newton's iterative 
method using the following steps:  

1) Specify ( )0W  as an initial approximation.  
2) For 0,1,2,k =   until convergence achieve.  
− Solve the linear system ( )( ) ( ) ( )( )k k kA W W R W∆ = −  

− Specify ( ) ( ) ( )1k k kW W W+ = + ∆ ,  
where ( )( )kA W  is ( )m m×  Jacobian matrix, which is computed analytically 
and ( )kW∆  is the correction vector [26] [27]. In the iteration method solution 
at the previous time step is taken as the initial guess. Iteration at each time step is  
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stopped when ( )( )kR W Tol
∞
≤  with Tol is a very small prescribed value. The  

linear system obtained from Newton's iterative method, is solved by Gauss 
elimination method with partial pivoting also convergence done with iterations 
along less CPU time [28] [29] [30]. 

4.4. Norms 

The accuracy and consistency of the schemes is measured in terms of error 
norms specially 2L  and L∞  which are defined as:  

( )
( )( )

ecact Approximation ecact Approximation

1 1

ecact Approximation ecact Approximation
2 2 1

2

max

log Error Error
Rate

log 2

m

j ji m j

m

j j
j

h h

L u u u u

L u u u u

h h

∞ ∞ ≤ ≤ =

=


= − = −


= − = − 


= 


∑

∑         (14) 

Two more interesting error are listed below,  

( )

2ecact Approximation
, ,

relative 2exact
,

2ecact Approximation
, ,

2

Error

RMS , where Total terms

i j i j
i j

i j
j

i j i j
i j

u u

u

u u
M

M

− 
=




−


= = 


∑∑

∑

∑∑

     (15) 

5. Numerical Results 

Numerical computations have been performed using the uniform grid, for the 
test problem, the approximated and analytical solutions such as ( ), ,u x y t  and 
( ), ,U x y t  have been given in Table 1, Table 2 at different grids with some 

fixed parameters such as 1α = , 1 4β =  and 0.0001k =  and 1t =  using 
implicit Crank Nicolson scheme. Graphically, Figures 1-2 explain Crank 
Nicolson scheme with different parameters while Figures 3-4 indicate ADI 
scheme with error profile in Figures 5-6. Also in Tables 3-8, we analyzed 
some more feathers using ADI scheme at different grids along the same 
parameters as we mentioned above. We discussed some interesting feathers 
regarding computer system using ADI scheme in Table 9, Table 10, along Self 
time which is the time spent in a function excluding the time spent in its child 
functions [29] [30] [31] [32]. Self time, includes overhead resulting from the 
process of profiling, such as Child functions are involved in coding of such 
problems [29] [30] [31] [32]. Thus later scheme works very fine for half 
spacing as we improve accuracy, which is lead by Richardon extrapolation 
method, see from Table 10. 
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Table 1. Error comparison by crank nicolson scheme at different grid sizes, at t = 1 and 
time step = k = 0.0001. 

Grid Size relativeError  RMS 2L  L∞  

11 × 11 0.0089 0.0152 0.1671 0.0285 

21 × 21 0.0091 0.0312 0.1869 0.0463 

31 × 31 0.0091 0.0403 0.2139 0.0512 

41 × 41 0.0095 0.0679 0.3913 0.0710 

51 × 51 0.0099 0.0931 0.5524 0.0989 

 
Table 2. Rate of convergence comparison by crank nicolson scheme at different grid sizes 
at t = 1 and time step = k = 0.0001. 

Grid Size 
2

RateL  RateL∞
 

2L  L∞  

11 × 11 2.9385 2.0235 0.1671 0.0285 

21 × 21 2.2367 1.9896 0.1869 0.0463 

31 × 31 1.8976 1.4781 0.2139 0.0512 

41 × 41 1.2145 1.2797 0.3913 0.0710 

51 × 51 1.1135 1.0923 0.5524 0.0989 

 
Table 3. Solution by ADI scheme at different locations at t = 1, time step = k = 0.0001 
and grid size = 25 × 25. 

Space Location .appu  AnalyticalU  Erroru U−  

(0.0152, 0.1667) 0.494155003687347 0.494367466355141 0.00021246 

(0.0455, 0.1970) 0.53835177275621 0.535255683530614 0.0031 

(0.0606, 0.2424) 0.565563567758470 0.558073805129842 0.0075 

(0.1970, 0.1970) 0.626597867998406 0.621185376572772 0.0054 

( 0.2879, 0.2879) 0.749945814748917 0.739953358282411 0.0100 
 
Table 4. Error comparison by ADI scheme at different grid sizes, at t = 1 and time step = 
k = 0.0001. 

Grid Size relativeError  RMS 2L  L∞  

11 × 11 0.0741 0.0173 0.1899 0.0713 

21 × 21 0.0341 0.0283 0.5934 0.0428 

31 × 31 0.0123 0.0362 1.1231 0.0232 

41 × 41 0.0099 0.0428 1.7538 0.0155 

51 × 51 0.0090 0.0485 2.4713 0.0136 

 
Table 5. Error comparison by ADI scheme at different time with time steps = k = 0.0001. 

t = time relativeError  RMS 2L  L∞  

0.01 0.00013 0.0102 1.04713 0.00198 

0.05 0.00089 0.0209 1.09513 0.00589 

0.1 0.0011 0.0319 1.12686 0.00989 

0.5 0.0039 0.0400 1.8535 0.0109 

1 0.0090 0.0485 2.4713 0.0136 
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Table 6. Error comparison by ADI scheme at different time steps. 

k = time steps relativeError  RMS 2L  L∞  

0.01 0.0484 0.2942 2.3542 0.1236 

0.001 0.0483 0.2936 2.3393 0.1240 

0.0001 0.0461 0.2935 2.3380 0.1241 

0.00001 0.0423 0.2935 2.3378 0.1241 

 
Table 7. Rate of Convergence Comparison by ADI scheme at different grid sizes. 

Grid Size 
2

RateL  RateL∞
 

2L  L∞  

11 × 11 2.8009 2.8201 0.1899 0.0113 

21 × 21 2.8458 2.8733 0.5934 0.0128 

31 × 31 2.8619 2.8934 1.1231 0.0132 

51 × 51 2.8458 2.8733 2.4713 0.0136 

 
Table 8. Error Comparison by ADI scheme at different space step sizes.  

h relativeError  RMS 2L  L∞  

0.04 0.0483 0.2936 7.3393 0.1240 

0.02 0.0118 0.0406 1.0159 0.0168 

0.01 0.0107 0.0357 0.8920 0.0148 

0.005 0.0072 0.0219 0.5484 0.0090 

0.000625 0.0002 0.0118 0.0253 0.0011 

 
Table 9. Interesting feathers of ADI scheme at different grid sizes.  

Grid Size Self Time Total Time CTC. Function Convergence Rate 

11 × 11 0.312 s 0.743 s 12,642 2.8201 

31 × 31 1.094 s 2.291 s 38,322 2.8934 

51 × 51 1.968 s 4.030 s 65,602 2.8733 

 
Table 10. Interesting feathers of ADI scheme at different grid sizes. 

Grid Spacing Self Time Total Time CTC. Function Convergence Rate 

h 12.757 s 18.458 s 293,250 2.8201 

h/2 3.18925 s 4.6145 s 73,356 2.8934 

6. Discussion 

In this research article, Crank Nicolson scheme has been successfully applied to 
find the solutions of two-dimension nonlinear reaction diffusion system. The 
accuracy and stability of the scheme demonstrated by test problem with data 
tables and figures. According to T Lakoba [32], implicit CN scheme is not 
efficient in term of computational time, as we see, the linear algebraic system 
from Jacobean matrix which is Penta block diagonal [32] [33] [34], with two 
block diagonals adjacent and two are unpaired at the distance of L from main 
diagonal [33] [34] [35]. During simulation, unpaired block diagonals increase 
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Figure 1. Shows results using Crank Nicolson scheme with t = 0.1 and Grid = 25 × 25. 

 

 
Figure 2. Shows results using Crank Nicolson scheme t = 0.3 and Grid = 53 × 53. 

 
computational time and increase memory capacity [34] [35] [36]. Solving such a 
linear system is not practical due to extremely high time complexity of solving a 
linear system by the means of Gaussian Elimination method or residual technique 
[34] [35] [36]. Hence an Alternating Direction Implicit (ADI) scheme can be 
implemented to solve the numerical PDE whereby one dimension is treated 
implicitly and other dimension explicitly for half of the assigned time step and vice 
versa for the remainder half of the time step [35] [36]. The benefit of this strategy  
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Figure 3. Shows results using ADI scheme with t = 0.1 and Grid = 53 × 53. 
 

 
Figure 4. Shows results using ADI scheme with 0.1t =  and 53 53Grid = ×  with log 
scaling in xy plane of ( ),u x y  and only y log scaling in ( ),v x y . 

 
is that the implicit solver only requires a tridiagonal matrix algorithm to be 
solved, so that the difference between the true Crank Nicolson solution and ADI 
approximated solution has an order of accuracy of ( )2O k  and hence can be 
ignored with a sufficiently small time-step [32]-[37]. The ADI method is a pre-
dictor corrector scheme where part of the difference operator is implicit in the 
initial (prediction) step and another part is implicit in the final (correction) step, 
whereas in ADI scheme two diagonals are paired with main diagonal and no 
other diagonals as in Crank Nicolson, thus these schemes reduce the computa-
tional time and increase efficiency [32]-[37]. The following diagrams indicate the  
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Figure 5. Shows results using CN scheme at 0.5t =  and 101 101Grid = ×  with log 
scaling in xy plane for ( ),u x y  and ( ),v x y  by Crank Nicolson. 

 

 
Figure 6. Shows results at different grids, for simple error in the concentration of the 
diffusion reaction system, with step up in grid sizes, make significant change in error but 
incremental in time, increase error as we see from Figure 6. 

https://doi.org/10.4236/jamp.2018.64066


S. Hasnain et al. 
 

 

DOI: 10.4236/jamp.2018.64066 749 Journal of Applied Mathematics and Physics 
 

 
Figure 7. Shows simulations with capacity of the system along CPU usage and performance. 
Also processor calls and threads, by Crank Nicolson. Specification of the system is 
mentioned in computer applications header. 

 
performance of the CPU for two different schemes. The derivation of our ADI 
scheme for a nonlinear PDE system relies on a few key observations. Most im-
portantly, using the solution at time levels previous to 1nt t += , the algorithm 
converts the nonlinear spatial operator into an implicit but linear operator with 
variable coefficients. The resulting approximately-factored equation is solved in 
sweeps along each of the Cartesian directions, including, as is common in ADI 
approaches, an intermediate 1 2nt +  step, so that all of the proposed algorithms 
are embodied in the two steps formula that every iteration updated the block tri-
diagonal linear algebraic system [32]-[39]. 

Computer Applications 

Since last two decades, there is a challenging hasting among vendors and 
software development communities to bring improvement in performance for  
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Figure 8. Shows simulations with ADI. CPU usage increase from 9% to 13% with efficiency. 

 

 
Figure 9. Shows GPU CPU collaboration. 
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High performance computing system, by halting the traditional development to 
increase the clock rate, number of cores that are being increased in the system, 
however, many cores architecture based different powerful devices such GPU 
(Graphics Processing Unit) and GPGPU (General Purpose Graphics Processing 
Unit) by NIVIDA, MIC (Many Integrated Core) by Intel and FPGA (Field 
programmable Gate Array) have been introduced recently that outperform the 
conventional CPU processing by thousand folds [29] [38] [39]. In order to 
utilize these powerful devices, new software stacks, algorithms and frameworks 
have been introduced, ehereas the modern computing system provides massive 
parallelism through inter node and intra node computation where inter node 
processing is performed by MPI (Message Passing Interface), most popular 
programming model and intra node by OpenMP directive programing model 
[29] [38] [39].  

Keeping in view, the advantages of this emerging technology, we have intro-
duced Crank Nicolson and ADI schemes with the help of this application by us-
ing FUJITSU Primergy RX 350 S7 HPC computer having Intel Xeon E5-2667 
processor of 2.80 GHz processing power which contained 16 physical cores and 
32 logical cores, main memory size of 32 GB and HDD 4 TB inside it [29] [38] 
[39], see from Figures 7-9. Moreover, we used 2 Tesla k-80 accelerated NVIDA 
devices that are capable to deliver not only graphical processing purpose but also 
for general purpose processing [29] [38] [39]. However, our application struc-
ture is designed for MATLAB based on hybrid of tri-hierarchy level tightly 
coupled programming model containing CUDA (Compute Uniform Device 
Architecture) for accelerated computation [29] [38] [39].  
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