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Abstract 
From the Schwarzschild metric we obtain the higher-order terms for the def-
lection of light around a massive object using the Lindstedt-Poincaré method 
to solve the equation of motion of a photon around the stellar object. The 
asymptotic series obtained by this method was obtained up to order 20 in the 
expansion parameter, and was found to better approximate the numerical so-
lution with higher order terms—a property that can’t be taken for granted for 
any asymptotic series. Additionally, we obtain diagonal Padé approximants 
from the perturbation expansion, and we show how these are a better fit for 
the numerical data than the original formal Taylor series. Furthermore, we 
use these approximants in ray-tracing algorithms to model the bending of 
light around massive objects. 
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1. Introduction 

The General Theory of Relativity (GTR) is probably one of the most elegant 
theories ever performed. It was put forth by Albert Einstein in its current form 
in a 1916 publication, which expanded on his previous work of 1915 [1] [2]. This 
is summarized in 14 equations [3] [4]. The Einstein field equations (ten 
equations written in tensor notation) 

1
2

G R Rg kT gµν µν µν µν µνλ≡ − = +                     (1) 

and the geodesic Equations (4 equations) 
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2

2

d d d 0.
d dd

x x x
s ss

µ ρ σ
µ
ρσ

  
+ Γ =  

  
                   (2) 

In (1) Gµν  is the Einstein’s Tensor, which describes the curvature of 
space-time, Rµν  is the Ricci tensor, and R is the Ricci scalar (the trace of the 
Ricci tensor), gµν  is the metric tensor that describes the deviation of the 
Pythagoras theorem in a curved space, Tµν  is the stress-energy tensor  

describing the content of matter and energy. 4

8πGk
c

= , where c is the speed of  

light in vacuum and G is the gravitational constant. Finally, λ is the cosmological 
constant introduced by Einstein in 1917 [5] [6] [7] that is a measure of the 
contribution to the energy density of the universe due to vacuum fluctuations. In 
Equation (2) s is the arc length satisfying the relation 2d d ds g x xµ ν

µν=  and 
µ
ρσΓ  are the connection coefficients (Christoffel symbols of the second kind). 

xµ  is the position four-vector of the particle. We use Greek letters as , ,µ ν α , 
etc for 0, 1, 2, 3. We have adopted the Einstein summation convention in which 
we sum over repeated indices. Einstein’s Equations (1) tells us that the curvature 
of a region of space-time is determined by the distribution of mass-energy of the 
same and they can be derived from the Einstein-Hilbert action [8] [9]: 

[ ]4d 2 2 .FS x g R kL λ
ℜ

= − − +∫                 (3) 

In Equation (3) ℜ  represents a region of space-time, FL  is the Lagrangian 
density due to the fields of matter and energy and g is the determinant of the 
metric tensor. 

One of the most relevant predictions of General Relativity is the gravitational 
deflection of light. It was demonstrated during the solar eclipse of 1919 by two 
british expeditions [10]. One of the expeditions was led by Arthur Eddington 
and was bound for the island of Príncipe in East Africa. The other one was led 
by Andrew Crommelin in the region of Sobral in Brazil. The light deflection can 
be measured taking a photograph of a star near the limb of the Sun, and then 
comparing it with another picture of the same star when the sun is not in the 
visual field. The observations are not easy. At present, Very Long Baseline 
Interferometry (VLBI) is used to measure the gravitational deflection of radio 
waves by the sun from observations of extragalactic radio sources [11]. The 
result is very close to the value predicted by General Relativity [7], which is  

2

4
1.752

GM
R c

Θ

Θ

Ω = =  seconds of arc ( MΘ  and RΘ  represent the solar mass  

and radius, respectively). 
In the literature we can find calculations to second order of the deflection of 

light by a spherically symmetric body using Schwarzschild coordinates [12] [13] 
[14] [15]. In particular, in reference [16], the deflection of light is calculated via 
homotopy perturbation method. In this paper using the Schwarzschild metric we 
obtain higher order corrections (up to 20-th order) for the gravitational 
deflection of light around a massive object like a star or a black hole using the 
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Lindstedt-Poincaré method to solve the equation of motion of a photon around 
the stellar body. We try to push the calculation until the 20th order because the 
perturbation method we use is more of a formal series expansion in a small 
parameter, and as such should be expected to be treated as most as an 
asymptotic series. Additionally, we obtain diagonal Padé approximants from the 
perturbation expansion, and we show how these are a better fit for the numerical 
data. We make use of Pade approximants on our asymptotic series for the 
deflection angle to both increase its region of validity, and to improve as we shall 
see, matches the qualitative behavior of the deflection angle. We also use these 
approximants in ray-tracing algorithms to model the bending of light around the 
massive object. We think that this paper can be very useful for undergraduate 
students to learn the use of perturbative techniques for solving problems not 
only within the framework of the General Theory of Relativity, but also in other 
fields of Physics. 

2. Schwarzschild Metric 

For a spherical symmetric space-time with a mass M in the center of the 
coordinate system, the invariant interval is [18] [19]: 

( ) ( ) ( ) ( )2 2 2 21 2d d d d .s c t r rγ γ −= − − Ω                 (4) 

In (4) ( ) ( ) ( )2 2 22d d sin dθ θ φΩ = + , with coordinates 0x ct= , 1x r= , 

2x θ=  and 3x φ= . 1 sr
r

γ = −  where 2

2
s

GMr
c

=  is the Schwarzschild radius. 

The corresponding covariant metric tensor is given by 

1

2

2 2

0 0 0
0 0 0

.
0 0 0
0 0 0 sin

g
r

r

µν

γ
γ

θ

−

 
 − =
 −
 

− 

                  (5) 

Equation (4) has two singularities. The first one is when sr r=  (the 
Schwarzschild radius) which defines the horizon event of a black hole. This is a 
mathematical singularity that can be removed by a convenient coordinate 
transformation like the one introduced by Eddington in 1924 or Finkelstein 
in1958 [19]: 

ˆ ln 1 .s

s

r rt t
c r

= ± −                        (6) 

With this coordinate transformation the invariant interval reads: 

( ) ( ) ( ) ( )22 2 22 2ˆ ˆd 1 d 1 d 2 d d d .s s sr r rs c t r c t r r
r r r

     = − − + − Ω     
     

      (7) 

The other singularity in 0r =  is a physical singularity that can not be 
removed. For a radius sr r< , all massless and massive test particles eventually 
reach the singularity at 0r = . Thus, neglecting quantum effects like Hawking 
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radiation [10] [20], any particle (even photons) that falls beyond this 
Schwarzschild radius will not escape the black hole. 

3. Geodesic Equation for a Photon in a Schwarzschild Metric 

The geodesic equation can be written in an alternative form using the 
Lagrangian  

( )d d d,
d d d
x x xL x g x
µ α β

µ µ
αβσ σ σ

 
= − 

 
                  (8) 

where σ is a parameter of the trajectory of the particle, which is usually taken to 
be the proper time, τ, or an affine parameter for massless particles like a photon.  

The resulting geodesic equation is (where 
d
d
x

u µ
µ σ
= ): 

( )d 1 .
d 2
u

g u uµ α β
µ αβσ

= ∂                        (9) 

Consider a photon traveling in the equatorial plane ( π 2θ = ) around a 
massive object. For a photon, d 0τ =  and thus, we use an affine parameter, λ, to 
describe the trajectory instead of the proper time, τ. For the coordinates ct 
( 0µ = ) and φ ( 3µ = ) the geodesic Equation (9) give us, respectively: 

2d d 0,
d d

tcγ
λ λ
  =  

                       (10) 

2d d 0.
d d

r φ
λ λ
  =  

                        (11) 

Both of these equations define the following constants along the trajectory of 
the photon around the massive object: 

2 d ,
d

tc Eγ
λ

′=                         (12) 

2 d
d

r Jφ
λ
=                          (13) 

where E′  has units of energy per unit mass and J of angular momentum per 
unit mass (when λ has units of time). 

The invariant interval for the Schwarzschild metric in the plane π 2θ =  is. 

( ) ( ) ( ) ( ) ( )2 2 2 2 22 2 1 2d d d d d 0.s c c t r rτ γ γ φ−= = − − =         (14) 

Using d d d
d d d

r r φ
λ φ λ
=  the last equation can be written in the form  

22 2 2
2 1 2d d d d 0.

d d d d
t rc rφ φ

γ γ
λ φ λ λ

−       − − =      
      

           (15) 

Multiplying (15) by γ, and inserting the definitions of E′  and J we obtain:  

( ) 22 2 2

2 4 2

d 0.
d

E J r J
c r r

γ
φ

′  
− − = 

 
                 (16) 
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This equation can be turned into an equation for ( ) ( )
1U

r
φ

φ
= , noting that  

2

d 1 d
d d
U r

rφ φ
= −                        (17) 

so we arrive at the following equation for ( )U φ : 

( ) ( )
22

2 2 2
2

d 1 0.
d s

E UJ J U rU
c φ
′  

− − − = 
 

            (18) 

By taking the derivative of Equation (18) with respect to φ, we get the 
following differential equation for ( )U φ  

2
2

2

d d2 2 3 0.
d d s
U U U rU
φ φ

  
+ − =  

  
               (19) 

The differential equation in (19) can be separated into two differential 
equations for ( )U φ . The first one is the equation for a photon that travels 
directly into or out from the black hole: 

d 0
d
U
φ
=                            (20) 

the other differential equation, applicable for trajectories in which ( )U φ  is not 
constant with respect to φ, is the following: 

2
2

2

d 3 .
2d s

U U rU
φ

+ =                        (21) 

This equation can also be written in the following way, using the definition of 
the Schwarzschild radius: 

2 2

2 2

d 3 .
d

U GMUU
cφ

+ =                      (22) 

This is the equation for the trajectory of a massless particle that travels around 
a black hole in the equatorial plane. 

4. Differential Equation for the Trajectory of a Photon 

In the previous section, we obtained a differential equation for a photon 
traveling around a masive object like a star or a black hole (see Equation (22)). 
This equation has an exact constant solution, for the unstable circular orbit of a 
photon around the black hole: 

2

3 .c
GMr
c

=                            (23) 

where cr  is the radius of the so-called photon sphere (a special case of photon 
surfaces) [17]1 We note that the radius of the photon sphere can be expressed in 
terms of the Schwarzschild radius: 

3
2

s
c

rr =                           (24) 

 

 

1In reference [17] we can find important theorems on photon surfaces. 
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The orbit described by a photon in the photon sphere is actually an unstable 
orbit, and a small perturbation in the orbit can lead either to the photon 
escaping the black hole or diving towards the event horizon [18]. 

Equation (22) is nonlinear, and is highly difficult to solve analytically. 
However, a perturbative solution of this equation can be readily obtained. Let’s 
first rewrite Equation (22) in terms of cr : 

2
2

2

d .
d c

U U r U
φ

+ =                          (25) 

Consider the trajectory of a photon outside the photon sphere showed in 
Figure 1. The initial conditions are taken such that 

0r b
φ=

= , and is called the 
impact parameter of the trajectory—the closest distance from the trajectory to  

the center of the black hole. We thus have, 
0

d 0
d

r

φφ =

=  and 
0

d 0
d
U

φφ =

= . The  

photon experiences a total angular deflection of 2α. The smallest value of the 
r-coordinate in the trajectory, r b= , is taken such that the photon escapes the  

black hole, cb r> . We will rewrite Equation (25) in terms of 1cr
b

= < , which  

we will use as a non-dimensional small number for our following perturbative 
expansions. Note that by multiplying both sides of Equation (25) by b, and 
defining the non-dimensional trajectory parameter 

( ) ( )
,bV

r
φ

φ
=                            (26) 

 

 
Figure 1. Trajectory of a photon outside the photon sphere. 

https://doi.org/10.4236/ijaa.2018.81009


C. Rodriguez, C. Marín 
 

 

DOI: 10.4236/ijaa.2018.81009 127 International Journal of Astronomy and Astrophysics 
 

Equation (25), with the inclusion of the term cr
b

= , then becomes a 

differential equation in ( )V φ : 
2

2
2

d
d

V V V
φ

+ =                           (27) 

where 0 1cr
b

< = < , and with initial conditions given by 

( ) ( )d0 1; 0 0.
d
VV φ φ
φ

= = = =                     (28) 

Under these conditions, ( )V φ  is bounded such that 

( ) 1.V φ ≤                               (29) 

5. First-Order Solution for ( )V φ  

A first idea to obtain a solution of Equation (27) is to consider a ( )V φ  as a 
power series in  : 

( ) ( ) ( ) ( )2
0 1 2;V V V Vφ φ φ φ= + + +                  (30) 

Plugging the expansion (30) into Equation (27) results in the following: 

( )

( )

2 2 2
2 20 1 2

0 1 22 2 2

22
0 1 2

d d d
d d d

.

V V V V V V

V V V

φ φ φ
 

+ + + + + + + 
 

= + + +

 



   

  

       (31) 

We can group the powers of  in Equation (31): 
2

0 0
02

d
: 0

d
V V
φ

+ =                       (32) 

2
1 21

1 02

d:
d

V V V
φ

+ =                      (33) 

2
2 2

2 0 12

d: 2
d

V V V V
φ

+ =                     (34) 

( )
2

23 3
3 1 0 22

d
: 2

d
V V V V V
φ

+ = +                  (35) 

  

Note that the initial conditions of ( )V φ , applied to the asymptotic expansion 
in Equation (30), imply the following, by grouping powers of  : 

( ) ( )0 0
0

d
: 0 1; 0 0

d
VV
φ

= =                 (36) 

( ) ( )d
: 0 0; 0 0; 1.

d
k k

k
VV k
φ

= = ≥             (37) 

From these differential equations and initial conditions, we can readily obtain 

0V  and 1V  iteratively (it is convenient to write the ( )kV φ  in terms of 
polynomials in ( )cos φ ): 
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( ) ( )0 cosV φ φ=                        (38) 

( ) ( ) ( )2
1

2 1 1cos cos .
3 3 3

V φ φ φ= − −                 (39) 

Thus, we obtain an equation for ( )V φ , per Equation (30): 

( ) ( ) ( ) ( ) ( )2 22 1 1cos cos cos .
3 3 3

V Oφ φ φ φ = + − − +  
          (40) 

According to the coordinate system shown in Figure 1, the photon goes 
through a total angular deflection of 2α. This corresponds to setting ( ) 0V φ =  
for both π 2φ α= +  and π 2φ α= − − . From both of these conditions 
considering that α is very small, to first order in   we get: 

2
3 .

1
3

α =
 − 
 




                         (41) 

The total deviation of the photon is then 

2

44 42 .
3 3

cr GM
b bc

αΩ = ≈ = =
                   (42) 

For a light ray grazing the Sun’s limb 695510 kmb RΘ= =  [21] and we get 
the very well known value 

2

4
2 1.752 arcseconds

GM
R c

α Θ

Θ

Ω = ≈ =              (43) 

where 301.9885 10 kgMΘ = ×  is the Sun’s Mass, and  
[ ]62.99792458 10 m sc = ×  is the value of the speed of light in vacuum [21]. 

6. Towards a Second-Order Solution for ( )Ω   

We will now see how to obtain higher-order solutions for Ω. The differential 
equation in (34) has the following solution: 

( ) ( ) ( ) ( ) ( )2 3
2

4 41 2 1 5cos cos cos sin .
9 36 9 12 12

V φ φ φ φ φ φ= − + + + +      (44) 

However, the term in Equation (44) that goes as ( )sinφ φ  grows without 
bound, and occurs because the right-handed side of Equation (34) contains 
terms proportional to the homogeneous solution of Equation (34): 

( ) ( )cos sina bφ φ+ . When this happens, the solution contains terms that grow 
without bound, such as ( )sinφ φ , called secular terms [22]. Thus, if we naively 
include Equation (44) in ( )V φ , our solution is no longer bounded. Thus, we 
have to eliminate any and all secular term that arises to arrive at a well-behaved 
solution for ( )V φ . 

One method to do this, due to Lindstedt and Poincaré, is by solving the 
differential equation in the following strained coordinate [22]: 

( )2
1 21 .φ φ ω ω= + + +

                     (45) 
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where the kω  are constants to be determined. In terms of this new strained 
coordinate φ , Equation (27) becomes 

( ) ( ) ( )
222 2

1 2 2

d1 .
d

V V Vω ω φ ε φ
φ

+ + + + = 





                (46) 

We proceed in the previous way, and assume an asymptotic expansion on 

( )V φ : 

( ) ( ) ( ) ( )2
0 1 2;V V V Vφ φ φ φ= + + +   

                  (47) 

Plugging the expansion(47) in Equation (46), we obtain: 

( )

( ) ( )

2 2 222 20 1 2
1 2 2 2 2

22 2
0 1 2 0 1 2

d d d1
d d d

.

V V V

V V V V V V

ω ω
φ φ φ

 
+ + + + + + 

 

+ + + + = + + +

 

  

 

   

    

         (48) 

We can group the powers of  in Equation (48): 
2

0 0
02

d
: 0

d
V V
φ

+ =


                        (49) 

22
1 2 01

1 0 12 2

dd: 2
d d

VV V V ω
φ φ

+ = −
 

                    (50) 

( )
22 2

2 2 02 1
2 0 1 1 2 12 2 2

dd d: 2 2 2
d d d

VV VV V V ω ω ω
φ φ φ

+ = − + −
  

           (51) 

( )

( )

2 2
3 23 0

3 1 0 2 1 2 32 2

2 2
2 1 2
1 2 12 2

d d
: 2 2 2

d d
d d2 2 .
d d

V VV V V V

V V

ωω ω
φ φ

ω ω ω
φ φ

+ = + − +

− + −

 

 


           (52) 

  
With some care due to the definitions of the scaled variable and its derivative, 

we arrive at initial conditions for the ( )kV φ  from the initial conditions of 
( )V φ : 

( ) ( )0 0
0

d
: 0 1; 0 0

d
VV φ
φ

= = =



                   (53) 

( ) ( )d
: 0 0; 0 0; 1

d
k k

k
VV kφ
φ

= = = ≥



                 (54) 

Solving the differential Equation (49) with initial conditions (53), we arrive at 
the zeroth-order contribution to ( )V φ : 

( ) ( )0 cosV φ φ=                          (55) 

Similarly, we can obtain ( )1V φ  from Equation (50) subject to initial 
conditions (54): 

( ) ( ) ( ) ( )2
1 1

2 1 1cos cos sin .
3 3 3

V φ φ φ ωφ φ= − − +                 (56) 

We note that a secular term has appeared for ( )1V φ . However, we use our 
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freedom in the definition of 1ω  to eliminate this secular term by setting 

1 0ω =                             (57) 

so that the final form of ( )1V φ  is: 

( ) ( ) ( )2
1

2 1 1cos cos .
3 3 3

V φ φ φ= − −                   (58) 

Similarly we obtain for ( )2V φ : 

( ) ( ) ( )

( ) ( ) ( )

2
2

3
2

4 5 2cos cos
9 36 9
1 1cos 144 60 sin .

12 144

V φ φ φ

φ ω φ φ

= − + +

+ + +

  

  

          (59) 

To eliminate the secular term in ( )2V φ , we set 

2
5

12
ω = −                             (60) 

and obtain the well-behaved second-order term 

( ) ( ) ( ) ( )2 3
2

4 5 2 1cos cos cos .
9 36 9 12

V φ φ φ φ= − + + +             (61) 

From all the solutions obtained so far, we can obtain the second-order 
correction to ( )Ω  . Note that ( )V φ  is given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 3 3

2 1 1cos cos cos
3 3 3

4 5 2 1cos cos cos .
9 36 9 12

V

O

φ φ φ φ

φ φ φ

 = + − − 
 

 + − + + + + 
 

   

  



 
    (62) 

We set up π 2φ α= +

  in Equation (62), such that ( )π 2 0V α+ =  and 
obtain: 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 3 3

2 1 1sin sin sin
3 3 3

4 5 2 1sin sin sin 0.
9 36 9 12

O

α α α

α α α

 − + + − 
 

 + − − + − + = 
 

  

  



 
     (63) 

We could truncate this Equation and solve the resultant cubic polynomial in 
( )sin α . However, this method would not be easy to generalize, because we do 

not have a general formula for the roots of fifth-order polynomials and above, 
according to Galois theory [23]. Also, an n-th order polynomial results in n 
different complex solutions, one of which we expect to have a leading term of 
order  , to obtain a better approximation of Ω , and we would need to check 
all the n different solutions for this. Additionally, we have to remember that so 
far this is an asymptotic expansion in  , and the truncation of the higher-order 
terms does not allow us to clearly see what the order of our estimate for ( )Ω   
is. All of these problems are solved by assuming that ( )sin α  has the following 
expansion in  , with a leading term of order 1 : 

( ) 2 3
1 2 3sin α χ χ χ= + + +

                     (64) 
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where the kχ  are constants to be determined. Inserting this new expansion into 
Equation (63) leads to the following algebraic Equation: 

( )2 31
1 2

2 4 0.
3 9 3

Oχ
χ χ  − + − + − + =   

   
               (65) 

Then, we have to equal to zero the different powers of  in the last equation. 
Equating to zero the terms with 1  we arrive at: 

1
2
3

χ =                             (66) 

and equating to zero the terms with 2  we arrive at: 

2
2 .
9

χ = −                            (67) 

Thus, ( )sin α  is given by: 

( ) ( )2 32 2sin .
3 9

Oα = − +                       (68) 

To obtain α , we employ the Taylor series of ( )arcsin x  around 0x = : 

( ) ( )
3

5arcsin
6
xx x O x= + +                    (69) 

and obtain 

( )2 32 2 .
3 9

Oα = − +                        (70) 

However, what we actually want is α. From the definition of the strained 
coordinate φ  in (45), it is clear that: 

( )2 3
1 2

π
π 2 .
2 1 O

α
α

ω ω

+
+ =

+ + +



  
                 (71) 

From the last equation, an using the Taylor expansion of  

( )0

1 1
1

n n
n x

x
∞

=
= −

+ ∑  around 0x = , we obtain: 

( )2 32 5π 2
3 24 9

Oα  = + − + 
 

                      (72) 

From which we can obtain the total deflection angle, 2αΩ =  

( )2 3

2 3

2 2 2

4 5π 4
3 12 9

4 15π 4 .
4

O

GM GM GMO
bc bc bc

 Ω = + − + 
 

     = + − +      
      

  

          (73) 

This result is in agreement with other work [12] [13] [14] [15]. 

7. Higher Order Solutions for ( )Ω   

The previous procedure can be automated to obtain higher-order expressions for 
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Ω . Notably, all the solutions for the ( )kV φ  are in the forms of ( )1k + -order 
polynomials of ( )cos φ , and a secular term that is eliminated by choosing a 
suitable kω . The use of the expansion of ( )sin α  in powers of   guarantees 
both the form of ( )sin α  with a leading term of order  , and leads to 
algebraic equations for the kχ  that are exceedingly easy to solve. Notably, 
getting a higher-order solution conserves the lower-order terms. Consider the 
formal Taylor expansion of Ω  around 0= : 

1 2 3
1 2 3κ κ κΩ = + + +                       (74) 

A table of the coefficients nκ  of the series of Ω  in (74) can be found in 
Table 1. These nκ  were found using the method of the previous sections, and 
obtaining the solutions up to ( )20V φ . 

Clearly, as 1→ , ( )Ω →∞ , because the photon starts going around the 
black hole as it starts closing in the photon sphere ( cb r→ ). This means that 
( )Ω   has a singularity at 1= . The Taylor expansion of ( )Ω   around 0=  

that we found at Equation (74) does not return an estimate for the position of 
this singularity, because a polynomial does not have a singularity. However, we 
can obtain Padé approximants for Ω around 0= , and these will return an 
estimate for the position of this singularity. 

As a small refresher on Padé approximants, we note their definition. A Padé 
approximant of a function ( )f x  is a rational function [ ] ( )|L Mf x  of the form: 

[ ] ( )
2

| 0 1 2
2

1 21

L
L M L

M
M

a a x a x a xf x
b x b x b x
+ + + +

=
+ + + +





               (75) 

where ( )f x  and [ | ] ( )L Mf x  are equal in their first 1L M+ +  derivatives 
around 0x =  [24] [25]. A diagonal Padé approximant [ ] ( )Nf x  is a Padé 
approximant in which N L M= = . We can obtain the diagonal Padé 
approximants for up to N = 10 with the Taylor series expansion for ( )Ω  . For 
example, the [ ] ( )1Ω   Padé approximant is given by: 

[ ] ( )
( )
( )

2
1 48π 64 16π 15π

.
96 32 30π

+ + −
Ω =

+ −





               (76) 

The exact formulas for the Padé approximants of ( )Ω   are rather 
complicated because of the powers of π involved. Due to this, our work with 
Padé approximants will be purely numeric. All the Padé approximants [ ] ( )NΩ   
have a singularity of order 1 at a position around 1= . The position of this 
singularity, s , is tabulated for the 10 Padé approximants in Table 2. 

8. Numerical Tests for Ω(λ) and Its Padé Approximants 

All the coefficients for the Taylor expansion of ( )Ω   were obtained around 
0= . We can test the correctness of the methods thus far used to obtain this 

function by comparing it to the results of numerical solutions of Equation (22). 
This is done with both truncated n-th order Taylor polynomials from ( )Ω   
and for the Padé approximants we obtain from this function, [ ] ( )NΩ  . This 
comparisons are shown in Figure 2 and Figure 3. 

https://doi.org/10.4236/ijaa.2018.81009


C. Rodriguez, C. Marín 
 

 

DOI: 10.4236/ijaa.2018.81009 133 International Journal of Astronomy and Astrophysics 
 

Table 1. Coefficients nκ  of the series of Ω  in (74). For these coefficients, we report 
both the exact values and the numerical values with 6 significant figures. 

 Exact value Numerical value 

1κ  4
3

 1.33333 

2κ  5π 4
12 9

−  0.864552 

3κ  122 5π
81 18

−  0.633508 

4κ  385π 130
576 81

−  0.494911 

5κ  7783 385π
2430 432

−  0.403082 

6κ  103565π 21397
62208 4374

−  0.338319 

7κ  544045 85085π
61236 31104

−  0.290571 

8κ  6551545π 133451
1327104 8748

−  0.254143 

9κ  1094345069 116991875π
39680928 13436928

−  0.225577 

10κ  2268110845π 1091492587
143327232 22044960

−  0.202655 

11κ  33880841953 18553890355π
374134464 644972544

−  0.183902 

12κ  3278312542505π 627972527
61917364224 3779136

−  0.168300 

13κ  17954674772417 1514986498025π
58364976384 15479341056

−  0.155132 

14κ  135335969751125π 53937207017735
743008370688 94281884928

−  0.143875 

15κ  1532445398265737 1138317723327785π
1432594874880 3343537668096

−  0.134145 

16κ  1094325341294717675π 4027582104301883
1711891286065152 2005632824832

−  0.125654 

17κ  2064610875963794827 128887453213429625π
545532128354304 106993205379072

−  0.118179 

18κ  1263396148548501892925π 2657173119021192719
554652776685109248 371328591568896

−  0.111548 

19κ  1085138496158025821251 399330245672667033725π
79959423384502272 92442129447518208

−  0.105625 

20κ  218695963585074038928865π 75186822805298075761
26623333280885243904 2913501256925184

−  0.100303 

 
We see from Figure 2 and Figure 3 that the Padé approximants are much 

faster at converging into the actual form of ( )Ω  . The convergence of the Padé 
approximants is such that for 0.99= ,  the 10N =  diagonal Padé 
approximant is within 3% of the corresponding numerical value. This is mainly 
due to the fact that Padé approximants are better in approximating functions  
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Table 2. The position of the singularity near 1=  for the Padé approximants, [ ] ( )NΩ  . 

N s 

1 1.54222 

2 1.21736 

3 1.11036 

4 1.06664 

5 1.04532 

6 1.03238 

7 1.0245 

8 1.01915 

9 1.01537 

10 1.01264 

 

 

Figure 2. Numerical points obtained for ( )Ω   compared to the truncated n-th order 

Taylor polynomials of ( )Ω  , up to 20-th order. With increasing value of n, the 

polynomials take larger values. 
 

that have singularities [25]. Once we know that the ( )Ω   behave correctly, we 
can use the ( )Ω   to simulate the bending of light around a black hole. A 
simple first-order ray tracing algorithm that does this for the different 
approximations of ( )Ω   we have found is shown in the next section. 

9. Ray tracing Using ( )Ω   

Consider an observer A immersed in a background distribution of far away light 
sources. This observer can obtain the angular position of every object in the sky, 
and determine the intensity of light that comes from every point in the sky,  
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Figure 3. Numerical points obtained for ( )Ω   compared to the truncated N-th 

diagonal Padé approximants of ( )Ω  , up to 10N = . With increasing value of N, the 

Padé approximants take larger values. For 0.99= , the 10N =  Padé approximant is 
within 3% of the numerical value of ( )Ω  . 

 
( ),AI θ φ , in spherical coordinates. Now, imagine another point in space, B, far 

enough from the observer A such that the intensity of light that comes from 
every point in the sky, according to an observer in point B, is also given by the 
distribution found by observer A: ( ) ( ), ,B AI Iθ φ θ φ= . If we place a black hole at 
point B, then light coming from the faraway sources will bend around the black 
hole such that the original observer will see a different distribution of light 
around the black hole. In this condition, the observer will be able to note that the 
black hole effectively subtends a solid angle in the sky—region in the sky devoid 
of any light due to the black hole. One half of the angle subtended by the black 
hole will effectively give the “angular radius” of the black hole, as seen by the 
observer, BHr . 

If we consider that the black region of the sky due to the black hole is due to 
the radius of the photon sphere, cr , instead of the the Schwarzschild radius, sr , 
and if we choose the coordinate system such that the black hole is at the positive 
x-axis, π 2θ =  and 0φ = , then, by definition of BHr , the new distribution of 
light measured by the observer will obey (for small enough BHr ): 

( ) ( ) ( )2 22, 0; π 2 .BHI rθ φ θ φ= − + ≤                (77) 

For other values of ( ),θ φ , the observer sees light distribution shifted by the 
( )Ω  , where   is given for π 2θ ≈  by: 

( )2 2
.

π 2
c BHr r
b θ φ

= =
− +

                  (78) 

One can convince himself of this by considering the light from faraway objects 
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that grazes the black hole at a distance given by r b= . This trajectory of this 
light is bended by the black hole for cb r> . However, if cb r< , the light will not 
escape and effectively no light coming from faraway objects will seem to 
originate from cr r< , which becomes an effective radius for the black hole, 
according to observer A in these conditions. In the case that mass enters the 
black hole, and emits light from an r that obeys s cr r r< < , the light can escape 
the black hole, and is severely red-shifted. However, we are here considering a 
black hole with no light sources between s cr r r< < . 

We can use a further simplification of Equation (78), and use the coordinates 

( ),x yθ θ  defined by xθ φ= , π 2yθ θ= − . For small values of xθ  and yθ , say, 
in the order of milliradians, we can write: 

( ) ( )22 2, 0;x y x y BHI rθ θ θ θ= + ≤                     (79) 

and 

2 2
BH

x y

r

θ θ
=

+
                            (80) 

where the analogue with Cartesian coordinates is evident. This coordinate 
system is shown in Figure 4 for a black hole that subtends 64π 10−×  steradians, 
such that 2BHr =  mrad. 

This coordinate choice allows one to define the distribution of intensities that 
observer A sees to be (disregarding some attenuation factors): 

( ) ( ) ( )
2 2 2 2

, , ;yx
x y A x y

x y x y

I I
θθ

θ θ θ θ
θ θ θ θ

 
 = −Ω −Ω
 + + 

        (81) 

where ( )22 2
x y BHrθ θ+ ≤  and we have used ( ),A x yI θ θ , the angular distribution 

of intensities seen by observer A without the black hole present, and using the 
coordinates ( ),x yθ θ . We can see the effect of applying Equation (81) by using 
the ( ),A x yI θ θ  defined from Figure 5. 

To model the deflection of light with the distribution in Figure 5, we use 
Equation (81) with ( )Ω   approximated as a truncated first-degree Taylor 
polynomial, and as diagonal Padé approximants with 2N =  and 10N = . The 
resulting images can be found in Figures 6-8. We use a black hole with 

10BHr =  mrads. 
The most notable difference between Figure 6 and Figure 7 is the position of 

the white ring around the black hole, corresponding to the gravitational lensing 
of the big, white star at the black hole position 0yθ = . When using a better 
approximation of ( )Ω  , this ring has greater inner and outer radii, and is 
thinner. In Figure 8, there are 8 white pixels around 2 2 10x yθ θ+ =  millirads, 
corresponding to a second ring of light due to the big, white star. 

10. Conclusions and Suggestions 

One of the most important predictions of the General Theory of Relativity is 
undoubtedly the bending of light around a massive object like a star, a black hole  
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Figure 4. A black hole with 2BHr =  mrad in the center of the ( ),x yθ θ  coordinate 

system. 
 

 
Figure 5. 600 600×  image corresponding to the 

intensity due to background light sources, ( ),A x yI θ θ , 

without a black hole present. Each pixel corresponds to 
1 mrad. The big star, in white, has a radius of 50 mrad. 
The small stars, in gray, have a radius of 3 mrad. The 
star is at the center of the coordinate system, 

( ) ( ), 0, 0x yθ θ = . 

https://doi.org/10.4236/ijaa.2018.81009


C. Rodriguez, C. Marín 
 

 

DOI: 10.4236/ijaa.2018.81009 138 International Journal of Astronomy and Astrophysics 
 

 
Figure 6. Background of Figure 5 warped by a black hole at (a) 

300yθ =  mrad, (b) 200yθ =  mrad, (c) 100yθ =  mrad, and 

(d) 0yθ =  mrad. We make use of the truncated first-order Taylor 

polynomial of ( )Ω  . 

 

 
Figure 7. Background of Figure 5 warped by a black hole at (a) 

300yθ =  mrad, (b) 200yθ =  mrad, (c) 100yθ =  mrad, and (d) 

0yθ =  mrad. We make use of the diagonal 2N =  Padé 
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approximant of ( )Ω  . 

 
Figure 8. Background of Figure 5 warped by a black hole at (a) 

300yθ =  mrad, (b) 200yθ =  mrad, (c) 100yθ =  mrad, and (d) 

0yθ =  mrad. We make use of the diagonal 10N =  Padé 

approximant of ( )Ω  . 

 
or even a galaxy (in this case it can generate a gravitational lens). In this paper 
using the Schwarzschild metric we have obtained higher order corrections for 
the gravitational deflection of light around said objects using the Lindstedt- 
Poincaré method to solve the equation of motion of a photon around the stellar 
body. We have successfully obtained an expression for ( )Ω  , the angular 
deflection experienced by a photon traveling around the massive object. We 
have assumed that the parameter  was small, and we were able to obtain the 
coefficients nκ  of the series of ( )Ω   up to ( )20V φ  (the non-dimensional 
trajectory parameter, see equation (26)). The results are given in Table 1. 
Additionally, we have obtained diagonal Padé approximants from the perturbation 
expansion, and we have shown how these are a better fit for the numerical data. 
The best approximation for ( )Ω   we obtained was consistent with the 
numerical data even for an 0.99≈ . In this case, the 10N =  diagonal Padé 
approximant is within 3% of the corresponding numerical value. We were able 
to use this estimate for ( )Ω   in ray-tracing algorithms to model the bending of 
light around the massive object. 
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