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Abstract 
While numerical approaches to solve financial and actuarial stochastic opti-
mization problems are usually based on dynamic programming, we explore an 
approach through a stochastic maximum principle formulation followed by 
the use of least squares regression to determine the optimal control policy. We 
show that this methodology can be applied to a number of realistic financial 
and actuarial problems of increasing complexity to highlight potential strengths 
and applications of this approach. We cast a direct connection between this 
approach and the stochastic duality approach to stochastic optimization. In 
particular, we discuss the potential improvements which can derive from this 
reformulation in terms of numerical precision and in order to provide bounds 
to control the simulation errors. The critical numerical issue is shown to be 
the numerical computation of conditional expectations which is performed 
applying the approach of Longstaff and Schwartz [1]. 
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1. Introduction 

A portfolio simulation approach to the valuation of optimal portfolio policies 
appears to be the only viable approach in many financial and actuarial applications. 

While usually numerical methods are formulated within a dynamic programming 
approach to the optimization problem, we explore the possibility to state a 
numerical scheme that goes through the solution of the forward-backward 
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stochastic differential equation (FBSDE, hereafter) which arises from the 
maximum principle formulation of the optimal control problem. We exemplify 
situations where the maximum principle approach to portfolio optimization 
jointly with the simulation approach to the backward stochastic differential 
equation (BSDE, hereafter) provides an efficient alternative to standard simulation 
methods based on direct Montecarlo simulation and produces a reliable estimate 
of the optimal allocation strategies. 

Our computation approach relies on the least-squares Monte Carlo approach 
for estimating the conditional expectations made popular in financial mathematics 
by of Longstaff and Schwartz [1] and it was first applied to BSDEs and analyzed 
in this setting by Bouchard and Touzi [2], Gobet et al. [3] and Lemor et al. [4]. 

More recently, Bender and Steiner [5] focus on the least-squares Monte Carlo 
scheme for approximating the solution of a BSDE by using basis functions which 
form a system of martingales. 

The paper is organized as follows. Section 2 introduces the stochastic maximum 
principle and the economic implications of the first-order adjoint process. 
Section 3 illustrates some known results on the FBSDEs. In Section 4 we analyze 
the simulation approach to the BSDEs. Section 5 is devoted to the discussion of 
some financial and actuarial applications. 

2. The Stochastic Maximum Principle 

We consider a finite time horizon [ ]0,T , and a complete probability space 
( ), ,Ω   with a filtration { }

0

B
t t≥
 , where 0t ≥  is the time variable. The 

filtration { }
0

B
t t≥
  is the completion of the natural filtration generated by a 

m-dimensional standard Brownian motion ( )B t , 0t ≥ . This signifies that the 
system noise represented by the Brownian motion is the only source of 
uncertainty in the problem, and the past information about the noise is available 
to the decision-maker. Sometimes we will use a starting point s t> . In this case 
{ }B

t t s≥
  will be the complete filtration generated by ( ) ( ) ( )sB t B t B s= − . 
Let us consider the time evolution of the system described by a state variable 
( )x ⋅  whose dynamics follow the stochastic differential equation:  

( ) ( ) ( )( ) ( ) ( )( ) ( ) [ ]
( ) 0

d , , , , d , 0, ,

0 ,

x t b t x t t t x t t B t t T

x x

ν σ ν = + ∈


=       
(1) 

where [ ]: 0, n nb T × × →   , [ ]: 0, n d mTσ ×× × →   , and   is a convex 
body of k . 

The function ( )ν ⋅  is the control variable representing the policy of the 
decision-maker at any time and it is required to be progressively measurable 
since the controller knows what happened up to the moment, but not able to 
foretell what is going to happen later on, due to the uncertainty of the system. 

The objective is to minimize a given cost functional defined as:  

( )( ) ( ) ( )( ) ( )( ){ }0
, ,

T
J f t x t t dt h x Tν ν⋅ = +∫

            
(2) 
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with [ ]: 0, nf T × × →    and : nh →  , over the set of the admissible 
controls:  

( ) [ ] ( ) { } [ ]{ }0 0,
: : 0, | is -progr. meas. .k B

ad t t T
x Tν ν

∈
= ×Ω→ ⊆ ⋅    

Of course, for any ( ) ( )0ad xν ⋅ ∈ , by standard assumptions on b, σ, ν that 
can be found, e.g., in Yong and Zhou ([6], Theorem 6.17, p. 50), the above state 
Equation (1) admits a unique solution ( ) ( )( ): ;x x ν⋅ = ⋅ ⋅  (in the sense of Yong 
and Zhou [6], Definition 6.15, pp. 48-49) and ( ) ( )( ),x ν⋅ ⋅  is called an 
admissible pair. 

Then, the problem is to find an optimal control ( ) ( )0ad xν ⋅ ∈   such that:  

( )( )
( ) ( )

( )( )
0

inf .
ad x

J J
ν

ν ν
⋅ ∈

⋅ = ⋅


 

The corresponding ( ) ( )( ): ;x x ν⋅ = ⋅ ⋅   and ( ) ( )( ),x ν⋅ ⋅   are called optimal 
state trajectory and optimal pair, respectively. 

Recalling that, for any given function φ,  

{ }min max ,ϕ ϕ= − −  

we may also treat maximization problems with the same steps. 
The Hamiltonian function associated to our problem is given by:  

( ) ( ) ( )( ) ( ), , , , : , , , tr , , , , ,H t x y z y b t x z t x f t xν ν σ ν νΤ= + −  

( ) [ ], , , , 0, ,n n d mt x y z Tν ×∈ × × × ×     

while the generalized Hamiltonian function is given by the following FBSDE:  

( ) ( ) ( ) ( )( ) ( )1, , , , : , , , tr , , , , , , ,
2

G t x y P y b t x t x P t x f t xν ν σ ν σ ν νΤ= + −  

( ) [ ], , , , 0, .n n dt x y P Tν ∈ × × × ×     

The extended Hamiltonian system corresponding to the pair ( ) ( )( ),x ν⋅ ⋅   is 
given by the following FBSDE:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) [ ]

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ){
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

( )

1

1

d , , , , d

, , , , d , 0,

d , , , , d d , 0,

d , , , ,

, , , ,

, , ( ) , ,

, ,

y

z

x

x x

m
j j

x x
j

m
j j

j j
j

xx

x t H t x t t y t z t t

H t x t t y t z t B t t T

y t H t x t t y t z t t z t B t t T

P t b t x t t P t P t b t x t t

t x t t P t t x t t

t x t t Q t Q t t x t t

H t x t

ν

ν

ν

ν ν

σ ν σ ν

σ ν σ ν

Τ

Τ

=

Τ

=

=

+ ∈

= − + ∈

= − −

−

 − +  

−

∑

∑

   

   

   

 ( ) ( ) ( )( )} ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) [ ]

1

0

, , d d , 0,

0 , ,

, , max , , a.e. 0, , -a.s.,

m
j j

j

x xx

t y t z t t Q t B t t T

x x y T h x T P T h x T

t x t t t x t t T
ν

ν

ν ν

=

∈


















+ ∈



= = − = −


= ∈

∑






 

   
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where:  

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ){ }

, , : , , , ,

tr , , , , ,

t x G t x y t P t

t x z t P t t x t t

ν ν

σ ν σ νΤ

=

 + − 
 


 

( ) [ ], , 0, ,nt x Tν∀ ∈ × ×   

is the -function. 
In the extended Hamiltonian system above, the second and the third relations 

are clearly BSDEs and called adjoint equation of the first-order and adjoint 
equation of the second-order respectively, while the last relation is the so-called 
maximum condition. 

The state variable joint with the related first-order adjoint equation are called 
Hamiltonian system. 

Definition 2.1. ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,x y z P Qν⋅ ⋅ ⋅ ⋅ ⋅ ⋅   is called an optimal 
6-tuple (resp. admissible) if ( ) ( )( ),x ν⋅ ⋅   is an optimal pair, (resp. is an 
admissible pair), ( ) ( )( ),y z⋅ ⋅  is an adapted solution of the first-order adjoint 
equation and ( ) ( )( ),P Q⋅ ⋅  is an adapted solution of the second-order adjoint 
equation.  

We assume the following hypothesis for , , ,b f hϕ σ= . 
Hypothesis 2.2. The map φ is twice continuously differentiable in nx∈  

and there exist a constant 0K >  and a modulus of continuity  
[ ) [ ): 0, 0,m +∞ → +∞  such that, for all ( ) [ ], 0,t Tν ∈ × ,  

( )1,0, ,t Kϕ ν ≤  

and, [ ]0,t T∀ ∈ , 1 2, nx x ∈ , 1 2,ν ν ∈ ,  

( ) ( ) ( )1 1 2 2 1 2 1 2, , , , ,t x t x K x x mϕ ν ϕ ν ν ν− ≤ − + −  

( ) ( ) ( )1 1 2 2 1 2 1 2, , , , ,x xt x t x K x x mϕ ν ϕ ν ν ν− ≤ − + −  

( ) ( ) ( )1 1 2 2 1 2 1 2, , , , .xx xxt x t x m x xϕ ν ϕ ν ν ν− ≤ − + −  

The following statement is the well-known (Pontryagin) stochastic maximum 
principle, which gives a set of first-order necessary condition for 6-tuple pairs. 

Theorem 2.3 (stochastic maximum principle). Let Hypothesis 2.2 hold and 
( ) ( )( ),x ν⋅ ⋅   be an optimal pair. Then the optimal 6-tuple  
( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,x y z P Qν⋅ ⋅ ⋅ ⋅ ⋅ ⋅   solves the above extended stochastic 

Hamiltonian system.  
Proof. See, e.g., Yong and Zhou ([6], Chapter 3, pp. 123-137). 
Hypothesis 2.4. The maps , ,b fσ  are locally Lipschitz in ν ∈  and their 

derivatives in nx∈  are continuous in ( ), nx ν ∈ ×  .  
Theorem 2.5 (sufficient condition of optimality). Let Hypotheses 2.2 and 

2.4 hold. Suppose that ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,x y z P Qν⋅ ⋅ ⋅ ⋅ ⋅ ⋅   is an admissible 
6-tuple, ( ) ( )( ), , , ,H t y t z t⋅ ⋅  is concave -a.s., and the maximum condition is 
verified, i.e.  

( ) ( )( ) ( )( ) [ ], , max , , a.e. 0, , -a.s.,
U

t x t y t t x t t T
ν

ν ν
∈

= ∈      
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then ( ) ( )( ),x ν⋅ ⋅   is an optimal pair.  
Proof. See, e.g., Yong and Zhou ([6], Chapter 3, pp. 139-140). 

Economic Implications of the First-Order Adjoint Process 

The first-order order adjoint process plays a very important role in economic 
theory that we aim to introduce. 

Assume that the framework of the previous section hold, but for simplicity all 
the variables are scalar-valued. For any initial data ( ) [ ], 0,t x T∈ × , consider 
the controlled system:  

( ) ( ) ( )( ) ( ) ( )( ) ( ) [ ]
( )

d , , , , d , , ,

,

x s b t x s s s x s s B s s t T

x t x

ν σ ν = + ∈


=
 

the set of admissible control:  

( ) [ ] ( ) { } [ ]{ },
, : : , | is -progr. meas. .B

ad s s t T
x t t Tν ν

∈
= ×Ω→ ⊆ ⋅    

and the functional:  

( )( ) ( ) ( )( ) ( )( ){ }, ; , , d ,
T

t
J x t f s x s s s h x Tν ν⋅ = +∫  

where ( ) ( )( ): ; ; ;x x t x u⋅ = ⋅ ⋅  is the unique solution to the above state equation. 
We have the following definition. 
Definition 2.6. The following:  

( )
( ) ( )

( )( ) ( ) [ )

( ) ( )
,

, : inf , ; , , 0,

, : ,
ad t x

V t x J t x t x T

V T x h x x
ν

ν
⋅ ∈

 = ⋅ ∈ ×


= ∈




  

is called value function.  
If [ ]( )1,2 0, ;V C T∈ ×   and txV  is also continuous, then:  

( )( ) ( ) [ ]
( )( ) ( ) ( )( ) ( ) [ ]

, , , -a.s., (3a)

, , , a.e. , , -a.s., (3b)

x

xx

V t x t y t t s T

V t x t t x t t z t t s Tσ ν

 = − ∀ ∈


= − ∈



  




  

At any time t suppose ( )x t  is slightly changed to ( ) ( )x t x t+ ∆ , then by 
(3a) we obtain:  

( ) ( )( ) ( )( ) ( ) ( ), , .V t x t x t V t x t y t x t+ ∆ − ≈ − ∆   

Intuitively, the above relation shows that the value of ( )y t  measures the rate 
of variation of the value function induced by an infinitesimal increase of the 
level of the state variable. Accordingly, the adjoint variable is called the marginal 
value of the optimal state. 

Suppose the increment of the optimal state value could be purchased in the 
market. Thus, the adjoint variable represents the maximum price it would be 
worth paying an additional amount of the state. For this reason, the adjoint 
variable is also called the shadow price of the optimal state. 

Moreover, if V  is the convex dual value function of V, then the following 
relationships apply (see, e.g., Di Giacinto et al. [7]):  
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Primal variable x Dual variable ( )y t  

( )( ) ( ),yV t y t x t=

  ( )( ) ( ),xV t x t y t= −  

 ( )( ) ( )( )
1,
,xx

yy

V t x t
V t y t

− = −


  

 
It is straightforward from the above relations to derive the following 

interesting relations:  

( )( ) ( ) ( )( )
( )( )

( )( )
( ) ( )( ) ( )( )

, , 1 .
,,

xx y

yyx

x t V t x t V t y t
R x t

y t V t y t R y tV t x t
= − = − =



 

 



 

3. FBSDEs and BSDEs 

The conditions of optimality derived from the maximum principle are in general 
FBSDEs. In the following we review the basic results on the mathematical theory 
that explores existence uniqueness and solvability of these equations. In 
particular, we will focus on the interesting examples that will be useful in the 
applications when the FBSDE is decoupled, i.e. the forward component is 
independent from the backward one. 

While for the forward component the basic properties are known from the 
theory of general stochastic processes, it is important to review the results about 
the backward component that is determined by a BSDE. Basic mathematical 
results on this class of equations are reviewed in the following subsection. 

BSDEs 

We consider the following controlled (unidimensional) BSDE:  

( ) ( ) ( ) ( )( ) ( ) ( ) [ ]
( )

d , , , d d , 0,y t g t t y t z t t z t B t t T

y T

ν

ξ

 = − + ∈


=
 

where ( )ν ⋅  is the control variable { } [ ]0,

B
t t T∈
 -progressively measurable, the 

pair ( ), gξ  is the data, called the terminal condition and the generator (or 
driver), respectively. Here, ξ is T -measurable and [ ]: 0, mg T ×Ω× × →    
is t -measurable for all [ ]0,t T∈ . A solution to the above BSDE is a pair of 
processes ( ),y z  adapted to the given filtration. 

Solving an ordinary differential equation formulated as a terminal value 
problem or an initial value problem on the same time interval [ ]0,T  is 
equivalent under the time-reversing transformation t T t− , [ ]0,t T∈ . On 
the contrary, when we are looking for a solution to a BSDE that is adapted 
respect to the given filtration we know only the past information, but are not 
able to know what is going on to occur in the future. This means that it is not 
possible simply reverse the time to find a solution as it would remove the 
adaptiveness. 

The theory of BSDEs is an active domain of research due to its connections 
with stochastic control, mathematical finance, and partial differential equations 
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(see, e.g., the survey elaborated by El Karoui et al. [8]). 
BSDEs were pioneered by Bismut [9] [10] [11] within the stochastic optimal 

control. Existence and uniqueness of adapted solutions were first proved by 
Pardoux and Peng [12] in a Brownian setting, with integrable terminal condition 
and generators that fulfill a canonical Lipschitz assumption in the space variables. 
These results were extended by Lepeltier and San Martín [13] to continuous 
drivers with linear growth. Since then, a lot of efforts have been made in order to 
study the well posedness of these equations. 

With regards to the quadratic growth BSDEs, the proof of the existence of 
solutions are easily obtained under rather general framework. Conversely, the 
question of the uniqueness results is not trivial and requires stronger assumptions 
on the solutions. 

In the standard framework where the terminal condition is bounded, in 
Kobylanski [14] obtained for the martingale case the uniqueness of the solution 
under some Lipschitz conditions. This seminal result has been extended in 
several directions, among others, by Tevzadze [15], Morlais [16], and Briand- 
Elie [17]. In Tevzadze [15] as well as in Briand-Elie [17] the proof in Kobylanski 
[14] was simplified in some less general cases. In particular, Tevzadze [15] 
showed the proof for the existence and uniqueness of a bounded solution in the 
Lipschitz quadratic, while Briand-Elie [17] incorporated delayed quadratic 
BSDEs, whose generator depends on the recent past of the component of the 
solution. Morlais [16] treated quadratic BSDEs driven by a continuous martingale 
and applied the corresponding results to study some related utility maximization 
problem. 

Concerning the quadratic BSDEs with unbounded terminal value, Briand-Hu 
[18] first showed the existence of solution, while Barrieu and El Karoui [19] 
revisited the existence by a direct forward method that does not apply the result 
of Kobylanski [14]. 

Barrieu and El Karoui [19] also showed some uniqueness results that require 
stronger assumptions comparing with the other existing literature. However, 
their alternative approach has other potential applications as numerical 
simulations of quadratic BSDEs and risk measures and their dual representations. 

The uniqueness result was tackled for the first time by Briand and Hu [20] 
under some restrictive conditions. In particular, the authors proved the 
uniqueness among the solutions of quadratic BSDEs with convex generators and 
unbounded terminal conditions which admit every exponential moments. 
Delbaen et al. [21] [22], strengthened the above result proving that uniqueness 
holds among solutions reducing the required order of exponential moments. 

4. Simulation Approach to BSDE 

The simulation approach to BSDE applying Longstaff and Schwartz [1] has been 
investigated the first time by Bouchard and Touzi [2]. In order to consider the 
numerical solution of a BSDE consider for simmplicity the simple case where the 
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backward component is a pure martingale, i.e. the drift component is zero. Then 
the determination of ( )y ⋅  and ( )z ⋅  can be performed observing at time T, 
( ) ( )( ),y T T x Tφ=  and can be obtained simulating forward ( )x ⋅ . 
Given the random variable ( )( ),T x Tφ , computation of ( )( ),T h x T hφ − −  

can be performed computing a conditional expectation using the simulation 
approach of Longstaff and Schwartz [1] relying on a linear regression and 
moving backward. The exact choice of the polynomial family is relevant only for 
the numerical efficiency. For example, using Hermite polynomials we obtain:  

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) [ ]
0

, , |

, 0, ,

N N N

N

n n
n

y t t x t t t x t t x t

a t H x t t t T

φ φ

ε
=

 = = + ∆ + ∆ 

= + ∈∑


 

where the standard error of the residual ( )tε  is of order:  

( ) ( )( ) [ ]
1

1 2Var | , 0, ,
N B

tx t t x t t T
+ + ∆ − ∈  
  

where [ ]Var |⋅ ⋅  is the conditional variance. 
Note that the approximation of ( ) ( )( ),xz xφ⋅ = ⋅ ⋅  can be simply derived 

considering a term by term differentiation ( )( ),N xφ ⋅ ⋅ :  

( ) ( ) ( )( ) ( ) [ ]1
0

, 0, .
N

N
n n

n
z t na t H x t t t Tε−

=

 = + ∈  
∑  

We will show that in many cases, in particular in the applications that we will 
discuss later, the approximation to the pair:  

( )( ) ( )( )( ) ( ) ( )( ) [ ], , , , , 0, ,N N
xt x t t x t y t z t t Tφ φ ≈ ∈  

provides an approximate solution of the BSDE that can be used to recover the 
optimal control strategies using the optimality conditions. 

5. Applications 

In the following applications we will always consider a standard Black & Scholes 
market, i.e. a risk free bond ( )0S ⋅ , whose dynamics are:  

( ) ( ) [ ]0 0d d , 0, ,S t rS t t t T= ∈  

where 0r ≥  is the risk free rate, and a traded risky asset ( )1S ⋅  (stock market 
index) whose dynamics are:  

( ) ( ) ( ) ( ) [ ]1 1 1d d d , 0, ,S t S t t S t B t t Tµ σ= + ∈  

where 0σ ≥  is the volatility, : 0rµ σλ= + >  is the drift, and 0λ >  is the 
instantaneous risk premium, i.e. the Sharpe ratio. 

5.1. Classical Merton Problem 

In this subsection we illustrate the application of the stochastic maximum 
principle to the solution of the well-known Merton’s portfolio allocation and 
consumption problem (see, e.g., Merton [23]) when the utility has a constant 
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relative risk-aversion as in Merton [24]. 
The state equation describing the dynamics of wealth is given by:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) 0

d d d , 0, ,

0 0

x t t r x t c t t t x t B t t T

x x

λσθ σθ  = + − + ∈  
= ≥

 

where [ ]: 0,Tθ ×Ω→  is the investment strategy representing the proportion 
of wealth invested in the risky asset, [ ] [ ): 0, 0,c T ×Ω→ +∞  is the consumption 
stategy, and , ,r λ σ  are the market parameters of the Black-Scholes model. 

The preferences of the agent are given by the following utility function:  

( )( ) ( )( ) ( ) ( )
1

, 0, 0,1 1, ,
1

c t
U c t c

γ

γ
γ

−

= > ∈ +∞
−


 

while the bequest function is:  

( )( ) ( )( ) ( ) ( ) ( ]
1

, 0,1 0, , 0,1 .
1

x T
B x T

γ

γε γ ε
γ

−

= ∈ +∞ ∈
−


 

The objective functional we aim to optimize is given by:  

( )( ) ( )( ) ( )( )1 1

0
e d e

1 1
T t Tc t x T

J t
γ γ

ρ ρ γν ε
γ γ

− −

− −
 
 ⋅ = +

− − 
 
∫  

where the control ( ) ( ) ( )( ),cν θ
Τ

⋅ = ⋅ ⋅  belongs to the following set of admissible 
strategies:  

( ) [ ] ( ) ( ) [ ]{ }0 : : 0, | is progr. meas., 0, 0,ad x T x t t Tν ν= ×Ω→ ⋅ ≥ ∈  

and 0ρ ≥  is the subjective discount factor. 
The problem we aim to solve is to find an optimal control ( ) ( ),ad t xν ⋅ ∈   

such that:  

( )( )
( ) ( )

( )( )
,

sup
ad t x

J J
ν

ν ν
⋅ ∈

⋅ = ⋅


 

The stochastic Hamiltonian system associated to the problem is:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( )0

d d d , 0, ,

d d d , 0, ,

0 0, e T

x t t r x t c t t t x t B t t T

y t t r y t z t t t z t B t t T

x x y T x T
γρ γ

λσθ σθ

λσθ σθ

ε
−− −

  = + − + ∈ 
  = − + + + ∈  

  = ≥ =  

  

 



 

while the second-order adjoint equation is:  

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

22

1

d 2 2 d

d , [0, ],

e T

P t t r P t P t Q t t

Q t B t t T

P T x T
γρ γ

λσθ σ θ σθ

γ ε
− +− −

  = − + + −   


+ ∈


  = −  

  



 

It can be easily found that:  

( ) ( )( ) ( ) ( ) ( )( )1
, e ,0TP t Q t p t x T

γργ
− +−  = −  

  
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with:  

( ) ( ) ( )
22

0 02 2 d d
e

t trt u u
p t

σλ θ ν σ θ ν − − −  ∫ ∫=
 

 

is the only adapted solution to the second-order adjoint equation. Observe that 
( ) 0P t <  for all [ ]0,t T∈ . 
The corresponding -function is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

1

1, ,
2

1e ,
1

t

t x P t x y t z t P t t x t x

c y t c y t rcρ γ

ν σ θ λ σθ σ θ

γ
− −

 = + + − + 

+ − +
−

 
 

and the maximum condition is:  

( ) ( )( ) ( )( ) [ ], , max , , a.e. 0, , -a.s.,t x t t t x t t T
ν

ν ν
∈

= ∈


     

It is easy to show that the function ( )( ), ,t x tν ν

  is concave and has a 
unique maximum point on 2⊆   given by:  

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )
1

,

e t

y t z t
tt P t x tt

c t
y tρ γ

λ
θθ σν

−

 + 
−    = =    

    




              

(4) 

if and only if ( ) 0P t <  for all [ ]0,t T∈ . 
Remark 5.1. By the stochastic maximum principle theorem a necessary 

conditions for ( ) ( ) ( )( ),cν θ
Τ

⋅ = ⋅ ⋅    to be optimal is:  

( ) ( ) ( ) ( ) [ ]

( ) ( )
1

1 , 0, , (5a)

e . (5b)t

y t z t z t y t t T

c t y tρ γ

λ
λ

−

 = − ⇔ = − ∀ ∈

  =  


 

Clearly the first-order adjoint process y—which represents the risk factor— 
plays a role in turning the convex function ( ) ( ) ( )( ), , , ,H t x t y t z tν ν

 , i.e. 
the Hamiltonian along the optimal state trajectory, into a concave one 

( )( ), ,t x tν ν

 , i.e. the -function along the optimal state trajectory, 
previously shown. 

By plugging (5a)-(5b) into the stochastic Hamiltonian system, we obtain:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]

( )
( ) ( ) [ ]

( ) ( ) ( )

1

0

d e d d , 0, ,

d
d d , 0, ,

0 0, e .

t

T

x t t r x t y t t t x t B t t T

y t
r t B t t T

y t

x x y T x T

ρ γ

γρ γ

λσθ σθ

λ

ε

−

−− −

    = + − + ∈     

 = − − ∈

  = ≥ =  

 



 

Once we find an adapted solution ( ) ( ) ( )( ), ,x y z⋅ ⋅ ⋅  of the above, a 
candidate for the optimal control can be deduced by (4). To this regard, suppose 

( ) ( ) ( )( ), ,x y z⋅ ⋅ ⋅  is an adapted solution and take the following guess function 
for ( )y ⋅ :  
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( ) ( ) ( )e ty t t x t
γρ −−  =  

  

for some deterministic function ( )⋅ . 
We would like to determine the equation that ( )⋅  should satisfy. To this 

end, we differentiate the above using Itô formula:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )2

d
d d d e

1 11 e d ,d ,
2

t

t

t x t
y t y t t y t t t x t

t x t

t x t x t x t
x t

γρ

γρ

ρ γ

γ γ

−−

−−

 = − + −  

 + +  
  
















  



 

i.e.  

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 22d 1d 1
2

d d .

y t t
t t t

y t t

t r t t B t

γγ γ γ σ θ

γλσθ γ ρ γσθ

−
 = + + +     


− − − −













 

 

Comparing the above relation with the first-adjoint equation that appears in 
the previous stochastic Hamiltonian system, we have:  

( ) [ ]

( ) ( )
( ) ( ) ( )

( )

1
2

, 0, , (6a)

1 , (6b)
2

, (6c)

t t T

t
t r t

t
T

γ
γ

γ

λθ
γσ

λγ ρ γ
γ

ε

−

 = ∈



    
= − + − − +    

      
 =







 







 

The above (6b)-(6c) is a Bernoulli equation whose solution is:  

( )

( )
1 1 e

,

t T

t

β
γεβγ

γ

β

−  
+ −  
   =

                   
(7) 

where ( )
2

: 1
2

rλβ ρ γ
γ

 
= − − + 

 
 and subject to the condition 0β > , i.e.  

( )
2

1 .
2

rλρ γ
γ

 
> − + 

                        
(8) 

With the position of ( )⋅  stated in (7) and the condition on ρ stated in (8), 
the pair of processes:  

( ) ( )( ) ( ) ( )( ) ( ) ( ), e , eT Ty t z t x T t x T t
γ γρ ρλ

− −− −   = −    

   

is the only square integrable adapted solution to the first-order adjoint equation. 
The necessary condition required from the stochastic maximum principle 

theorem leads to the following policy:  

( ) ( )
( )

( ) ( )
1

,
t

t
c t

t x tγ

λ
θ γσν

−

 
  

= =            








                

(9) 
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and state trajectory (simply obtained substituting the expression of the above 
control policy to the stochastic Hamiltonian system):  

( )
( ) ( )

12

0
11 d d

2
0 e .

tr t u B t

x t x
γ

λ λν
γ γ γ

−  
− + − +     

   
∫

=




               (10) 

as candidates to be an optimal pair. 
Finally, a simple check shows that sufficient conditions of optimality are 

satisfied. We conclude that ( ) ( )( ),x ν⋅ ⋅   pointed out to (10) and (9) is an 
optimal pair of the classical Merton optimization problem. Therefore, the 
following result holds. 

Proposition 5.2. There exists a unique optimal investment and consumption 
strategy given by:  

( ) ( )
( )

( ) ( )
[ ]

1
, 0,

t
t t T

c t
t x tγ

λ
θ γσν

−

 
  

= = ∈           








 

where ( )⋅  must satisfies the following Bernoulli ordinary differential equation:  

( ) ( )
( ) ( ) ( )

( )

1
2

1
2

t
t r t

t

T

γ
γ

γ

λ
γ ρ γ

γ

ε

−
     = − + − − +           

=







 





 

whose solution is:  

( )

( )
1 1 e

t T

t

β
γεβγ

γ

β

−  
+ −  
   =  

under the condition:  

( ) ( )
2 2

1 0 1 .
2 2

r rλ λ
β ρ γ ρ γ

γ γ
   

= − − + > ⇔ > − +   
   

 

5.2. Merton Model with a Retirement Endowment 

In a standard Black & Scholes market, the dynamics of wealth are given by:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) 0

d d d , 0, ,

0 0

x t t r x t c t t t x t B t t T

x x

λσθ σθ  = + − + ∈  
= ≥

 

where , ,r λ σ  are the usual market parameters. 
In addition, the agent is endowed with a nontradable investment I in a 

pension fund whose risky component is perfectly correlated with the market 
index. The dynamics of the investement are given by:  

( ) ( ) ( ) ( )
( ) 0

d d d

0 0

I t I t t I t B t

I i

α η= +


= ≥
 

where ( )r r η
α µ

σ
− = −  in order to avoid arbitrage opportunities. 
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The preferences of the agent are described by the following constant relative 
risk aversion utility function:  

( )( ) ( )( ) ( ) ( )
1

, 0, 0,1 1, ,
1

c t
U c t c

γ

γ
γ

−

= > ∈ +∞
−


 

while the bequest function is:  

( )( ) ( ) ( )( ) ( ) ( )
1

, 0,1 0, ,
1

x T I T
B x T

γ

γ
γ

−
+

= ∈ +∞
−


 

where, for simplicity, we set the parameter of the classical Merton problem 
1ε = . 

At the terminal date T, the investor receives a liquid amount determined by an 
initial endowment which is invested in the stock market and cannot be 
withdrawn until maturity. In her hedging policy, the investor must optimally 
take into account both the liquid investment which can be continuously traded, 
and the lump sum amount that she will receive at the final date T and is also 
exposed to stock market risk fluctuations. 

Given the functional:  

( )( ) ( )( ) ( ) ( )( )1 1

0
e d e ,

1 1
T t Tc t x T I T

J t
γ γ

ρ ρν
γ γ

− −

− −
 +
 ⋅ = +

− − 
 
∫  

and the set of admissible control strategies:  

( ) [ ] ( ) ( ) [ ]{ }0 : : 0, | is progr. meas., 0, 0,ad x T x t t Tν ν= ×Ω→ ⋅ ≥ ∈  

our goal is to find an optimal control ( ) ( )0ad xν ⋅ ∈   such that:  

( )( )
( ) ( )

( )( )
0

.sup
ad x

J J
ν

ν ν
⋅ ∈

⋅ = ⋅


 

The agent keeps into account her investment for retirement in her optimal 
allocation policy of the disposable wealth x0. 

The solution procedure is parallel to the standard Merton problem even 
though the allocation policy changes and an hedging term takes into account the 
stochastic opportunity set due to the presence of the investment I for retirement. 

By applying the stochastic maximum principle we find the following 
stochastic Hamiltonian system:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )0

d d d , 0, ,

d d d , 0, ,

0 0, e .T

x t t r x t c t t t x t B t t T

y t t r y t z t t t z t B t t T

x x y T x T I T
γρ

λσθ σθ

λσθ σθ
−−

  = + − + ∈ 
  = − + + + ∈  

  = ≥ = + 

  

 

 

 

The results can be tested since it is possible to evaluate the optimal proportion. 
As a matter of fact, due to the market completness it is possible to estimate the 
exact value of the optimal proportion ( )θ ⋅  as:  

( ) [ ]0
2 2

0

, 0, .
ir rt t T
x

µ µ η
θ

σγσ γσ
 − −

= + − ∀ ∈ 
 

  
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Following the line applied for solving the classical Merton problem, we can 
also determine the optimal consumption strategy ( )θ ⋅ , and so the optimal 
control ( ) ( ) ( )( ),cν θ

Τ
⋅ = ⋅ ⋅    is:  

( ) ( )
( )

( ) ( ) ( )
[ ]

0
2 2

0
1

, 0, ,

ir r
t xt t T

c t
t x t I tγ

µ µ η
θ σσ γ γσν

−

  − −
+ −      = = ∈        +     






 

 

where the deterministic function ( )⋅  has been previously defined in (7) in the 
classical Merton problem. 

Now, we show how to derive numerically the allocation exploiting the 
following observation: due to market completeness the dynamics of the dual 
variable is known and corresponds to a log-normal process with drift equal to 
the opposite of the risk free rate r and volatility equal to the Sharpe ratio λ. 

Given the above observation, the above Hamiltonian system the control 
variables appear only in the forward equation. By using the observation on 
duality and Riesz representation (see, e.g., Yong and Zhou [6], chapter 7, p. 353) 
it is possible to switch the backward and forward equations. Therefore, in this 
latter representation the stochastic Hamiltonian system can be rewritten as:  

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )( ) ( )

1

1

0 0

d d d , 0, ,

d e d d , 0, ,

0 , , e .

t

T

ry t ry t t y t B t t T

rx t r t y t x t t t x t B t t T

y x i x T y T I T

ρ γ

ρ γ

µ
σ

µ
σ θ σθ

σ

χ

−−

−−

− = − − ∈


  −
= + − + ∈  
 


 = = −


 

where ( )0 0,x iχ  is determined by the condition  

( ) ( )( ) ( ) ( )( )
1 1

0 00
e e d .

TT ty T y T y t y t t x iρ ργ γ
− −− − 
+ = + 

 
∫

       
(11) 

We need to solve a FBSDE. The forward process is determined by the adjoint 
process, i.e. deflator ( )y ⋅  whose expression is known. The backward 
components which must be obtained are ( ) ( )( ) ( ) ( ) ( )( ), ,y z x xσθ⋅ ⋅ = ⋅ ⋅ ⋅  and 
they uniquely determine the optimal pair ( ) ( )( ),x ν⋅ ⋅   as functions of the 
forward process ( )y ⋅ . 

The numerical determination of the optimal investment strategy can be 
obtained considering a least square regression procedure for ( ) ( ) ( )z xσθ⋅ = ⋅ ⋅ . 

We choose the following parameters:  

0 1x = , 0 0.5i = , 0.05µ = , 0.3σ = , 0.025α = , 0r = , 

0.15η = , 3γ = , 0.05ρ = , 10T = , 52 10NP = × , 45K = , 

where NP stands for number of paths considered and K is the number of 
discretization steps. In this case, the theoretical and numerical values averaged 
over 50 evaluations of the extended Merton proportion are:  

https://doi.org/10.4236/jmf.2018.82019


M. Di Giacinto 
 

 

DOI: 10.4236/jmf.2018.82019 297 Journal of Mathematical Finance 
 

θ Exact Numerical 

Mean 0.16012 0.15920 

StdDev 0 0.00350 

 
and the relative error is of order 2.20%. 

5.3. Income Drawdown Option with Minimum Guarantee 

In this subsection we consider a second interesting application of the same 
approach that provides a numerical way to extend the analysis carried out in Di 
Giacinto et al. [7] which is briefly described below. The numerical extension we 
explore is necessary in order to assess the impact of the running cost as defined 
in the model. 

We consider a defined contribution pension plan for a single representative 
participant during the decumulation phase, i.e. after retirement. Depending on 
the law and the rules of the scheme in many countries the retiree is allowed:  

1) to defer annuitization at some time after retirement (this option is named, 
e.g., in UK “income drawdown option”, in US “phased withdrawals”); 

2) to withdraw periodic income from the fund; 
3) to invest the rest of the fund in the period between retirement and 

annuitization.  
Thus, the pensioner has three degrees of freedom:  
1) to decide when to annuitize (if ever); 
2) to decide how much of the fund to withdraw at any time between 

retirement and ultimate annuitization (if any); 
3) to decide what investment strategy to adopt in investing the fund at her 

disposal.  
The first choice (i.e. the optimal time of annuitization) can be tackled by 

defining an optimal stopping time problem. The last two choices (i.e. the 
optimal consumption and investment selection) represent a classical investment 
and consumption problem, which can be solved using, e.g., stochastic optimal 
control techniques. 

The contribution by Di Giacinto et al. [7] is the solution in closed form of the 
optimal control problem with constraints regarding the third choice (i.e. the 
investment choice) using a quadratic loss function and by applying the dynamic 
programming approach. 

In a standard Black & Scholes market, the state equation is given by:  

( ) ( ) ( ) ( ) ( ) [ ]
( )

0

0

d d d , 0, ,

0 ,

x t rx t t b s t B t t T

x x

σλπ σπ = + − + ∈   


=
 

where [ ] [ ): 0, 0,x T ×Ω→ +∞  is the process representing the fund wealth of the 
pensioner, x0 is the fund wealth at the retirement date 0t = , ( )π ⋅  is the dollar 
amount invested in the risky asset, b0 is the consumption rate of the pensioner, 
and , ,r λ σ  are the usual market parameters. 
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The objective functional is given by:  

( )( ) ( )( ) ( )( )0
e , d e ,

T t TJ L t x t t L T x Tξ ξπ κ − − ⋅ = +  ∫  

where 0κ ≥  and ξ is the sum of the subjective discount factor ρ and of the 
force of mortality δ, i.e. :ξ ρ δ= + . 

The loss function has the following quadratic shape:  

( ) ( )( )2
,L t x F t x= −  

while ( )F ⋅  is the target function. We choose:  

( ) ( ) [ ]0 0 e , 0, ,r T tb bF t F t T
r r

− − = + − ∈ 
 

 

where 00,
bF
r

 ∈   
. 

Constraints on the strategies and on the wealth are considered in the model. 
More precisely:  

i) “no short selling” on the strategies:  

( ) [ ]0, -a.s., 0, ,t t Tπ ≥ ∀ ∈  

ii) “no ruin” on the wealth:  

( ) ( ) [ ], -a.t. 0, ,x t S t t T≥ ∀ ∈  

with the “safety level” ( )S ⋅  set as:  

( ) ( ) [ ]0 0 e , 0, ,r T tb bS t S t T
r r

− − = − − ∈ 
 

 

where [ )0,S F∈ .  
Given the set of admissible controls:  

( ) ( ) [ ] [ )( ) ( ) ( ) ( ) [ ]{ }2
0 : 0, ; 0, prog. meas. | , 0, .ad x L T S t x t F t t Tπ= ⋅ ∈ Ω× ∞ ≤ ≤ ∈

 

the optimal control problem to be solved is to find an optimal control 
( ) ( )0ad xπ ⋅ ∈   such that:  

( )( )
( ) ( )

( )( )
0

inf .
ad x

J J
π

π π
⋅ ∈

⋅ = ⋅


 

We are able to express the related stochastic Hamiltonian system as:  

( ) ( ) ( ) ( )( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( )

22

0

0

d 2 e d d , 0, ,

d d d , 0, ,

0 , .
2e

t r T t

T

y t y t F x t t y t B t t T

x t rx t b t t t B t t T

y T
y y x T F S

ξ

ρ

λ κ λ

λσπ σπ

− − −  = − − + ∈ 
   = − + + ∈ 
  
 = = − ∨ 
  

 

 

where y0 is determined following the same procedure applied in (11). 
Note that the above Hamiltonian system is linear, thus the Riesz duality can 

be applied to switch the forward and the backward components. While for 
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0κ =  the Hamiltonian system is represented by a decoupled FBSDE, so the 
previous numerical approach can be applied, for 0κ ≠  the FBSDE is coupled 
but still linear and therefore numerically solvable by applying a different 
numerical approach, e.g., the four step scheme illustrated by Ma et al. [25]. 

In the following we illustrate the simulation paths of the optimal investment 
strategy for 0κ =  and some realistic parametrization. The parameter chosen 
are:  

0 0100, 60, 6.22, 15, 1000,x j b T NP= = = = =  

0, 0.03, 0.33, 0.15,rρ λ σ= = = =  

where j is the retiree age, b0 is computed by applying the projected Italian males 
life table and NP stands for performed number of paths. The final target 

97.13F =  and the final guarantee 27.75S =  are subjective and determined by 
the pensioner’s risk aversion. 

 

 

6. Conclusions 

In the above analysis, we showed how to use the stochastic maximum principle 
to reformulate conventional portfolio consumption models in order to explore 
their solution through the numerical solution of a linear stochastic hamiltonian 
system. We showed in a number of applications the flexibility of this methodology. 

In the next future we aim to explore the performance of this method in two 
important extensions: a multidimensional state variable problems and in presence 
of optimal stopping control strategies. This last extension is particularly relevant 
for actuarial applications. 
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