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Abstract 
In this paper, we prove common fixed point results for quadruple 
self-mappings satisfying an implicit function which is general enough to cover 
a multitude of known as well as unknown contractions. Our results modify, 
unify, extend and generalize many relevant results existing in literature. Also, 
we define the concept of compatible maps and its variants in the setting of 
digital metric space and establish some common fixed point results for these 
maps. Also, an application of the proposed results is quoted in this note. 
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1. Introduction 

Digital topology is an emerging area based on general topology and functional 
analysis and focuses on studying digital topological properties of n-dimensional 
digital spaces, where as Euclidean topology deals with topological properties of 
subspaces of the n-dimensional real space, which has contributed to the study of 
some areas of computer sciences such as computer graphics, image processing, 
approximation theory, mathematical morphology, optimization theory etc. 
Rosenfield [1] was the first to consider digital topology as a tool to study digital 
images. Boxer [2] produced the digital versions of the topological concepts and 
later studied digital continuous functions [3]. Ege and Karaca [4] [5] established 
relative and reduced Lefschetz fixed point theorem for digital images and 
proposed the notion of a digital metric space and proved the famous Banach 
Contraction Principle for digital images. 

Fixed point theory leads to lots of applications in mathematics, computer 
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science, engineering, game theory, fuzzy theory, image processing and so forth. 
In metric spaces, this theory begins with the Banach fixed-point theorem which 
provides a constructive method of finding fixed points and an essential tool for 
solution of some problems in mathematics and engineering and consequently 
has been generalized in many ways. Up to now, several developments have 
occurred in this area. A major shift in the arena of fixed point theory came in 
1976 when Jungck [6] [7] [8], defined the concept of commutative and 
compatible maps and proved the common fixed point results for such maps. 
Later on, Sessa [9] gave the concept of weakly compatible, and proved results for 
set valued maps. Certain altercations of commutativity and compatibility can 
also be found in [10] [11] [12] [13]. 

In 2014, He et al. [14] proved the common fixed points for pair of weak 
commutative mappings on a complete multiplicative metric spaces as follow:  

Theorem 1. Let , ,S T A  and B be mappings of a complete multiplicative 
metric space ( ),X d  into itself satisfying the following conditions:  

1) ( ) ( ) ( ) ( ),S X B X T X A X⊆ ⊆ ,  

2) ( ) ( ) ( ) ( ){, max , , , , , ,d Sx Ty d Ax By d Sx Ty d Sx Ax =  

( ) ( ) ( )}, , , , ,d By Ty d Sx By d Ax Ty
λ
 ,  

for all 
1, , 0,
2

x y X λ  ∈ ∈ 
 

.  

3) one of the mappings , ,S T A  and B is continuous. Assume that the pairs 
( ),A S  and ( ),B T  are weakly commuting.Then , ,S T A  and B have a unique 
common fixed point.  

The objective of this paper is to give digital version of above theorem using an 
implicit function which is general enough to cover several linear as well as some 
nonlinear contractions. Our results generalize and extend the many results 
existing in literature. 

This paper is organized as follows. In the first part, we give the required 
background about the digital topology and fixed point theory. In the next section, 
we state and prove main results for compatible mappings and compatible 
mappings of types (A) and (P) in digital metric spaces. Our results improve and 
generalize many other results existing in literature. Finally, we give an important 
application of fixed point theorem to digital images. Lastly, we make some 
conclusions. 

2. Preliminaries 

Let X be subset of nZ  for a positive integer n where nZ  is the set of lattice 
points in the n-dimensional Euclidean space and ρ  represent an adjacency 
relation for the members of X. A digital image consists of ( ),X ρ . 

Definition 2. [15] Let ,l n  be positive integers, 1 l n≤ ≤  and two distinct 
points ( )1 2, , , na a a a=  , ( )1 2, , , n

nb b b b Z= ∈ , a and b are lk -adjacent if 
there are at most l indices i such that  
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1i ia b− =  

and for all other indices j such that  

1, .j j j ja b a b− ≠ =  

A ρ-neighbour of na Z∈  is a point of nZ  that is ρ-adjacent to a where 
{ }2,4,6,8,18,26ρ =  and { }1,2,3n∈ . The set ( ) { }/ is -adjacent topN a b b aρ=  

is called the ρ-neighbourhood of a. A digital interval is defined by  

[ ] { }, / , where , and .zp q z Z p z q p q Z p q= ∈ ≤ ≤ ∈ <  

A digital image nX Z⊂  is ρ-connected if and only if for every pair of 
different points ,u v X∈ , there is a set { }0 1, , , ru u u  of points of digital image 
X such that 0, ru u v u= =  and iu  and 1iu +  are ρ-neighbour where 

0,1,2, , 1i r= − .  
Definition 3. [15] Let ( ) 0

0, nX Zρ ⊂ , ( ) 1
1, nY Zρ ⊂  be digital images and 

:T X Y→  be a function, then  
1) T is said to be ( )0 1,ρ ρ -continuous, if for all 0ρ -connected subset E of X, 
( )f E  is a 1ρ -connected subset of Y.  
2) For all 0ρ -adjacent points { }0 1,u u  of X, either ( ) ( )0 1T u T u=  or 
( )0T u  and ( )1T u  are a 1ρ -adjacent in Y if and only if T is ( )0 1,ρ ρ

-continuous. 
3) If T is ( )0 1,ρ ρ -continuous, bijective and 1T −  is ( )0 1,ρ ρ -continuous, 

then T is called ( )0 1,ρ ρ -isomorphism and denoted by ( )0 1,X Yρ ρ≅ .  
Definition 4. [16] A sequence { }nX  of points of a digital metric space 

( ), ,X d ρ  is a Cauchy sequence if for all 0ε > , there exists Nδ ∈  such that 
for all ,n m δ> , then ( ),n md x x ε< .  

Definition 5. [16] A sequence { }nx  of points of a digital metric space 
( ), ,X d ρ  converges to a limit p X∈  if for all 0ε > , there exists δ ∈  such 
that for all n δ> , then ( ),nd x p ε< .  

Definition 6. [16] A digital metric space ( ), ,X d ρ  is a complete digital 
metric space if any Cauchy sequence { }nx  of points of ( ), ,X d ρ  converges to 
a point p of ( ), ,X d ρ .  

Definition 7. [16] Let ( ), ,X d ρ  be any digital metric space and 
( ) ( ): , , , ,T X d X dρ ρ→  be a self digital map. If there exists ( )0,1α ∈  such 

that for all x X∈ , ( ) ( ), ,x yd T T x yα≤  then T is called a digital contraction 
map.  

Proposition 8. [16] Every digital contraction map is digitally continuous.  
Theorem 9. [16] (Banach Contraction principle) Let ( ), ,X d ρ  be a complete 

digital metric space which has a usual Euclidean metric in nZ . Let, :T X X→  
be a digital contraction map. Then T has a unique fixed point, i.e. there exists a 
unique p X∈  such that ( )T p p= .  

3. Main Results  

Definition 10. [17] Suppose that ( ), ,X d ρ  is a complete digital metric space 
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and , :S T X X→  be maps defined on X. Then S and T are said to be 
commutative if  

, .S T T S x X= ∀ ∈   

Definition 11. [17] The self maps S and T of a digital metric space ( ), ,X d ρ  
are said to be weakly commutative if  

( )( ) ( )( )( ) ( ) ( )( ), , for all .d S T x T S x S x T x x X≤ ∈  

Remark 1. [18] Every pair of commutative maps is weakly commutative but 
the converse is not true.  

Definition 12. [19] [20] Let S and T be self maps of a digital metric space 
( ), ,X d ρ  and { }nx  is a sequence in X such that  

( ) ( )lim lim for some in .n nn n
S x T X t t X

→∞ →∞
= =  

Then  
1) S and T and are said to be compatible if ( )lim , 0n nn

d STx TSx
→∞

=   

2) S and T and are said to be compatible of type (A) if ( )lim , 0n nn
d STx TTx

→∞
=  

and ( )lim , 0n nn
d TSx SSx

→∞
=   

3) S and T and are said to be compatible of type (P) if ( )lim , 0n nn
d SSx TTx

→∞
=   

4) O -compatible if for any sequence { }nx X⊂  with nSx t↑  and nTx t↑  

(for some t X∈ ) implies ( )lim , 0n nn
d STx TSx

→∞
= ,  

5) O -compatible if for any sequence { }nx X⊂  with nSx t↓  and nTx t↓  

(for some t X∈ ) implies ( )lim , 0n nn
d STx TSx

→∞
= ,  

6) O-compatible if for any sequence { }nx X⊂  with nSx t↓  and nTx t↑  

(for some t X∈ ) implies ( )lim , 0n nn
d STx TSx

→∞
= .  

7) weakly compatible if ( ) ( )S Tx T Sx= , x X∀ ∈ .  

Remark 2. [19] [20] In a digital metric space, compatibility ⇒ 
O-compatibility ⇒ O -compatibility (as well as O -compatibility) ⇒ weak 
compatibility.  

Definition 13. [19] [20] An ordered metric space ( ),X d  is called 
O-complete (resp. O -complete, O -complete) if every Cauchy sequence 
converges in X.  

Remark 3. In a digital metric space, completeness ⇒ O-completeness ⇒ O
-completeness (as well as O -completeness).  

Remark 4. Every pair of weakly commuting maps is compatible but the 
converse is not true.  

Definition 14. [19] [20] Let ( ),T S  be a pair of self-mappings on a metric 
space ( ),X d  and x X∈ . We say that T is S-continuous at x if for any 
sequence { }nx X⊂ , d d

n nSx Sx Tx Tx→ ⇒ → . Moreover, T is called 
S-continuous if it is S-continuous at every point of X.  

Notice that, on setting S IX= , Definition 14 reduces to the usual definition 
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of continuity. 
Definition 15. [20] Let ( ),T S  be a pair of self-mappings on a metric space 

( ),X d  and x X∈ . Then T is called ( ),S O -continuous (resp. ( ),S O
-continuous, ( ),S O -continuous) at x if d

nTx Tx→ , for every sequence 
{ }nx X⊂  with nSx Sx↑  (resp. ,n nSx Sx Sx Sx↓ ↑↓ ). Moreover, T is called 
( ),S O -continuous (resp. ( ),S O -continuous, ( ),S O -continuous) if it is 
( ),S O -continuous (resp. ( ),S O -continuous, ( ),S O -continuous) at every 
point of x X∈ .  

Notice that, on setting S IX= , Definition 15 reduces to the usual definition 
of O-continuity (resp. O -continuity, O -continuity) of a self-mapping (T on 
X).  

Remark 5. In digital metric space, S-continuity ⇒ ( ),S O -continuity ⇒ 
( ),S O -continuity (as well as ( ),S O -continuity).  

Proposition 16. Let S and T be compatible maps of type (A) on a digital 
metric space ( ), ,X d ρ . If one of S and T is continuous, then S and T are 
compatible.  

Proof. Since S and T are compatible maps of type (A), so ( )lim , 0n nn
d STx TTx

→∞
=  

and ( )lim , 0n nn
d TSx SSx

→∞
= , whenever { }nx  is a sequence in X such that  

lim lim for some in .n nn n
Sx Tx t t X

→∞ →∞
= =  

Let S is continuous, then  
lim and limn nn n

STx St SSx St
→∞ →∞

→ →  

and hence  
( ) ( ) ( ), , , .n n n n n nd STx TSx d STx SSx d SSx TSx≤ +  

Letting n →∞ , we have ( )lim , 0n nn
d STx TSx

→∞
=  implies S and T are 

compatible.  
Proposition 17. Let S and T be compatible maps on a digital metric space 

( ), ,X d ρ  into itself. Suppose that  

lim lim for some .n nn n
Sx Tx t t X

→∞ →∞
= = ∈  

Then  
1) lim nn

STx Tt
→∞

=  if T is continuous at t.  

2) lim nn
TSx St

→∞
=  if S is continuous at t.  

Proof.  
1) Suppose that T is continuous at t. Since lim limn nn n

Sx Tx t
→∞ →∞

= =  for some 

t X∈ , we have  
lim .nn

TSx Tt
→∞

=  

Since S and T are compatible maps, we have  

( ) ( ) ( ), , , 0n n n nd STx Tt d STx TSx d TSx Tt≤ + →  

as n →∞  and hence the proof.  
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2) The proof of lim nn
TSx St

→∞
=  follows by similar arguments as in (a).  

Proposition 18. Let S and T be compatible maps on a digital metric space 
( ), ,X d ρ  into itself. If St Tt=  for some t X∈ , then  

.STt TSt SSt TTt= = =  

4. Implicit Relation and Related Concepts 

In recent years, Popa [21] have used implicit functions rather than contraction 
conditions to prove fixed point theorems in metric spaces whose strength lie in 
their unifying power, as an implicit function can cover several contraction 
conditions at the same time, which include known as well as some unknown 
contraction conditions. This fact is evident from examples furnished in Popa 
[21]. In this section, in order to prove our results, we define a set of suitable 
implicit functions involving six real non-negative arguments that was given in 
[22]. 

In the literature, there are several types of implicit contraction mappings 
where many nice consequences of fixed point theorems could be derived. First, 
denote Φ  the set of functions [ ) [ ): 0, 0,φ ∞ → ∞  satisfying:   

1) φ  is nondecreasing,  
2) 0

n
n φ∞

=
< ∞∑  for each [ )0,t∈ ∞ , where nφ  is the nth iterate of φ .  

Remark 6. It is easy to see that if φ ∈Φ , then ( )0 0φ =  and ( ) ,t tφ < . 
0t∀ >  

Definition 19. [22] Let R+  denote the set of non-negative real numbers and 
let Γ  be the set of all continuous functions 6: R RΓ →  satisfying the 
following conditions:  

1) For each , 0u v ≥ , ( ) ( ), , , , ,0 0T u v u v u v u vφ+ ≤ ⇒ ≤ .  

2) ( ),0,0, , ,0 0T u u u >  or ( ), ,0,0, , 0T u v v u > .  

Example 20. ( ) { } ( )[ ]1 2 3 4 5 6 1 2 3 4 5 6, , , , , max , , 1T t t t t t t t t t t at btα α= − − − +  

where 1 10 1,0 ,0
2 2

a bα≤ ≤ ≤ < ≤ < .  

Example 21. ( ) [ ]1 2 3 4 5 6 1 2 3 4 5 6
1, , , , , max , , ,
2

T t t t t t t t k t t t at bt = − + 
 

, where 

( )0,1k∈ .  

Example 22. ( ) [ ]1 2 3 4 5 6 1 2 3 4 5 6
1, , , , , max , , ,
2

T t t t t t t t t t t at btφ  = − + 
 

, where 

: R Rφ + +→  is right continuous and ( )0 0φ =  and ( )t tφ < , 0t∀ > .  

Theorem 23. Let , ,A B S  and T be four self-mappings of a complete digital 
metric space ( ), ,X d ρ  satisfying the following conditions:   

a) ( ) ( )S X B X⊂  and ( ) ( )T X A X⊂ ;  
b) the pairs ( ),A S  and ( ),B T  are compatible;  

c) one of , ,S T A  and B is continuous;  
d) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , , , , , , , ,F d Ax By d Sx Ty d Ax Sx d By Ty d Ax Ty d By Sx ,  

 

DOI: 10.4236/apm.2018.83019 367 Advances in Pure Mathematics 
 

https://doi.org/10.4236/apm.2018.83019


S. Dalal et al. 
 

,x y X∀ ∈ .  

Then , ,A B S  and T have a unique common fixed point in X.  
Proof. Since ( ) ( )S X B X⊂ , we can consider a point 0x X∈ , there exists 

1x X∈  such that  

0 1 0.Sx Bx y= =  

Also, for this point 1x  ,there exists 2x X∈  such that  

1 2 1.Tx Ax y= =  

Continuing in this way, we can construct a sequence { }ny  in X such that  

2 2 2 1 2 1 2 1 2 2, for each 0.n n n n n ny Sx Bx y Tx Ax n+ + + += = = = ≥  

Now, we have to show that { }ny  is Cauchy sequence in ( ), ,X d ρ . Using 
condition (d), we have  

( ) ( ) ( )(
( ) ( ) ( ))

2 2 1 2 2 1 2 2

2 1 2 1 2 2 1 2 1 2

, , , , , ,

, , , , , 0
n n n n n n

n n n n n n

F d Ax Bx d Sx Tx d Ax Sx

d Bx Tx d Ax Tx d Bx Sx
+ +

+ + + + ≤
 

( ) ( ) ( )(
( ) ( ) ( ))

2 1 2 2 2 1 2 1 2

2 2 1 2 1 2 1 2 2

i.e , , , , , ,

, , , , , 0,
n n n n n n

n n n n n n

F d y y d y y d y y

d y y d x y d y y
− + −

+ − + ≤
 

which is,  

( ) ( ) ( )(
( ) ( ) ( ) )

2 1 2 2 2 1 2 1 2

2 2 1 2 1 2 2 2 1

, , , , , ,

, , , , , ,0 0,
n n n n n n

n n n n n n

F d y y d y y d y y

d y y d y y d y y
− + −

+ − + ≤
 

implies that  

( ) ( )( ) ( )2 2 1 2 1 2 2 1 2, , , .n n n n n nd y y d y y d y yφ+ − −≤ <  

Therefore, the sequence ( ){ }2 2 1,n nd y y +  is strictly decreasing. Then there 
exists 0r ≥  such that  

( )2 2 1lim , .n nn
d y y r+→∞

=  

Suppose that 0r > , then, letting n →∞  in above equation, ( )r r rφ≤ < , 
which is imposible. Hence 0r = , that is,  

( )2 2 1lim , 0.n nn
d y y +→∞

=  

By the completeness of X, there exists z X∈  such that ny →∞  as n →∞ . 
Consequently, the subsequences 2 2 2 1, ,n n nSx Ax Tx +  and 2 1nBx +  of { }ny  also 
converge to a point z X∈ . Now, suppose that A is continuous.Then { }2nAAx  
and { }2nASx  converge to Az  as n →∞ . Since the mappings A and S are 
compatible on X, it follows from Proposition 17 that { }2nSAx  converge to Az  
as n →∞ . 

Now, we claim that Az z= . Consider,  

( ) ( ) ( )(
( ) ( ) ( ))

2 2 1 2 2 1 2 2

2 1 2 1 2 2 1 2 1 2

, , , , , ,

, , , , , 0.
n n n n n n

n n n n n n

F d AAx Bx d SAx Tx d AAx SAx

d Bx Tx d AAx Tx d Bx SAx
+ +

+ + + + ≤
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Letting n →∞  we have  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
, , , , , , , , , , , 0

, , , ,0,0, , , , 0,

F d Az z d Az z d Az Az d z z d Az z d z Az

F d Az z d Az z d Az z d z Az

≤

⇒ ≤
 

yields Az z= . Again, from (d), we obtain  

( ) ( ) ( )(
( ) ( ) ( ))

2 1 2 1

2 1 2 1 2 1 2 1

, , , , , ,

, , , , , 0.
n n

n n n n

F d Az Bx d Sz Tx d Az Sz

d Bx Tx d Az Tx d Bx Sz
+ +

+ + + + ≤
 

Letting n →∞  we get  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, , , , , , , , , , , 0

0, , , , ,0,0, , 0 .

F d z z d Sz z d z Sz d z z d z z d z Sz

F d Sz z d z Sz d z Sz Sz z

≤

= ≤ ⇒ =
 

Since ( ) ( )S X B X⊂ , there exists u X∈  such that  

.z Az Sz Bu= = =  

By using (d), we can obtain  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, , , , , , , , , , , 0

, ), , , , , , , , , , 0.

0, , ,0, , , , ,0 0 .

F d Az Bu d Sz Tu d Az Sz d Bu Tu d Az Tu d Bu Sz

F d z z d z Tu d z z d z Tu d z Tu d z z

F d z Tu d z Tu d z Tu z Tu

≤

= ≤

= ≤ ⇒ =

 

As B and T are compatible on X and z Tu Bu= = , by Proposition 18, we have 
TBu BTu=  and hence Bz TBu BTu Tz= = = . Also, we have  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, , , , , , , , , , , 0.

0, , ,0,0, , , , 0 .

F d Az Bz d Sz Tz d Az Sz d Bz Tz d Az Tz d Bz Sz

F d z Tz d z Tz d Tz z z Tz

≤

⇒ ≤ ⇒ =
 

Thus z Tz Bz= =  and so z is a common fixed point of , ,A B S  and T. 
Similarly, we can use above assertion in case of continuity of B or S or T and 
uniqueness of the common fixed point follows directly from the condition (d) 
and hence the proof follows.  

Theorem 24. Let , ,A B S  and T be four self-mappings of a complete digital 
metric space ( ), ,X d ρ  satisfying the conditions (a), (c) and (d). If the pairs 
( ),A S  and ( ),B T  are compatible of type (A) or of type (P) then , ,A B S  and 
T have a unique common fixed point in X.  

Proof. Theorem is direct consequence of Proposition 16 and Theorem 23.  ☐ 
Example 25. Let [ )1,X = ∞  with usual metric and , , , :A B S T X X→  be 

self mappings such that  

( ) ( )
2 1, 2 3 2, 2

,
3, 2 , 2

x x x x
T x A x

x x x
− ≤ − ≤ 

= = > > 
             (1) 

( ) ( )
, 2

, 1.
1, 2

x x
B x S x

x x
≤

= = + >
                  (2) 

Then we see that ( ) ( )S X B X⊂  and ( ) ( )T X A X⊂  and if we consider a 

sequence 
11nx
n

= + , then  
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( ) ( )lim , 0 and lim , 0n n n nn n
d ASx SAx d BTx TBx

→∞ →∞
= =  

implies that the pairs ( ),A S  and ( ),B T  are compatible and S is continuous. 
Also the condition (d) holds. Hence all the conditions of Theorem 23 are 
satisfied and 1x =  is common fixed point of the mappings.  

5. Applications of Common Fixed Point Theorems in Digital  
Metric Space 

In this section, we give an application of digital contractions to solve the 
problem related to image compression. The aim of image compression is to 
reduce redundant image information in the digital image. When we store an 
image we may come across certain type of problems like either memory data is 
usually too large or stored image has not more information than original image. 
Also, the quality of compressed image can be poor. For this reason, we must pay 
attention to compress a digital image. Fixed point theorem can be used for image 
compression of a digital image. 

6. Conclusions 

The purpose of this paper is four fold which can be described as follows.  
1) We slightly modify the implicit relation of Popa so that contraction 

conditions obtained involving functional inequalities.  
2) Proved some common fixed point theorems by using modified implicit 

relation, compatibility and its variants in the setting of digital-metric spaces. 
3) Generalized the Theorem 1 and many others too existing in literature, 

derived related results and furnished illustrative examples.  
4) Our results generate scope for other researchers to prove the results by 

utilizing other contractions, weak compatibility, control function and admissible 
maps in a digital framework.  
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