

Agronomic Performance and Sensory Evaluation of Lablab (*Lablab purpureus* L. Sweet) Accessions for Human Consumption in Uganda

Peace Kankwatsa, Robert Muzira*

National Agricultural Research Organization, Mbarara Zonal Agricultural Research and Development Institute (MBAZARDI), Mbarara, Uganda

Email: *nrmuzira@gmail.com, kankwatsap@gmail.com

How to cite this paper: Kankwatsa, P. and Muzira, R. (2018) Agronomic Performance and Sensory Evaluation of Lablab (*Lablab purpureus* L. Sweet) Accessions for Human Consumption in Uganda. *Open Access Library Journal*, **5**: e4481. https://doi.org/10.4236/oalib.1104481

Received: March 8, 2018 **Accepted:** March 27, 2018 **Published:** March 30, 2018

Copyright © 2018 by authors and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

man consumption. Subject Areas

Abstract

Agricultural Science, Food Science & Technology, Plant Science

Keywords

Lablab purpureus, Agronomic Performance, Palatability, Preference Ranking, Human Consumption

Lablab (Lablab purpureus) germplasm was evaluated to identify high grain

yielding and palatable accessions that were suitable for human consumption

in Uganda. A preference analysis was done to identify accessions that had a

high probability of being accepted by farmers. Accessions 29399, 29400,

29803, 30701, 31364, CQ3620, Q5427, Q6988, 52518B, Q6880B, 31364,

CQ3621 and Lablab Uganda had high yields, which partly resulted from their

high tolerance of the prevailing stresses (diseases, pests and low soil moisture).

Accessions 29400, Lablab Uganda, Njahi. 29399, 36019, Q5427, Q6988, 30701

and 31364 scored highly based on the sensory attributes. Accessions Lablab

Uganda, Njahi, 29400 and Q69887 were the most accepted for adoption by

farmers based on their high agronomic performance. Lablab Uganda, Njahi,

29400 and Q69887 had the most preferred palatability characteristics for hu-

1. Introduction

The dual-purpose legume species are finding greater importance in the farming

systems of sub-Saharan Africa where technology adoption of single purpose species for improved agricultural production has been very low [1]. These multipurpose legume cover crops (LCCs) are increasingly becoming important alternative innovations for soil fertility improvement and soil conservation, livestock feed and sources of household food/nutrition among smallholder farmers in Uganda. This is partly because of the high costs and low availability of mineral fertilisers to the majority rural smallholder farmers in the country [2]. The importance of integrating the multiple purpose LCCs in agricultural production under smallholder farming systems has been recommended due to their dual use in meeting multiple needs of farmers [1] [3] [4].

Previous studies in Eastern Uganda and elsewhere showed that use of LCCs and biomass transfer species to improve soil fertility are promising options for increased crop productivity [3]. Under smallholder farming systems, LCCs such as mucuna provided high biomass for green manure and cover crop, yet it was not highly adopted. This was mainly because of its unsuitability for human and livestock consumption, and limited marketability [2]. However, in more recent years, the ability of lablab (*Lablab purpureus*) to enhance soil fertility for crop production has increased its acceptance by farmers. Lablab is a multipurpose plant with high growth vigour that quickly provide adequate biomass for green manure and protect the soil from devastating effects of erosion and high temperatures [5] [6]. Lablab has been used to control weeds, as a high quality animal feed/forage, medicine and human food [7] [8]. The high protein content (22.4% - 31.3%) in lablab has been found to stimulate high milk production in breast feeding mothers [9].

Lablab has been found suitable to most tropical environments because of its adaptability to a wide range of rainfall, temperatures and altitudes. It is highly adapted to a diverse range of agro-ecosystems and stays green into the dry season [6] [10]. However, it grows best under warm, humid conditions at temperatures ranging from 18° C to 30° C [11] [12]. Lablab grows in a wide range of soils without stagnant water, including the deep sands and heavy black clays with a pH range 5 to 7.5 [13].

Although lablab is a multipurpose LCC, its low seed production limits its utilization. A farmer participatory evaluation conducted in 1998 under the Integrated Soil Productivity Initiative through Research and Education (INSPIRE) project, revealed that the common lablab species (*Lablab Uganda*) in Uganda was low yielding [4]. Efforts to solve this problem were devoted to conducting more research to improve lablab so that its full potential as a multipurpose legume is achieved. Thirty three *lablab purpureus* accessions were introduced in Uganda from Australia to characterise the performance of new germplasm for seed production and palatability under the East African conditions. These accessions were evaluated at National Agricultural Research Laboratories (NARL) and District Agricultural Training and Information Centre (DATIC) in Tororo for two years to identify the accessions that had potential of lablab to be

used for human consumption in Uganda.

2. Materials and Methods

Field experiments were conducted at NARL at 1179 - 1188 meters above sea level (masl) located at 0.68°N, 32.9°E, while the fields at the DATIC were located at 1142 masl and 0.61°N and 34.1°E. The lablab experiments were conducted under generally warm and dry environmental conditions at NARL (Table 1). In absence of a weather station at DATIC-Tororo, there were no rainfall and temperature data collected. Rainfall during the research period was generally low with more than 6 months receiving less than 100 mm per months, but the average minimum and maximum temperatures did not exceed 30°C, implying that these conditions were tolerated by lablab at NARL.

Soil samples were collected from experimental fields at depths of 0 - 20 cm and 20 - 40 cm. The soils were analysed in the Soil and Plant Analytical Laboratories at NARL for physical and chemical properties (Table 2) following methods described by Okalebo *et al.* (2002).

Field sowing of the 33 accessions at NARL and DATIC-Tororo started just after the beginning of the long rains in April 2011. Twenty five seeds of each accession were planted at a spacing of $1 \text{ m} \times 1 \text{ m}$ in single row plots at a seed rate of 10 Kg/ha. One month after planting (MAP), all plants were staked with 2 m long sticks. One of the two blocks planted per experiment in each site received

Table 1. Weather data collected at the lablab experiment in NARL during 2011-2014	1	Гable 1.	Weather	data colled	ted at th	e lablab e:	xperiment	in NARI	during	2011-2014
---	---	----------	---------	-------------	-----------	-------------	-----------	---------	--------	-----------

		20	011			20	012			20	13			20	14	
Month		Air T °	С	Rain	A	ir T °C	2	Rain	А	ir T °C	;	Rain	A	ir T °C	2	Rain
	mean	*min	**max	mm	mean	min	max	mm	mean	min	max	mm	mean	min	max	mm
January	19.1	12.4	26.7	61.5	19.2	11.6	28.1	72.5	17.2	4.4	27.9	108.3	21	13.5	29.1	36.9
February	20.8	13.4	29.1	73.7	21.6	14.0	29.9	35.0	19.8	10.2	28.8	70.7	22.7	14.0	30.4	39.9
March	19.5	13.4	27.0	110.8	21.2	14.1	29.3	61.6	20.2	9.3	28.6	64.3	21.1	15.1	28.3	75.7
April	19.8	14.2	26.9	153.9	19.8	12.6	27.1	105.3	16.8	4.0	26.7	82.9	21.6	16.7	27.7	156.4
May	19.8	13.8	27.0	94.5	19.2	11.5	26.8	126.3	16.8	1.2	27.6	21.6	20.7	16.8	26.3	174.8
June	18.2	11.8	26.2	86.0	16.1	7.7	25.4	97.4	20.6	14.8	28.6	42.9	20.4	15.1	26.7	36.4
July	18.4	11.1	26.9	27.9	16.8	8.9	25.2	70.7	20.4	15.3	27.0	41.4	19.8	13.8	26.4	59.5
August	18.3	11.4	26.5	85.5	17.7	9.4	26.5	96.7	20.6	16.2	27.1	44.0				
September	18.3	11.8	27.2	114.4	19.9	13.8	27.1	83.2	20.7	16.1	27.2	171.6				
October	18.3	11.7	26.9	76.0	20.0	12.9	27.7	271.1	20.9	16.6	27.0	144.4				
November	17.6	10.0	26.4	312.2	17.8	8.2	27.2	190.7	19.5	11.4	27.1	238.2				
December	19.3	12.7	26.9	82.6	17.1	5.5	27.3	167.1	19.4	8.5	27.4	101.5				
Total				1279				1378				1132				

T °C: Temperature degrees Celsius, *min-minimum, **max-maximum.

Location	Sites	Depth	pН	ОМ	N	Р	к	SAND	CLAY	SILT	Textural class
Location	51168			Q	%	P	pm		%		
DATIC-Tororo	Field 1	0 - 15	6.3	2.5	0.1	2.3	21.7	76.3	15.3	5.4	Sandy loam
DATIC-Tororo	Field 1	15 - 30	6.1	2.3	0.1	3.3	29.2	76.7	14.8	8.5	Sandy loam
DATIC-Tororo	Field 2	0 - 15	5.4	1.2	0.1	0.5	15.7	73.2	19.5	7.3	Sandy loam
DATIC-Tororo	Field 2	15 - 30	5.1	1.0	0.1	0.9	7.6	77.2	16.2	6.6	Sandy loam
NARL	Block 1	0 - 20	5.4	3.3	0.1	7.5	133.6	55.0	37.0	8.0	Sandy clay loam
NARL	Block 1	20 - 40	5.4	2.6	0.1	2.5	68.0	55.0	39.0	6.0	Sandy clay
NARL	Block 5	0 - 20	5.8	3.8	0.1	3.8	95.7	53.6	35.8	10.6	Sandy clay
NARL	Block 5	20 - 40	5.9	2.3	0.1	1.7	37.2	48.8	44.6	6.6	Sandy clay
Critical va	lues		5.2	3.0	0.20	5.0	150.0				

Table 2. Laboratory soil analysis results for the DATIC-Tororo and NARL-Kawanda.

^{OM}Organic matter, ^NNitrogen, ^PPhosphorus, ^PPotassium, ^{PPM}Parts per million.

pesticide application (Dursban) at the rate of 1 - 2 L/ha (25 - 50 ml/10 L water) once to twice per week depending on the pest incidence, while the other block was not sprayed. The experiments were repeated in 2013 at NARL and DATIC-Tororo, using 21 accessions that were high yielding and tolerant to pests and diseases. Besides pesticide application, other agronomic techniques such as weeding were carried by regular hand hoeing.

Two cycles of lablab grain palatability tests were carried out after the 2011A and 2013A seasons by a panel of 20 farmers representing six farmer groups. The first sensory evaluation activity was carried out using 12 high yielding and pest and/or disease tolerant accessions (29399, 29400, 30701, 36019, 52518B, CQ3620, Q5427, Q6988, Lablab Uganda, 31364, Q6880B and Njahi) before and after cooking. The second evaluation was carried out with seven accessions (29400, 30701, 52518B, Q6988, Lablab Uganda, 31364 and Njahi). Dry grains (0.5 Kg) of each selected accession were measured, washed and boiled in uniform amounts of water in similar saucepans on locally made charcoal stoves, until they were fully cooked. The cooking time of each accession was recorded. Like any other pulses, the boiled grains of each lablab accession were prepared into a sauce using the same amounts of locally available ingredients including onions, tomatoes, curry powder and vegetable oil. The different sauces were served (Figure 1), and well labelled for the panel to test and take note as indicated below. Supplementary dishes of posho, bananas, sweet potatoes and cassava were used to eat lablab.

Twenty one morphological and agronomic attributes were assessed from 25 plants per accession (**Table 3**). Following the genetic resource characterisation guidelines, accessions were not replicated and the individual plants represented experimental units [7] [14]. All agronomic data were entered and subjected to analysis of variance (ANOVA) using the Genstat 4th Edition. The Least

Figure 1. Farmers carrying out palatability tests of 10 lablab accessions in DATIC-Tororo.

 Table 3. Morphological and parameters used to assess the agronomic performance of lablab accessions.

Attribute	Unit of measurement	Timing of measurement
Germination	percent (%)	1 month after planting (MAP)
Time to flowering	days	At 50% of flowering
Seedling vigour	rating $1 = low, 5 = high$	1 month after planting (MAP)
Plant vigour	rating $1 = low, 5 = high$	Once per month
Leafiness	rating $1 = low, 5 = high$	
Plant habit	rating 1 = erect, 2 = decumbent, 3 = prostrate	
Flower colour	1=white, 2=purple	At 50% of flowering
Plant height	cm	At 50% of flowering
Plant height	cm	At 100% of flowering
Time to podding	days	At 50% of podding
Time to mature pods	days	At 50% of plants with mature pods
Harvest date	days	Date of first harvest)
Harvest period	days	Length of time harvest was conducted
Pod colour	rating 1 = green, 2 = purple	
Seeds per pod	number	Seeds counted at harvest of mature pods
Seed weight	g 1000^{-1} seeds	After harvest completed
Seed colour	colour	After harvest completed
Seed mottling	rating $1 = no$, $2 = yes$	After harvest completed
Pods harvested	number	After harvest completed
Pods plant ⁻¹	number	After harvest completed
Seed yield	g plant $^{-1}$	After harvest completed

Significant Difference test (LSD) at 5% probability level was used to separate significant means. Matrix scores ranging from 1 (very bad) to 5 (very good) were used to assess grain colour, grain size, taste, texture and flavour, whereas preference ranking were used for palatability evaluation of the different accessions before and after cooking. The matrix scores (1 - 5) were analysed using Genstat, and the means were separated using the LSD ($P \le 0.05$). The logistic preference ranking was used to analyse the accession based on palatability data [colour (before and after cooking), size, taste, texture and flavour].

3. Results

3.1. Agronomic Performance of 33 L. purpureus Accessions

NARL and DATIC-Tororo had highly sandy soils with very low clay and silt proportions (Table 2), but Nitrogen (N), Organic matter (OM), Phosphorus (P) and Potassium (K) contents in Tororo soils were lower than in the Kawanda soils. Although the overall nutrient level was below the critical levels, the pH levels were above the critical values but still tolerable by lablab according to Kay, 1979.

Percent germination, days to 50% flowering, plant vigour, leafiness, plant height at 100% flowering, days to podding, days to pod maturity, harvest period, pods per plant and yield (g) per plant of all accessions were significantly different ($P \le 0.05$) in NARL and DATIC-Tororo. Although the germinability of most accessions (60.6%) was higher than the mean (71.6%), the overall range was 59% - 82%, with 52506B and 52504A having the highest rate of germination. The rate of germination was higher in DATIC-Tororo (82.2%) than at NARL (61.0%) probably because rainfall started earlier in DATIC-Tororo. The trends of germination were inconsistent between the two sites, showing that accessions that had higher % germination in DATIC-Tororo were different from those that performed well in NARL (Table 4(a)).

Days to 50% flowering differed significantly during the two seasons (Table 4(a), Table 5(a)), and all accessions reached 50% flowering within 52 - 69 days after planting (DAP) in the first season (2011A), while in the second season, the range was 56 - 108 DAP. There was no significant difference among DAP taken by 75.8% of the accessions to reach 50% flowering during the first season. Although 82% of the accessions in NARL took fewer (55.5) days to reach 50% flowering; only 54% took 49 - 57 days to reach 50% flowering in DATIC-Tororo (Table 4(a)).

Seedling vigour was generally low especially in NARL (**Table 4(a)**), but accession 29399 had higher seedling vigour, plant vigour and leafiness. In the second season, seedling vigour was significantly different, but below the average (2.5) for most of the accessions (**Table 5(a)**). Plant vigour was positively correlated with leafiness in NARL and DATIC-Tororo where accessions (29399, 27400, 31364, 34777, 35894, 52506B, 52552, CQ3620 and CQ3621) that had higher plant vigour, also had higher leafiness.

The height of most accessions (63.6%) was below the average height (189.7 cm) at 100% flowering, which was partly attributed to the unfavourable weather

Table 4. (a) Vegetative growth performance of 33 different lablab accessions during 2011-2012 at NARL and DATICSDATIC-Tororo; (b) Podding and yield performance of lablab accessions during 2011-2012 at NARL and DATIC-Tororo.

		iys to dding		iys to vesting		st Period ays)		pod per lot	Pods p	er Plant		nt Seed ght (g)		0 seed ght (g)	Seed	per Pod
Accessions	NAR L	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo		DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC Tororo
29399	73.0	66.0	94.0	98.0	313.5	71.0	15885.0	4775.5	956.5	404.0	655.6	172.5	267.9	108.2	5	4
29400	73.0	65.0	94.0	98.0	313.5	71.0	10108.0	2614.5	701.5	300.5	322.0	106.4	248.6	115.8	5	4
29803	87.5	79.5	107.0	98.0	313.5	64.0	6681.0	3150.5	478.5	232.0	353.0	172.6	286.4	112.8	5	4
30701	87.5	78.0	107.0	102.5	273.0	89.0	8676.0	4955.5	1017.0	371.0	725.8	287.3	340.3	124.0	5	4
31364	73.0	64.5	97.5	98.0	313.5	63.0	12503.0	5674.0	671.0	371.0	415.2	135.6	194.7	109.5	4	4
34777	73.0	71.0	94.0	98.0	171.5	38.0	7698.0	854.0	255.0	107.0	154.3	21.3	208.8	112.2	4	4
34780	73.0	71.0	94.0	98.0	245.5	38.0	3105.0	1311.5	179.0	120.5	149.9	48.9	239.4	113.4	5	5
35771	73.0	71.0	94.0	98.0	227.7	38.0	3983.0	1359.5	207.0	120.5	125.9	32.1	165.7	105.8	4	4
35893	79.5	71.0	94.0	98.0	245.5	45.0	1048.0	576.0	68.0	69.5	59.2	43.3	262.0	112.3	5	4
35894	79.5	57.5	94.0	91.0	171.5	41.5	2142.5	1478.5	140.0	113.5	126.7	59.1	250.9	112.3	5	4
36019	79.5	57.5	94.0	91.0	313.5	76.5	3778.5	2157.0	217.5	145.0	137.5	65.7	164.8	108.5	5	4
36903	73.0	63.0	94.0	98.0	171.5	38.0	5760.5	1665.0	300.0	132.5	176.1	31.3	181.8	99.1	4	3
52504A	79.5	78.0	94.0	98.0	250.5	38.0	3629.5	1825.0	164.0	111.5	95.9	43.5	163.9	106.0	4	4
52504B	73.0	72.0	94.0	98.0	159.5	38.0	3454.5	1806.0	165.5	141.0	92.4	39.2	152.2	109.1	4	3
52506B	73.0	72.0	94.0	98.0	159.5	38.0	4735.5	1053.0	212.5	112.0	113.2	16.6	155.5	96.2	4	4
52508	79.5	66.0	94.0	98.0	164.5	38.0	2659.0	1622.0	142.0	126.5	90.8	49.6	181.4	105.0	4	4
52513	73.0	66.0	100.0	98.0	187.0	38.0	3371.0	2003.0	223.0	197.5	133.0	48.2	167.8	103.8	5	4
52514	73.0	72.0	94.0	98.0	164.0	38.0	3340.5	1637.0	187.5	172.0	111.9	59.1	162.3	105.9	4	4
52518B	100.0	71.5	117.0	106.0	313.5	85.5	1234.5	1838.5	91.5	178.0	52.7	101.2	234.4	109.8	4	3
52530	79.5	67.5	100.5	51.5	164.5	55.0	2879.0	1072.5	195.5	495.0	148.4	161.6	205.0	109.0	4	2
52533	79.5	69.0	94.0	98.0	146.5	38.0	3568.3	2025.5	221.5	205.5	120.0	96.5	174.4	96.5	4	4
52535	73.0	75.0	94.0	98.0	186.0	38.0	4127.0	233.0	240.0	44.0	144.5	50.9	238.8	113.5	4	4
52555	79.5	75.0	94.0 94.0	98.0	171.5	38.0	4127.0	1301.0	240.0	149.5	176.4	75.6	238.8	112.8	4	4
								2275.5								
52552 52554	73.0 79.5	75.0 75.0	94.0 94.0	98.0 98.0	219.0 171.5	38.0 38.0	5629.5 5258.0	1405.0	283.0 272.5	196.0 140.0	150.0 146.9	65.4 25.5	203.4 98.4	108.6 106.4	4	4
57314	79.5	75.0	94.0 94.0	98.0	171.5	38.0	5104.0	2381.0	161.5	140.0	88.9	63.5	191.2	103.9	4	4
57315	73.0	73.0	94.0	102.5	170.5	38.0	6684.0	2034.0	305.0	222.0	169.1	48.5	152.5	105.7	4	4
60795	73.0	64.5	94.0	98.0	170.5	63.0	3732.5	2235.5	184.5	171.0	109.2	44.0	154.3	107.9	4	4
CQ3620	73.0	75.5	94.0	98.0	285.5	38.0	8000.5	2365.0	510.0	182.5	357.2	94.0	216.5	116.0	4	4
CQ3621	73.0	59.0	100.0	98.0	313.5	39.5	3407.0	3140.0	252.0	184.5	145.9	129.0	236.8	111.1	4	4
Q5427	82.0	78.5	101.0	116.0	313.5	30.0	11214.5	4734.5	622.0	306.0	336.2	260.3	256.5	118.9	5	4
Q6880B	73.0	57.5	94.0	91.0	313.5	106.0	4025.5	2399.5	236.5	153.0	135.7	60.5	212.2	112.0	5	4
Q6988	76.0	72.0	101.0	98.0	313.5	98.0	11314.0	5443.0	888.0	315.0	489.5	147.8	205.0	104.2	5	4
Mean average		73.5		96.8		140.4		3914		264		146.4		158.4		4
LSD (P < 0.05)		10		NS		65.1		3117.5		232.9		131.2		NS		0.7
CV%		9.6		10.4		32.8		56.4		62.5		63.5		46.7		12.9

A		ays to dding		iys to vesting		st Period lays)		pod per lot	Pods p	er Plant		nt Seed ight (g)		0 seed ght (g)	Seed	per Pod
Accessions	NAR L	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC- Tororo	NARL	DATIC Tororo
29399	73.0	66.0	94.0	98.0	313.5	71.0	15885.0	4775.5	956.5	404.0	655.6	172.5	267.9	108.2	5	4
29400	73.0	65.0	94.0	98.0	313.5	71.0	10108.0	2614.5	701.5	300.5	322.0	106.4	248.6	115.8	5	4
29803	87.5	79.5	107.0	98.0	313.5	64.0	6681.0	3150.5	478.5	232.0	353.0	172.6	286.4	112.8	5	4
30701	87.5	78.0	107.0	102.5	273.0	89.0	8676.0	4955.5	1017.0	371.0	725.8	287.3	340.3	124.0	5	4
31364	73.0	64.5	97.5	98.0	313.5	63.0	12503.0	5674.0	671.0	371.0	415.2	135.6	194.7	109.5	4	4
34777	73.0	71.0	94.0	98.0	171.5	38.0	7698.0	854.0	255.0	107.0	154.3	21.3	208.8	112.2	4	4
34780	73.0	71.0	94.0	98.0	245.5	38.0	3105.0	1311.5	179.0	120.5	149.9	48.9	239.4	113.4	5	5
35771	73.0	71.0	94.0	98.0	227.7	38.0	3983.0	1359.5	207.0	120.5	125.9	32.1	165.7	105.8	4	4
35893	79.5	71.0	94.0	98.0	245.5	45.0	1048.0	576.0	68.0	69.5	59.2	43.3	262.0	112.3	5	4
35894	79.5	57.5	94.0	91.0	171.5	41.5	2142.5	1478.5	140.0	113.5	126.7	59.1	250.9	112.3	5	4
36019	79.5	57.5	94.0	91.0	313.5	76.5	3778.5	2157.0	217.5	145.0	137.5	65.7	164.8	108.5	5	4
36903	73.0	63.0	94.0	98.0	171.5	38.0	5760.5	1665.0	300.0	132.5	176.1	31.3	181.8	99.1	4	3
52504A	79.5	78.0	94.0	98.0	250.5	38.0	3629.5	1825.0	164.0	111.5	95.9	43.5	163.9	106.0	4	4
52504B	73.0	72.0	94.0	98.0	159.5	38.0	3454.5	1806.0	165.5	141.0	92.4	39.2	152.2	109.1	4	3
52506B	73.0	72.0	94.0	98.0	159.5	38.0	4735.5	1053.0	212.5	112.0	113.2	16.6	155.5	96.2	4	4
52508	79.5	66.0	94.0	98.0	164.5	38.0	2659.0	1622.0	142.0	126.5	90.8	49.6	181.4	105.0	4	4
52513	73.0	66.0	100.0	98.0	187.0	38.0	3371.0	2003.0	223.0	197.5	133.0	48.2	167.8	103.8	5	4
52514	73.0	72.0	94.0	98.0	164.0	38.0	3340.5	1637.0	187.5	172.0	111.9	59.1	162.3	105.9	4	4
52518B	100.0	71.5	117.0	106.0	313.5	85.5	1234.5	1838.5	91.5	178.0	52.7	101.2	234.4	109.8	4	3
52530	79.5	67.5	100.5	51.5	164.5	55.0	2879.0	1072.5	195.5	495.0	148.4	161.6	205.0	104.7	4	2
52533	79.5	69.0	94.0	98.0	146.5	38.0	3568.3	2025.5	221.5	205.5	120.0	96.5	174.4	96.5	4	4
52535	73.0	75.0	94.0	98.0	186.0	38.0	4127.0	233.0	240.0	44.0	144.5	50.9	238.8	113.5	4	4
52551	79.5	75.0	94.0	98.0	171.5	38.0	4157.5	1301.0	248.0	149.5	176.4	75.6	242.6	112.8	4	4
52552	73.0	75.0	94.0	98.0	219.0	38.0	5629.5	2275.5	283.0	196.0	150.0	65.4	203.4	108.6	4	4
52554	79.5	75.0	94.0	98.0	171.5	38.0	5258.0	1405.0	272.5	140.0	146.9	25.5	98.4	106.4	4	4
57314	79.5	75.0	94.0	98.0	171.5	38.0	5104.0	2381.0	161.5	189.0	88.9	63.5	191.2	103.9	4	3
57315	73.0	73.0	94.0	102.5	170.5	38.0	6684.0	2034.0	305.0	222.0	169.1	48.5	152.5	105.7	4	4
60795	73.0	64.5	94.0	98.0	170.5	63.0	3732.5	2235.5	184.5	171.0	109.2	44.0	154.3	107.9	4	4
CQ3620	73.0	75.5	94.0	98.0	285.5	38.0	8000.5	2365.0	510.0	182.5	357.2	94.0	216.5	116.0	4	4
CQ3621	73.0	59.0	100.0	98.0	313.5	39.5	3407.0	3140.0	252.0	184.5	145.9	129.0	236.8	111.1	4	4
Q5427	82.0	78.5	101.0	116.0	313.5	30.0	11214.5	4734.5	622.0	306.0	336.2	260.3	256.5	118.9	5	4
Q6880B	73.0	57.5	94.0	91.0	313.5	106.0	4025.5	2399.5	236.5	153.0	135.7	60.5	212.2	112.0	5	4
Q6988	76.0	72.0	101.0	98.0	313.5	98.0	11314.0	5443.0	888.0	315.0	489.5	147.8	205.0	104.2	5	4
Mean average		73.5		96.8		140.4		3914		264		146.4		158.4		4
LSD (P < 0.05)		10		NS		65.1		3117.5		232.9		131.2		NS		0.7
CV%		9.6		10.4		32.8		56.4		62.5		63.5		46.7		12.9

conditions during the first season. Accessions 52518B and 30701 were significantly taller than the other accessions, while 52508 was the shortest during the first season. Accessions 52518B, Lablab Uganda, Q5427, 29803, 30701 and 34780 **Table 5.** (a) Vegetative growth performance of 22 different lablab accessions during 2013-2014 at NARL and DATICSDATIC-Tororo; (b) Podding and yield performance of lablab accessions during 2013-2014 at NARL and DATIC-Tororo.

			(a	·			
Accessions	% Germination	Days to 50% Flowering	Seedling Vigour (1 - 5)	Plant Vigour (1 - 5)	Leafiness (1 - 5)	Plant height at 50% flowering	Plant height at 100% flowering
29803	72	89.5	2.5	1.8	3.0	235.9	259.7
30701	66	93.5	2.3	2.3	3.5	228.6	259.5
34777	70	64.0	2.8	2.5	2.0	123.2	67.0
34780	84	60.5	1.8	1.8	3.3	175.0	223.1
35894	76	58.5	2.0	2.3	2.0	106.3	154.4
36019	72	54.5	2.5	1.8	1.8	51.0	89.5
36903	84	57.5	2.8	1.8	2.8	110.5	125.5
52504A	70	56.5	2.3	2.0	2.8	113.9	122.4
52506B	84	55.5	2.0	1.8	2.8	119.5	132.0
52513	80	59.5	2.5	2.5	2.3	105.3	127.8
52514	70	56.5	2.0	2.3	2.3	67.4	78.9
52518B	68	107.0	1.5	1.3	2.3	258.5	326.5
52535	54	56.5	2.3	2.0	2.8	121.6	139.6
52552	56	64.0	2.5	2.8	2.8	111.9	138.9
Q6880B	82	57.0	2.3	2.0	2.3	23.0	53.5
81364	78	57.0	2.3	2.3	2.8	53.0	107.5
CQ3620	68	64.0	2.8	2.5	2.8	114.0	143.0
CQ3621	68	57.0	2.0	2.5	2.0	17.9	62.6
Q5427	66	93.0	1.5	2.8	3.3	246.5	280.0
Q6988	76	64.0	2.3	2.5	3.0	137.0	192.5
Lablab Uganda	60	108.0	2.3	2.5	4.0	310.3	258.9
Average	71.6	68.3	2.2	2.2	2.6	134.8	159.2
LSD (P < 0.05)	15.5	13.5	1.0	1.5	1.0	86.0	90.1
CV%	2.3	9.5	8.3	7.8	15.2	31.8	28.1

(b)

Accessions	Days to podding	Days to pod maturity	Days to harvesting	Harvest period (days)	-	Pods per plant	Total plant seed weight (g)	1000 seed weight (g)	Number of Seed per pod
29803	96.5	105.0	80.0	239.5	10610	810	913	241.2	5
30701	106.0	112.0	80.0	236.0	11144	931	1225	340.3	5
34777	69.0	84.0	80.0	73.0	1391	149	151	220.7	4
34780	65.5	87.5	80.0	61.0	1117	123	272	257.2	5
35894	66.5	84.0	80.0	65.5	732	85	123	260.8	5
36019	60.0	83.5	80.0	93.5	1904	186	294	191.8	4
36903	62.0	86.0	80.0	135.0	2100	180	132	168.8	4
52504A	62.0	85.0	80.0	82.0	1437	141	124	170.0	4
52506B	63.0	80.0	80.0	66.5	2226	215	190	161.5	4
52513	65.5	80.0	80.0	69.5	1688	146	119	166.1	4
52514	63.0	80.0	80.0	72.5	776	82	66	161.1	4
52518B	99.0	104.2	80.0	239.5	8984	698	890	224.8	4
52535	62.0	86.5	80.0	55.0	832	105	142	259.1	4

DOI: 10.4236/oalib.1104481

Continued									
52552	69.0	80.0	80.0	90.0	1011	108	107	224.8	4
Q6880B	62.5	76.0	80.0	239.5	5131	500	787	213.6	5
81364	62.5	80.0	80.0	172.5	14827	1227	1749	173.2	5
CQ3620	70.0	80.0	80.0	80.5	1059	127	170	222.9	4
CQ3621	63.0	80.0	80.0	155.5	4535	602	971	233.2	4
Q5427	98.5	110.0	80.0	243.0	10509	750	1336	244.7	5
Q6988	69.0	78.0	80.0	243.0	8941	814	1083	196.3	4
Lablab Uganda	112.5	124.0	80.0	243.0	7528	592	1247	258.7	4
Averages	73.9	88.6	80.0	140.7	4689	408	576	218.6	4.0
LSD (P < 0.05)	11.8	18.1	NS	90.9	9917	777	1426	24.7	1.0
CV%	10.0	8.2	0.0	17.5	93.7	82.1	118.4	3.4	3.2

were taller at 50% and 100% flowering stages during the second season (**Table 5(a)**). The average plant height (206.6 cm) in NARL was higher than in DATIC-Tororo (172.7 cm) whereby the tallest accessions were 29803, 30701, Q5427 and 52518B. The tallest accessions in DATIC-Tororo were 29803, 31364, 52518B, CQ3620, CQ3621, 60795, Q5427 and Q6988 (**Table 4(a)**). However, there was no positive correlation between plant vigour and height.

Podding started at 65.3 - 85.8 average DAP with most early flowering accessions (54.5%) starting to pod before the average 74 DAP in the first season. The harvest periods ranged from 92.2 to 209.8 DAP in the first season, and 15 accessions had a significantly longer harvest period (**Table 4(b)**). The harvest period in NARL was longer (229.8 days) than in DATIC-Tororo (51 days), and accessions with the longest harvest periods were 29399, 29400, 29803, 31364, 36019, 52518B, CQ3621, Q5427, Q6880B, Q6988, CQ3620 and 30701 (**Table 4(b)**). This showed that under favourable conditions (sufficient moisture), lablab has the ability to produce more pods for a long period. In the second season, the days to podding (62 - 113) and pod maturity (76 - 124) were significantly different (**Table 5(b**)).

The accessions that had the longest harvest period, eventually produced the highest number of pods and yields (Table 4(b) and Table 5(b)), and the number of pods were significantly different with a range of 69 - 694 pods per plant. More pods were harvested in NARL (average 332) than in DATIC-Tororo (196), which resulted in higher average yields per plant in NARL (206.3 g) than in DATIC-Tororo (86.5 g). Accessions 30701, 29399, Q6988, 29400, 31364 and Q5427 produced the highest number of pods. However, the 1000 seeds weight with the range of 102.4 - 232.1 g showed no significantly difference across accessions, while 85% of the accessions had 4 seeds per pod (Table 4(b)).

Plant vigour, leafiness, plant height, harvest period, pods per plant and yields, showed significant differences between the sprayed and non-sprayed plants (**Table 6** and **Table 7**). Poor yields from the non-sprayed plants resulted from the high incidences of different insect pests (*Anaplocnemis curvipes, Acanthomia tomentosicollis, Zonabris dicincta, Coryna apicicornis, Nematocerus*)

...

	% Germ	nination	,	o 50% ering	Seedling	g Vigour	Plant	Vigour	Leaf	iness		ght at 50% rering	Plant heig Flow	ht at 100% rering
Accessions	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control
29399	82	68	57.0	55.0	2.3	2.0	3.5	3.5	4.8	4.5	108	82	245.0	170.5
29400	56	72	57.0	55.0	1.5	1.5	3.0	3.0	3.3	4.0	60	72	196.0	127.0
29803	68	80	70.0	68.0	1.5	1.0	2.5	2.5	3.3	3.0	116	60	339.0	314.0
30701	56	62	70.0	68.0	1.5	1.5	3.0	2.5	3.3	4.0	74	98	356.0	335.5
31364	84	72	57.0	55.0	1.5	1.5	3.0	3.0	3.8	4.3	52	80	246.0	166.0
34777	72	76	60.0	58.0	1.5	1.5	3.0	3.0	2.0	3.0	60	70	222.0	150.0
34780	76	70	53.5	51.0	1.0	1.5	3.0	2.0	2.0	1.3	144	50	255.0	162.0
35771	76	70	53.5	51.0	1.5	1.5	2.5	1.5	2.5	1.3	54	38	180.0	124.0
35893	82	68	53.5	51.0	1.0	1.0	2.5	2.0	1.8	1.5	132	58	235.0	156.0
35894	64	74	53.5	51.0	1.5	1.5	3.0	2.5	2.3	2.5	120	80	246.5	154.0
36019	78	62	53.5	51.0	1.0	1.5	3.0	2.0	2.0	1.3	86	26	209.0	93.0
36903	86	70	60.5	61.0	1.5	1.5	3.0	2.0	2.8	2.0	52	28	190.0	120.0
52504A	94	70	63.5	61.0	1.5	1.5	2.5	2.0	2.5	2.8	34	34	161.5	130.0
52504B	78	74	60.5	58.0	1.5	1.5	2.5	2.0	2.5	2.5	30	34	184.0	119.0
52506B	86	84	60.5	58.0	1.5	1.5	3.0	2.5	3.3	3.0	48	26	182.0	156.0
52508	72	76	57.5	55.5	1.5	1.5	2.5	2.5	2.8	2.8	24	16	129.0	122.0
52513	60	62	63.0	55.5	1.5	1.0	2.5	2.0	2.3	2.5	64	56	225.0	152.0
52514	66	70	57.5	55.5	1.5	1.0	2.5	2.5	2.3	3.3	44	56	149.0	121.0
52518B	62	70	53.5	61.0	1.5	1.0	2.5	1.5	2.0	1.0	66	90	346.5	355.0
52530	68	56	60.5	58.0	1.5	1.0	3.0	1.0	2.5	1.0	90	30	166.5	94.0
52533	70	70	62.0	59.5	1.5	1.0	3.0	1.0	3.0	1.0	92	34	207.5	144.0
52535	80	68	60.5	58.0	1.5	1.5	2.5	2.0	1.5	1.5	70	44	157.5	140.0
52551	68	64	60.5	58.0	1.5	1.0	3.0	1.5	2.5	2.3	94	84	200.0	144.0
52552	74	72	57.5	55.5	1.0	1.0	3.0	3.0	2.5	3.0	98	88	219.0	160.0
52554	62	58	61.5	59.0	1.0	1.0	2.5	2.5	2.8	2.5	62	44	166.5	93.0
57314	76	70	61.5	59.0	1.5	1.0	3.0	2.0	2.5	2.3	50	42	187.5	115.0
57315	78	72	63.0	60.5	1.5	1.0	3.0	2.0	3.0	2.8	58	44	206.5	126.0
60795	80	76	57.5	55.5	1.5	1.0	2.5	2.0	3.0	2.8	44	42	224.0	151.0
CQ3620	76	74	60.5	58.0	1.5	1.5	3.0	3.0	2.8	3.3	62	78	187.5	197.0
CQ3621	72	68	63.0	55.5	1.5	1.5	2.5	3.0	3.0	3.3	42	38	232.5	149.0
Q5427	78	78	53.5	56.5	1.0	1.0	2.0	1.5	2.5	1.3	26	16	334.0	265.0
Q6880B	70	74	55.5	55.5	1.0	1.5	2.0	2.0	1.5	1.3	72	88	151.5	133.5
Q6988	66	62	58.5	56.0	1.0	1.8	2.5	2.5	2.3	2.5	96	104	265.0	177.0
Means	73.2	70.1	59.1	57.1	1.4	1.3	2.7	2.2	2.6	2.4	70.4	55.5	218.2	161.1

Table 6. Vegetative growth performance of 33 different lablab accessions with or without pesticide sprays during 2011-2012.

								(b)								
Accessions	Days to I	Podding	'	ys to esting		vest (days)	-	ood per lot	Pods p	er Plant		Seed ht (g)	1000 see (٤	U	Seed p	er Pod
	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control
29399	70.5	68.5	100.0	92.0	193.5	191.0	12961.0	7700.0	763.0	598.0	537.9	290.1	230.5	145.6	4.5	3.5
29400	70.0	68.0	100.0	92.0	193.5	191.0	6486.0	6238.0	591.0	412.0	303.4	125.0	228.6	135.8	4.5	3.5
29803	92.5	74.5	106.0	99.0	220.5	157.0	5977.0	3855.0	445.0	266.0	369.2	156.4	239.9	159.3	4.5	4.5
30701	92.5	74.0	110.0	99.0	216.0	146.0	10139.0	3493.0	954.0	435.0	799.6	213.5	269.3	195.0	5.0	4.0
31364	70.0	67.5	100.0	95.5	190.0	186.5	12912.0	5265.0	695.0	293.0	411.7	139.0	196.0	108.2	4.0	3.5
34777	73.0	71.0	100.0	92.0	104.0	105.5	2573.0	5979.0	190.0	173.0	92.0	83.6	201.0	166.0	4.0	4.0
34780	73.0	71.0	100.0	92.0	190.0	93.5	3492.0	925.0	221.0	79.0	157.0	41.8	216.1	136.7	5.5	4.0
35771	73.0	71.0	100.0	92.0	104.0	161.5	2952.0	2391.0	207.0	121.0	86.2	71.8	167.4	104.1	4.0	4.0
35893	79.5	71.0	100.0	92.0	197.0	93.5	1124.0	501.0	91.0	47.0	71.9	30.6	240.9	133.6	4.5	4.0
35894	72.5	64.5	96.5	88.5	107.5	105.5	2423.0	1199.0	184.0	70.0	151.3	34.4	227.9	135.3	4.5	4.0
36019	72.5	64.5	96.5	88.5	224.0	166.0	4507.0	1429.0	253.0	110.0	132.8	70.3	196.5	76.8	4.5	4.0
36903	72.0	64.0	100.0	92.0	104.0	105.5	5670.0	1756.0	311.0	122.0	148.9	58.5	169.0	111.9	3.5	3.5
52504A	83.0	74.5	100.0	92.0	190.0	98.5	3705.0	1750.0	192.0	84.0	95.6	43.8	174.7	95.2	4.0	3.5
52504B	73.5	71.5	100.0	92.0	104.0	93.5	3782.0	1479.0	221.0	86.0	99.8	31.8	175.5	85.8	3.5	3.5
52506B	73.5	71.5	100.0	92.0	104.0	93.5	3929.0	1860.0	239.0	86.0	104.9	24.8	166.2	85.4	3.5	4.0
52508	77.0	68.5	100.0	92.0	104.0	98.5	2698.0	1584.0	195.0	74.0	96.1	44.3	189.2	97.2	4.0	3.5
52513	70.5	68.5	106.0	92.0	104.0	121.0	3316.0	2058.0	295.0	126.0	134.8	46.3	182.6	89.0	4.5	3.5
52514	73.5	71.5	100.0	92.0	104.0	98.5	2361.0	2617.0	186.0	174.0	110.6	60.4	180.4	87.7	4.0	4.0
52518B	95.0	76.5	124.5	98.5	212.5	186.5	2513.0	560.0	229.0	41.0	129.3	24.6	212.6	131.6	4.0	3.0
52530	76.5	70.5	100.0	52.0	134.5	85.0	2642.0	1310.0	607.0	84.0	254.4	55.6	211.1	98.6	4.0	2.0
52533	78.0	70.5	100.0	92.0	103.0	81.5	4516.0	1079.0	365.0	63.0	196.2	20.3	184.4	86.4	4.0	4.0
52535	75.0	73.0	100.0	92.0	103.0	121.0	2814.0	1546.0	184.0	101.0	136.1	59.2	220.7	131.6	4.0	4.0
52551	81.5	73.0	100.0	92.0	104.0	105.5	3721.0	1738.0	282.0	116.0	188.8	63.2	217.0	138.4	4.0	3.5
52552	75.0	73.0	100.0	92.0	151.5	105.5	4710.0	3195.0	297.0	183.0	133.0	82.4	196.9	115.1	4.0	4.0
52554	81.5	73.0	100.0	92.0	104.0	105.5	3726.0	2937.0	275.0	138.0	95.9	76.5	105.2	99.6	4.0	4.0
57314	81.5	73.0	100.0	92.0	104.0	105.5	4307.0	3178.0	292.0	59.0	118.5	34.0	189.9	105.3	3.5	3.5
57315	74.0	72.0	100.0	96.5	103.0	105.5	4713.0	4005.0	345.0	183.0	128.8	88.7	171.4	86.8	4.0	3.5
60795	70.0	67.5	100.0	92.0	103.0	130.5	3943.0	2026.0	206.0	150.0	103.3	49.9	176.5	85.7	4.0	4.0
CQ3620	77.0	71.0	100.0	92.0	162.0	161.5	5464.0	4902.0	376.0	317.0	240.0	211.7	209.7	122.9	4.0	4.0
CQ3621	67.0	65.0	106.0	92.0	190.0	163.0	4539.0	2008.0	285.0	152.0	227.4	47.5	210.9	137.0	4.0	3.5
Q5427	87.0	73.5	104.5	112.5	180.5	163.0	13681.0	2269.0	793.0	135.0	542.5	54.0	233.2	142.1	5.0	4.0
Q6880B	66.0	64.5	96.5	88.5	224.0	195.5	3937.0	2489.0	268.0	122.0	133.6	62.7	205.1	119.1	4.5	4.0
Q6988	76.5	71.5	100.0	99.0	220.5	191.0	12258.0	4499.0	826.0	378.0	449.7	187.6	196.3	112.9	4.5	4.5
Means	76.5	70.4	101.4	92.2	150.1	130.7	5105.8	2721.8	359.5	169.0	211.6	81.3	199.8	117.0	4.2	3.8

DOI: 10.4236/oalib.1104481

Open Access Library Journal

Table 7. (a) Vegetative growth performance of 33 different lablab accessions with or without pesticide sprays during 2013-2014.(b) Podding and yield performance of 33 different lablab accessions with or without pesticide sprays during 2013-2014.

,	0 /	1					(a)		1	1	1	0		
A	% Gern	nination		o 50% vering	Seedling	g Vigour		Vigour	Leafi	iness		ight at 50% vering		ht at 100% ering
Accessions	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control	Sprayed	Control
29803	72.0	72.0	87.0	92.0	2.0	3.0	1.5	5.0	3.0	3.0	279.0	192.9	308.0	211.4
30701	68.0	64.0	89.0	98.0	1.5	3.0	1.5	3.0	3.5	3.5	290.0	167.1	343.3	175.7
34777	76.0	64.0	64.0	64.0	3.0	2.5	2.0	3.0	2.0	2.0	142.0	104.4	81.4	115.6
34780	84.0	84.0	53.0	68.0	2.0	1.5	2.0	1.5	4.0	2.5	265.0	85.0	316.3	130.0
35894	76.0	76.0	64.0	53.0	2.0	2.0	2.5	2.0	2.5	1.5	142.5	70.0	218.8	90.0
36019	72.0	72.0	57.0	52.0	2.5	2.5	1.5	2.0	2.0	1.5	52.0	50.0	121.0	580
36903	80.0	88.0	63.0	52.0	2.5	3.0	2.0	1.5	3.0	2.5	144.0	77.0	172.0	79.0
52504A	64.0	76.0	60.0	53.0	2.0	2.5	2.5	1.5	3.0	2.5	125.0	102.9	142.0	102.9
52506B	76.0	92.0	54.0	57.0	2.0	2.0	2.5	1.0	3.0	2.5	145.0	94.0	165.0	99.0
52513	92.0	68.0	64.0	55.0	2.5	2.5	2.5	2.5	2.5	2.0	115.0	95.6	149.0	106.7
52514	64.0	76.0	65.0	48.0	2.0	2.0	2.5	2.0	2.5	2.0	77.0	57.8	90.0	67.8
52518B	68.0	68.0	97.0	117.0	1.5	1.5	1.5	1.0	3.5	1.0	333.0	184.0	373.0	280.0
52535	56.0	52.0	55.0	58.0	2.0	2.5	2.5	1.5	3.0	2.5	131.3	112.0	161.3	118.0
52552	48.0	64.0	64.0	64.0	2.0	3.0	2.5	3.0	3.0	2.5	112.9	111.0	145.7	132.0
Q6880B	84.0	80.0	57.0	57.0	2.0	2.5	1.0	3.0	2.5	2.0	28.0	18.0	69.0	38.0
81364	80.0	76.0	57.0	57.0	2.0	2.5	1.5	3.0	3.0	2.5	55.0	51.0	119.0	96.0
CQ3620	56.0	80.0	64.0	64.0	2.5	3.0	2.5	2.5	3.0	2.5	146.0	82.0	192.0	94.0
CQ3621	64.0	72.0	57.0	57.0	2.0	2.0	2.5	2.5	2.5	1.5	23.0	12.9	78.0	47.1
Q5427	64.0	68.0	89.0	97.0	2.0	1.0	2.5	3.0	3.5	3.0	303.0	190.0	338.0	222.0
Q6988	76.0	76.0	64.0	64.0	2.0	2.5	2.0	3.0	3.0	3.0	155.0	119.0	222.0	163.0
Lablab Uganda	60.0	60.0	101.0	115.0	2.0	2.5	1.5	3.5	4.0	4.0	402.5	218.0	265.7	252.0
Mean average	70.5	72.8	67.9	68.7	2.1	2.4	2.1	2.3	3.0	2.4	165.1	104.5	10.8	127.5
							(b)							
	Days to		ays to	Days to		est Period	Total po	- PC	ods per Plan	t	t Seed	1000 see	Seed	l per Pod
ccessions –	Podding prayed con		iturity d control s	Harvestir	•	(days) ed control	Plo spraved o	t	•	Weig	tht (g)	weight (g	g)	
29803	96.0 97				0.0 241.		13606	-	40 781	1703.7			1.0 5	5
30701	97.0 115				0.0 234.0		17723		437 425	2189.2	260.5		39.5 5	5
34777	69.0 69		84.0		0.0 76.0		2256		26 72	260.0	41.1		5.3 4	4
34780	59.0 72		88.0		0.0 94.0		2115		22 25	503.2	41.7		59.6 5	5
35894	70.0 63		84.0		0.0 68.0		1354		.22 23	171.4	75.0		15.9 5	4
36019	62.0 58		84.0		0.0 110.		3205		.86 85	517.9	70.5		35.8 4	4
36903	67.0 57	.0 86.0	86.0	80.0 80	0.0 234.	0 36.0	3266	933 2	.78 82	238.3	26.5	167.3 17	70.3 4	4

Continu	ed																	
52504A	65.0	59.0	85.0	85.0	80.0	80.0	94.0	70.0	2167	707	196	87	198.6	49.4	170.1	169.9	4	4
52506B	64.0	62.0	80.0	80.0	80.0	80.0	84.0	49.0	3790	661	339	90	340.3	40.7	166.3	156.6	4	4
52513	69.0	62.0	80.0	80.0	80.0	80.0	76.0	63.0	2408	967	201	92	200.0	37.9	169.6	162.6	4	4
52514	70.0	56.0	80.0	80.0	80.0	80.0	68.0	77.0	1013	539	92	72	90.9	40.2	164.3	158.0	4	4
52518B	104.0	104.3	118.0	80.0	80.0	80.0	241.0	238.0	17163	804	1271	124	1733.3	46.2	261.7	188.0	4	4
52535	60.0	64.0	86.0	87.0	80.0	80.0	68.0	42.0	1316	347	159	51	241	43.8	271.6	246.7	4	4
52552	69.0	69.0	80.0	80.0	80.0	80.0	76.0	104.0	890	1131	93	72	104.8	109.1	229.3	220.4	4	4
Q6880B	62.0	63.0	76.0	76.0	80.0	80.0	241.0	238.0	8637	1624	751	250	1373.9	200.0	214.8	212.4	5	4
81364	63.0	62.0	80.0	80.0	80.0	80.0	241.0	104.0	26557	3097	2146	307	3280.8	218.2	178.7	167.8	5	4
CQ3620	70.0	70.0	80.0	80.0	80.0	80.0	84.0	77.0	1353	764	155	100	274.3	65.5	224.1	221.8	4	4
CQ3621	63.0	63.0	80.0	80.0	80.0	80.0	248.0	63.0	8532	538	1138	66	1893.3	49.3	237.5	229.0	4	4
Q5427	97.0	100.0	104.0	116.0	80.0	80.0	248.0	238.0	19400	1617	1354	147	2609.3	63.6	245.5	243.9	5	4
Q6988	68.0	70.0	77.0	79.0	80.0	80.0	248.0	238.0	14714	3167	1308	320	1973.3	191.7	197.4	195.3	4	4
Lablab Uganda	105.0	120.	119.0	129.0	80.0	80.0	248.0	238.0	12227	2828	928	257	2321.4	172.7	265.9	251.5	4	4
Mean average	73.8	74.1	88.3	88.9	80.0	80.0	158.2	123.3	7795	1584	645	171	1058.0	93.7	223.9	213.4	4	4

castaneipennis, Alcides, Chilomenes lunata, Phloeobius humilis, Nazara viridula, Aspavia armigera and Catantops melanostictus) that severely damaged leaves, flowers, stems and pods in both sites. Some accessions were also severely damaged by Anthracnose disease caused by *Choletotricum lindemuthianum*.

Apart from 29803, the pod colour of 32 accessions was green of varying intensities, and most accessions had black seeds of which majority were mottled (**Table 8**). The common seed colours observed were black, brown, dark red and cream whereas the common flower colours were white, dark purple and light purple.

Overall, accessions that had the best vegetative growth characteristics (highest plant vigour, leafiness and height at 50% and 100% flowering) were 29399, 29400, 29803, 31364, 57315, 52554, 52552, 52514, 52508, 52506B, CQ3620 and CQ3621 in the first season, and 29803, 30701, 52552, CQ3620, Q5427, Q6988 and Lablab Uganda in the second season. Based on harvest period, pods per plant and yield per plant, the best performing accessions were 29399, 29400, 29803, 30701, 31364, 52530, CQ3620, Q5427 and Q6988 in the 1st season, while 29803, 30701, 52518B, Q6880B, 31364, CQ3621, Q5427, Q6988 and Lablab Uganda performed best in the 2nd season.

3.2. Sensory and Palatability Evaluation of Lablab Using Matrix Scores

All parameters (grains size, colour, taste, texture and flavour) used to assess the 12 accessions selected in the first season showed significant differences. Accessions CQ3620, 29400 and 31364 selected based on high plant vigour, leafiness,

Tuble 6. Fromer, pou una grant mour characteristics of the 55 hours accessions.									
Accessions	Plant habit	Flower colour	Pod colour	Seed colour	Mottling				
29399	Prostrate	Purplish white	Green	Dark red	No				
29400	Erect	Purplish white	Green	Dark red	No				
29803	Prostrate	Purple	Green	Black	No				
30701	Erect	White	Green	Dark red	No				
34777	Erect	White	Green	Cream	Yes				
34780	Erect	Pale Purple	Green	Back	Yes				
35771	Erect	Pale Purple	Green	Black	No				
35893	Erect	Pale Purple	Purple	Black	No				
35894	Erect	White	Green	Brown	Yes				
36019	Erect	Pale Purple	Green	Black	Yes				
36903	Erect	Pale Purple	Green	Black (pale)	No				
52504A	Erect	Pale Purple	Green	Black (pale)	No				
52504B	Erect	Pale Purple	Green	Black (pale)	No				
52506B	Erect	Pale Purple	Green	Black (pale)	No				
52508	Erect	White	Green	Dark red	Yes				
52513	Erect	Pale Purple	Green	Brown	Yes				
52514	Erect	White	Green	Brown	Yes				
52518B	Prostrate	Pale Purple	Green	Brown	No				
52530	Erect	White	Green	Cream	Yes				
52533	Erect	White	Green	Cream	Yes				
52535	Erect	White	Green	Brown	Yes				
52551	Erect	White	Green	Brown	Yes				
52552	Erect	White	Green	Cream	Yes				
52554	Erect	White	Green	Brown	Yes				
57314	Erect	Pale Purple	Green	Black	No				
57315	Prostrate	Pale Purple	Green	Black	No				
60795	Erect	Pale Purple	Green	Black	No				
31364	Erect	White	Green	Brown	Yes				
CQ3620	Erect	White	Green	Cream	Yes				
CQ3621	Erect	White	Green	Dark red	Yes				
Q5427	Prostrate	Pale Purple	Green	Black	No				
Q6880B	Erect	Pale Purple	Green	Black	Yes				
Q6988	Prostrate	White	Green	Dark red	Yes				

 Table 8. Flower, pod and grain visual characteristics of the 33 lablab accessions.

_

height, podding ability and yield, scored significantly higher average grain colour (before cooking) (**Table 9**) than 36019, 52518B, Q5427 and Q6880B. Njahi and 29399 had higher grain size scores before cooking than 29400, 30701,

	Scores before cooking (1 - 5)			Cooking				
Accessions	Grain colour	Grain size	Grain colour	Taste	Texture	Flavour	Mean averages	time (hrs: mins)
29399	3.2	3.7	3.1	2.9	2.4	2.6	3.0	2:59
29400	3.7	3.3	4.2	3.9	3.1	3.8	3.7	3:17
30701	3.2	3.4	-	-	-	-	3.3	-
36019	2.3	2.8	2.5	2.6	3.0	3.1	2.7	4:13
52518B	2.4	2.6	-	-	-	-	2.5	-
CQ3620	4.3	3.1	4.6	1.3	2.4	1.6	2.9	3:23
Q5427	2.5	2.3	2.6	3.4	2.9	3.1	2.8	3:14
Q6988	3.3	2.4	3.4	3.2	3.3	3.0	3.1	3:01
Lablab Uganda	3.4	3.3	3.4	4.0	3.9	4.1	3.7	4:10
31364	3.9	3.2	2.9	3.5	3.4	3.6	3.4	3:43
Q6880B	2.4	2.9	2.6	2.2	2.5	2.6	2.5	3:13
Njahi	3.2	4.1	3.5	4.6	4.1	4.4	4.0	3:57
Mean	3.1	3.1	3.3	3.2	3.09	3.2	-	3:26
LSD _(P ≤ 0.05)	0.75	0.77	0.71	0.69	0.82	0.79	-	-

Table 9. Sensory evaluation of the 12 different *L. purpureus* accessions based on 1 - 5matrix scores during 2011-2012.

CQ3620, Lablab Uganda, 31364 and Q6880B. The overall grain size and colour before cooking assessments showed that 58% - 67% had above average scores. After cooking, 80% scored \geq 3, while in the second assessment, 71% accessions scored above average (Table 10). The best accessions identified in the first assessment were 29400, Lablab Uganda and Njahi, while in the second evaluation, Q6988, Lablab Uganda and Njahi that scored 4 - 5. Based on all attributes, Njahi, Lablab Uganda, 29400, 31364 and Q6988 were the best in first season, while the final assessment determined that Lablab Uganda, Njahi, Q6988, 30701 and 29400 were the most suitable accessions for human palatability.

3.3. Graphic Comparison of Lablab Acceptance Based on Preference Ranking with Logistic Regression

Preference ranking of lablab accessions based on grain colour, taste, texture and flavour after cooking showed that the most preferred or acceptable accessions were 29400, Njahi, Lablab Uganda, 31364 and 29399. Although CQ3620 had a good colour, it was not ranked among the best five in the subsequent evaluations partly because of its bad taste, texture and flavour. The second evaluation before and after cooking indicated that there was no correlation in acceptance of accessions based on size and colour because the accessions that were best in one attributes such as colour (before cooking) were not automatically the best in the other (size). However, the most accepted accession before cooking for both

Accessions	Scores before cooking (1 - 5)			Cooking				
	Grain colour	Grain size	Grain colour	Taste	Texture	Flavour	Mean average	time (hrs:mins)
29400	3.6	3.3	3.5	3.2	2.5	2.8	3.2	4:55
30701	2.9	3.6	3.4	2.8	3.3	3.7	3.3	3:41
52518B	1.4	2.7	1.8	1.7	1.6	1.5	1.8	5:01
Q6988	3.4	2.6	4.1	3.9	3.8	3.4	3.5	3:41
Lablab Uganda	4.6	4.2	5.0	4.5	4.8	4.6	4.6	3:41
31364	3.4	2.6	2.5	2.3	2.5	2.3	2.6	4:59
Njahi	3.4	3.8	3.4	3.9	3.5	3.7	3.6	4:05
Mean	3.2	3.3	3.4	3.2	3.1	3.1	-	4:35
$LSD_{(P=0.05)}$	0.82	0.95	0.61	0.93	0.9	0.82	-	-

Table 10. Sensory evaluation of the seven different *L. purpureus* accessions based on 1 - 5 matrix scores during 2013-2014.

colour and size was Lablab Uganda while the least accepted was 52518B. After cooking, Njahi was the most preferred followed by 29400, Lablab Uganda, 31364 and 29399, but Lablab Uganda was consistently the best both before and after cooking in the second evaluation. The second set of preferred accessions before cooking were 31364, 29400, 30701 and Njahi whereas the best after cooking were Q6988, 30701, Njahi, 29400 and 31364. Overall, the best selected accessions in the first evaluation (**Figure 2**) were Njahi, 29400, Lablab Uganda, 31364 and 29399, while in the second season they were Lablab Uganda, Q6988, 30701, 31364 and Njahi (**Figure 3**).

The analysis of cumulative probability against ranking of the accessions evaluated in the first tests showed that three accessions (29400, Njahi and Lablab Uganda) consistently had positive intercepts based on colour, taste, texture and flavour after cooking (Table 11). Although accessions CQ3620, 31364 and 29399 had variable intercepts with different attributes, Q6988, Q6880B, Q5427 and 36019 had negative intercepts and were probably likely to be rejected by the farmers. Therefore, the three accessions, which had positive intercepts on y-axis had high probability of being accepted by the farmers because they had palatability characteristics that were highly preferred by the panel. Similarly, the second evaluation indicated that lablab Uganda had positive intercepts throughout all the tests (Table 12). Surprisingly, the three accessions that had be selected from the first evaluation had negative intercepts in the second evaluation implying that they had high probability of being rejected by the farmers. Based on colour before cooking, it was determined that 29400 and Lablab Uganda had positive intercepts, whereas in the case of grain size, Njahi and Lablab Uganda had positive intercepts. The after cooking results showed that Lablab Uganda

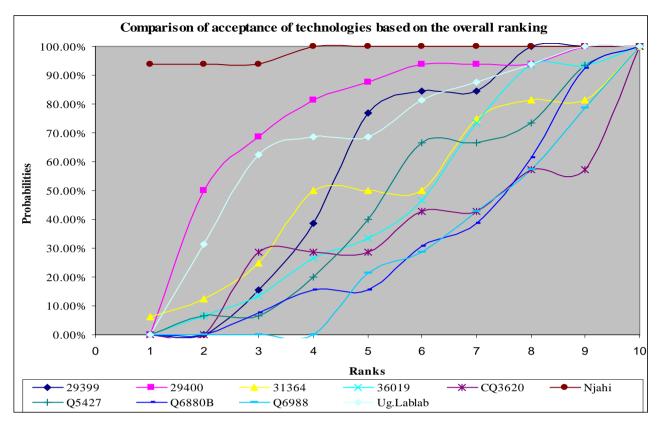
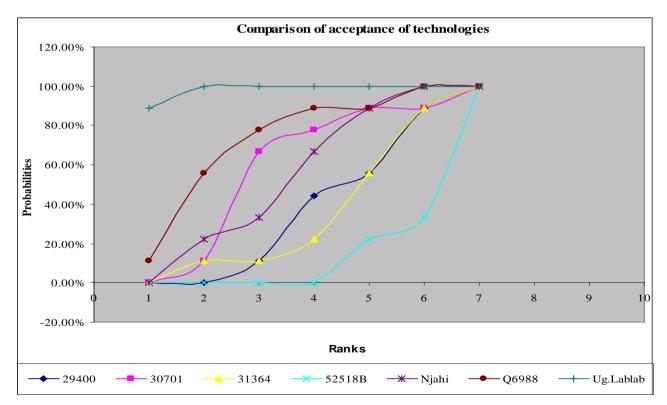



Figure 2. Overall preference ranking of the 12 accessions based on their sensory evaluation before and after cooking in the first season.

Figure 3. Overall preference ranking of the seven accessions based on their sensory evaluation by farmers before and after cooking in the second season.

Technology	Estimated parameter b (intercept)	Estimated parameter m (slope)	Standard Error (SE) for b intercept	Chi Square	b Intercept	Significance of statistical differences based on a level of 15%
29399	-0.123	0.131	0.099	0.266	-ve intercept	No difference
29400	0.296	0.086	0.124	0.123	+ve intercept	**Statistically different
31364	-0.029	0.102	0.046	0.425	-ve intercept	No difference
36019	-0.120	0.125	0.053	0.052	-ve intercept	**Statistically different
CQ3620	-0.114	0.091	0.075	0.216	-ve intercept	No difference
Njahi	0.938	0.008	0.013	3.447	+ve intercept	**Statistically different
Q5427	-0.196	0.122	0.052	0.052	-ve intercept	**Statistically different
Q6880B	-0.272	0.115	0.086	0.075	-ve intercept	**Statistically different
Q6988	-0.295	0.113	0.082	0.057	-ve intercept	**Statistically different
Lablab Uganda	0.158	0.097	0.092	0.188	+ve intercept	No difference

Table 11. Statistical analysis of overall parameters of 10 lablab accessions using the logistic regression.

Table 12. Statistical analysis of overall attributes of the seven accessions using the logistic regression.

Technology	Estimated parameter b (intercept)	Estimated parameter m (slope)	Standard Error (SE) for b intercept	Chi Square	b Intercept	Significance of statistical differences based on a level of 15%
29400	-0.317	0.187	0.084	0.051	-ve intercept	**Statistically different
30701	-0.063	0.171	0.144	0.051	-ve intercept	No difference
31364	-0.302	0.179	0.112	0.101	-ve intercept	**Statistically different
52518B	-0.333	0.139	0.198	0.195	-ve intercept	No difference
Njahi	-0.143	0.183	0.082	0.188	-ve intercept	No difference
Q6988	0.222	0.131	0.136	0.202	+ve intercept	**Statistically different
Lablab Uganda	0.937	0.012	0.031	3.395	+ve intercept	**Statistically different

and Q6988 were the only ones likely to be accepted by the farmers because of the positive intercepts.

4. Discussion and Conclusion

Although preference ranking and logistic regression analyses of the probabilities of acceptance of six different legume cover crops (mucuna, canavalia, lablab, crotalaria, tithonia, tephrosia) graded lablab species with low probability of being accepted or adopted due to its inability to produce sufficient seed [4], and slow initial field establishment [15], its multi-purpose nature made it one of the legume cover crops that can be highly preferred and probably widely adopted by farmers because of its ability to provide multiple farmers' requirements including human food [1], animal feed [6] [16], medicine [9], mulch [17], weed control [18] and soil fertility improvement [19] [20].

The 33 lablab accessions differed significantly in the agronomic characteristics

at the NARL and DATIC-Tororo sites. Pedigree information about these accessions was not publically available, and therefore the genetic associations were not discussed. Beside germination, which was generally good (\geq 50%) in both sites, plant growth and yield varied greatly with weather, agreeing that under wet and cool weather conditions, the plants normally gain high vegetative vigour producing more leaves, pods and accumulate higher dry matter for yield [21]. As a growth habit of lablab, all accessions reached 50% flowering within a shorter period (55 - 69 DAP), however, besides the genetic variation effect, the slow initial establishment of the different accessions, was partly attributed to lack of sufficient soil moisture [21]. Plant vigour and leafiness were positively correlated, meaning that the higher the growth vigour, the higher was the level of leaf production. Although most of the accessions that had higher plant vigour and leafiness were taller, the negative correlation between plant height and leafiness of several accessions could not be explained. The agronomic performances of the different accessions were also affected by the soil fertility status, because the performance of lablab at NARL was better than in DATIC-Tororo due the higher organic matter and water holding capacity in the NARL soils.

Previously, lablab was known to be virtually free of pests and diseases [22], but in the current study, many accessions were severely infested by various insect pest species in both sites. Thus integration of pesticide sprays in the agronomic management of lablab resulted in significantly higher vegetative growth, podding, longer harvesting periods, and higher yields than in the non-sprayed plots. Generally, most accession had low yields partly because of severe anthracnose infection, nevertheless, accessions 29399, 29400, 29803, 30701, 31364, CQ3620, Q5427, Q6988, 52518B, Q6880B, 31364, CQ3621 and Lablab Uganda displayed higher disease resistance levels.

Accessions 29400, Lablab Uganda, Njahi, 29399, 36019, Q5427, Q6988, 30701 and 31364 had the highest probability of being accepted due to their palatability and high yielding capacity regardless of the prevailing unfavourable environmental conditions.

The logistic regression determined that although 29400, Njahi and Lablab Uganda had positive intercepts, an implication that they had high probability of being accepted by farmers, 29400 and Njahi showed significant differences, but Lablab Uganda showed no difference. Therefore, of the 10 accessions evaluated for palatability, 29400 and Njahi had high probability of being accepted with positive intercepts and also differed statistically at P < 0.15. Nonetheless, the second analysis determined that Lablab Uganda and Q6988 had positive intercepts and differed significantly (P < 0.15) for most of the parameters.

Lablab has many benefits when included in tropical agricultural systems. The natural action of converting atmospheric N into forms available for the plant-animal-soil systems improves productivity in an inexpensive and environmentally friendly manner. This study found out that accessions 29399, 29400, 29803, 30701, 31364, CQ3620, Q5427, Q6988, 52518B, Q6880B, 31364, CQ3621

and Lablab Uganda had high yields which partly resulted from their high tolerance of the prevailing stresses (diseases, pests and low soil moisture). Accessions 29400, Lablab Uganda, Njahi 29399, 36019, Q5427, Q6988, 30701 and 31364 scored highly based on the sensory evaluation parameters. Although Njahi was the most preferred accession during the first test, in the second test, Lablab Uganda was highly scored followed by Njahi. In the second evaluation, the most preferred accessions (scored above 2.5) were Lablab Uganda, Njahi, Q6988, 30701, 29400 and 31364. Statistical analysis of the logistic regression determined that 29400, Njahi, Lablab Uganda and Q6988 showed significant differences.

Finally, the accessions that had the potential for being accepted based on the logistic preference ranking analysis were Lablab Uganda, Njahi, 29400 and Q6988. These results agreed with the graphic comparison and matrix score analyses. As earlier mentioned, the best accessions identified during the first exercise were 29400, Lablab Uganda and Njahi whereas in the second evaluation Q6988, Lablab Uganda and Njahi scored highly. Accessions 29399, 36019, Q5427, Q6988, 31364, 29400 and 30701 formed the second set of preferred options. Therefore, any of the above 10 accessions can be adopted by farmers for different purposes. For further research, a study comparing the quantity of biomass produced by the different accessions would give evidence and recommendation on which accessions are most suited for biomass.

Acknowledgements

The authors greatly thank the financial support provided by Dr. Robert Delve formally working for Tropical Soil Biology and Fertility Institute/International Center for Tropical Agriculture (TSBF/CIAT) Africa. Thanks to the technical teams at CIAT-Kawanda, DATIC-Tororo and Africa 2000 Network for conducting the field experiments.

Conflicts of Interest

The authors declare that they have no conflict.

Funding

This work was funded by The Rockefeller Foundation through CIAT as a grant for the Integrated Soil Productivity Initiative through Research and Education (INSPIRE) project.

References

- Maass, B.L., Knox, M.R., Venkatesha, S., Angessa, T.T., Ramme, S. and Pengelly, B.C. (2010) Lablab Purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3, 123-135. <u>https://doi.org/10.1007/s12042-010-9046-1</u>
- [2] Eilittä, M., Mureithi, J. and Derpsch, R. (2007) Green Manure/Cover Crop Systems of Smallholder Farmers: Experiences from Tropical and Subtropical Regions. Springer Science & Business Media, Berlin.
- [3] Matata, P.Z., Passos, A.M., Masolwa, L.W., Marcolan, A.L. and Ribeiro, R.D.S.

(2017) Incorporation of Leguminous Cover Crops in Smallholder Cassava-Based Production System in Western Tanzania. *American Journal of Plant Sciences*, **8**, 3490-3501. <u>https://doi.org/10.4236/ajps.2017.813235</u>

- [4] Nyende, P. and Delve, R.J. (2004) Farmer Participatory Evaluation of Legume Cover Crop and Biomass Transfer Technologies for Soil Fertility Improvement using Farmer Criteria, Preference Ranking and Logit Regression Analysis. *Experimental Agriculture*, 40, 77-88. <u>https://doi.org/10.1017/S0014479703001443</u>
- [5] Franke, A., Van den Brand, G., Vanlauwe, B. and Giller, K. (2017) Sustainable Intensification through Rotations with Grain Legumes in Sub-Saharan Africa: A Review. *Agriculture, Ecosystems & Environment.* https://doi.org/10.1016/j.agee.2017.09.029
- [6] Murphy, A.M. and Colucci, P.E. (1999) A Tropical Forage Solution to Poor Quality Ruminant Diets: A Review of *Lablab purpureus*. *Livestock Research for Rural Development*, **11**, 96-113.
- [7] Pengelly, B.C. and Maass, B.L. (2001) Lablab purpureus (L.) Sweet-Diversity, Potential Use and Determination of a Core Collection of This Multi-Purpose Tropical Legume. Genetic Resources and Crop Evolution, 48, 261-272. https://doi.org/10.1023/A:1011286111384
- [8] Wood, I. (1983) Lablab Bean (*Lablab purpureus*) for Grain and Forage Production in the Ord Irrigation Area. *Australian Journal of Experimental Agriculture*, 23, 162-171. <u>https://doi.org/10.1071/EA9830162</u>
- [9] Al-Snafi, A.E. (2017) The Pharmacology and Medical Importance of *Dolichos lab-lab* (*Lablab purpureus*)—A Review. *IOSR Journal of Pharmacy*, 7, 22-30. https://doi.org/10.9790/3013-0702012230
- [10] Gupta, M., Rao, K.P. and Rajwade, V.B. (2017) Correlation Study of Floral Traits, Yield and Nutritional Parameters in Dolichos Bean (*Lablab purpureus* L.) Genotypes under Allahabad Agro Climatic Zone. *Journal of Pharmacognosy and Phytochemistry*, 6, 1585-1591.
- [11] Duncan, J. (2017) Cover Crop Options for Hot and Humid Areas.
- [12] Cameron, D. (1988) Tropical and Subtropical Pasture Legumes. 17. Lablab Bean (*Lablab purpureus*): The Major Leguminous Forage Crop. *Queensland Agricultural Journal*, **114**, 110-113.
- [13] Kay, D.E. (1979) TPI Crop and Product Digest, No. 3 Food Legumes. Tropical Products Institute, London.
- [14] Wills, B.J., Douglas, G.B., Foote, A.G. and Trainor, K.D. (1999) Germplasm Characterisation and Palatability of *Dorycnium* Species under Nez Zealand Dryland Conditions. *Plant Genetic Resources Newsletter*, 20, 8-14.
- [15] Kuule, M.J. (2004) Comparative Effects of Short Duration Improved Fallow Legumes on Maize Yield and Soil Fertility in Eastern Uganda. MSc. Thesis, Soil Science, Makerere Univerity, Kampala, 62 p.
- [16] Heuzé, V., Tran, G., Sauvant, D., Renaudeau, D., Bastianelli, D. and Lebas, F. (2016) Lablab (*Lablab purpureus*).
- [17] Bunch, R. (2016) How Can We Cover Millions of Hectares with Conservation Agriculture in Africa? Conservation Agriculture for Africa: Building Resilient Farming Systems in a Changing Climate, 139.
- [18] Mwangi, H., Kihurani, A., Wesonga, J., Ariga, E. and Kanampiu, F. (2015) Effect of *Lablab purpureus* L. Cover Crop and Imidazolinone Resistant (IR) Maize on Weeds in Drought Prone Areas, Kenya. *Crop Protection*, **72**, 36-40.

https://doi.org/10.1016/j.cropro.2015.02.013

- [19] Dwivedi, S.L., Crouch, J.H., Mackill, D.J., Xu, Y., Blair, M.W., Ragot, M., Upadhyaya, H.D. and Ortiz, R. (2007) The Molecularization of Public Sector Crop Breeding: Progress, Problems, and Prospects. In: Donald, L.S., Ed., *Advances in Agronomy*, Academic Press, London, 163-318. https://doi.org/10.1016/S0065-2113(07)95003-8
- [20] Massawe, P.I., Mtei, K.M., Munishi, L.K. and Ndakidemi, P.A. (2016) Improving Soil Fertility and Crops Yield through Maize-Legumes (Common Bean and *Dolichos lablab*) Intercropping Systems. *Journal of Agricultural Science*, 8, 148. https://doi.org/10.5539/jas.v8n12p148
- [21] Mayer, L., Chandler, D. and Taylor, M. (1986) *Lablab purpureus*—A Fodder Crop for Botswana. *Bulletin of Agricultural Research in Botswana*, **5**, 37-48.
- [22] Luck, P. (1965) Dolichos Lablab—A Valuable Grazing Crop. *Queensland Agricultural Journal*, **91**, 308-309.