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Abstract 
The simplest measurements in physics are binary; that is, they have only two 
possible results. An example is a beam splitter. One can take the output of a 
beam splitter and use it as the input of another beam splitter. The compound 
measurement is described by the product of the Hermitian matrices that de-
scribe the beam splitters. In the classical case, the Hermitian matrices com-
mute (are diagonal) and the measurements can be taken in any order. The 
general quantum situation was described by Julian Schwinger with what is 
now known as “Schwinger’s Measurement Algebra”. We simplify his results 
by restriction to binary measurements and extend it to include classical as well 
as imperfect and thermal beam splitters. We use elementary methods to in-
troduce advanced subjects such as geometric phase, Berry-Pancharatnam 
phase, superselection sectors, symmetries and applications to the identities of 
the Standard Model fermions. 
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1. Introduction 

In 1955, Julian Schwinger began work on the foundations of quantum field 
theory while employed at Harvard. The result was what is now known as 
“Schwinger’s Measurement Algebra”. The algebra was described in four of his 
1959-1960 papers: [1] [2] [3] [4]. Schwinger used his algebra to teach introduc-
tory quantum mechanics. He joined the faculty at the University of California, 
Los Angeles in 1972 and his lecture notes from there resulted in two textbooks 
[5] [6] that many of his students then used when they taught introductory 
quantum mechanics. These textbooks cover the usual subjects in a standard 
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quantum mechanics class. Where they are distinct is in their introduction to the 
subject, the algebra that this paper expands. 

Schwinger’s first paper “The Algebra of Microscopic Measurements” [1] de-
scribes his measurement algebra. His measurements can be thought of as beam 
splitters where one is concerned with only one of the exits. The algebra relates to 
how one models a complex beam splitter that consists of a series of beam split-
ters connected together by arranging for the output of one beam splitter to be 
used as the input of the next. The reader of Schwinger’s paper will note that 
while his notation is different, the properties of the elements of his algebra are 
similar to those of mixed density matrices. We will use density matrix notation 
in this paper. We expand Schwinger’s results to include the classical situation as 
well as imperfect and thermal beam splitters. To simplify the discussion, we will 
mostly consider binary measurements. 

There are two reasons for reading this paper. The first is that Schwinger’s 
beam splitter model provides the most direct method of passing from the clas-
sical to the quantum domain. Since Schwinger’s method is completely general 
for quantum mechanics and quantum field theory, this provides an immediate 
connection between the classical and quantum situations and may provide an 
improved understanding of the foundations of quantum mechanics for students. 
In addition, binary measurements are arguably the easiest introduction to quan-
tum physics and we introduce subjects that usually require much more prepara-
tion such as geometric phase, Berry-Pancharatnam phase and quantum statis-
tics. The second reason is that some problems in quantum mechanics are far 
easier to understand in one formulation than in the others [7]. Schwinger’s for-
mulation is particularly useful in putting the symmetries of quantum mechanics 
on an algebraic basis. We demonstrate this by introducing a Schwinger algebra 
model of the elementary fermions. 

1.1. Beam Splitters 

The physical apparatus we’re considering is a beam splitter. The beam splitter 
has a single entrance and two exits. Entering particles must take one of the two 
exits. Suppose that the particles are all identical of type “1” and that they do not 
influence one another and that they arrive at a beam splitter with a rate 2

1A . 
We use 2

1A  here (instead of 1A ) for our rates in order to match the notation 
in the physics literature for beam splitters described with quantum mechanics. 
Our 1A  is the square root of a rate, so its units are particles second . In 
general, 1A  may be complex. 

Suppose that a particle has a probability 1p  of exiting the upper exit so that 
the probability of exiting the lower exit is 11 p− . Then the rate of particles in the 
upper exit beam is 2 2

1 1 1B p A=  and the rate at the other exit is  
( ) 2 2 2

1 1 1 11 p A B A− = − . See Figure 1. 
If we know the input rate and the upper exit output rate, then we can obtain 

the lower exit output rate by subtraction. Accordingly, for the remainder of this  
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Figure 1. Trivial beam splitter splits a beam of type 1 particles arriving at a rate 2
1A . 

Particles take the upper exit with probability 1p  so the output rate for the upper exit is 
2 2

1 1 1B p A=  and the output rate for the lower exit is ( )2 2 2
1 1 1 11A B p A− = − . We’ve 

written the equations in terms of amplitudes jA  rather than rates 
2

jA  in order to 

match the standard quantum beam splitter notation. 
 
paper, we will ignore the lower exit and concentrate only on the upper exit. For 
clarity, our drawings will continue to include the lower exit but we will not write 
formulas for it. 

1.2. Outline 

Schwinger noted that what makes quantum measurements different from 
classical is that a quantum measurement of one property (say spin in the +z 
direction) can disturb the system so that the results of a previous quantum 
measurement (of spin in another direction), no longer applies. Schwinger 
considered compound beam splitters obtained by putting the output of a first 
beam splitter into the input of a second beam splitter. He showed that these 
experiments can be represented by Hermitian matrices and that a compound 
beam splitter is represented by the product of its constituent beam splitter 
matrices. 

In general, Hermitian matrices do not commute. For the Schwinger 
measurement algebra this means that changing the order of measurements can 
have a physical effect. If in addition to being Hermitian the matrices are also 
diagonal, then they will commute and the measurement order does not matter. 
In Section 2, we consider classical beam splitter experiments with imperfections 
or at temperature. We show that these experiments can be modeled with 
diagonal Hermitian matrices, that is, with real diagonal matrices. 

Section 3 continues the analysis to the quantum case by allowing for nonzero 
off diagonal entries in the matrices. For simplicity, we specialize to spin-1/2 
Stern-Gerlach experiments. We find that the quantum situation is a natural 
extension of the classical situation. We show why quantum mechanics uses 
complex numbers and amplitudes instead of probabilities, and we introduce the 
ideas of geometric phase, Berry-Pancharatnam phase, superselection sectors, 
quantum symmetries and quantum statistics. 

As a unique formulation of quantum mechanics, Schwinger’s measurement 
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algebra can be expected to provide unique applications to Nature. Our analysis 
of superselection sectors concludes that their algebras are block diagonal in 
form. This suggests that we reverse the process. We can start with an algebra and 
from it derive the particle content. We include Section 4 as a speculation on the 
nature of the Standard Model fermions and dark matter. The paper concludes 
with a conclusion and acknowledgements. 

2. Classical Beam Splitters  

The two outputs of the beam splitter of Figure 1 have intensities 2
1B  and 

2 2
1 1A B− . These intensities add up to 2

1A , the intensity of the original beam. If 
we combine the two exits back together we obtain an exit beam with intensity 

2
1A  and expect that this beam will be indistinguishable from the original beam. 
The beam splitter of Figure 1 is described with only a single number, the 

probability of a particle leaving the top exit, 1p . Suppose we have another beam 
splitter, this one with the corresponding probability 1q . Assuming independence, 
a particle will make it through both beam splitter’s top exits with probability 

1 1q p . See Figure 2. This process can be continued with any number of 
consecutive beam splitters. If we have n beam splitters with probability 1p , the 
probability of a particle making it through all of them is ( )1

np . 

2.1. Classical Thermal Beam Splitters 

To introduce thermal effects, let’s suppose that a trivial beam splitter has its two 
probabilities 1p  and 11 p− , depend on temperature T according to a positive 
energy difference 1E∆  and temperature T via the Boltzmann factor  

1
1

1
1

exp ,

1 exp .

b

b

Ep
k T

Ep
k T

 −∆
∝  

 
 +∆

− ∝  
 

                       (1) 

The proportionality can be determined by the requirement that 1p  and 

11 p−  add to 1. So we divide by the sum of the right hand sides to get the  
 

 
Figure 2. Two trivial beam splitters connected together. Particles of type 1 arrive at rate 

2
1A . The beam splitters have probability 1p  and 1q  so the overall probability is the 

product 1 1p q  and the output beam has a rate of 2 2
1 1 1 1B p q A= . 
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probabilities:  

1 1 1
1

1 1 1
1

exp exp exp ,

1 exp exp exp .

b b b

b b b

E E Ep
k T k T k T

E E Ep
k T k T k T

      −∆ −∆ +∆
= +             

      +∆ −∆ +∆
− = +             

           (2) 

In the high temperature limit 1bk T E∆ , the probabilities approach 

1 11 1 2p p= − = . 
At the low temperature limit, the probabilities go to 1 01, 0p p= =  and near 

zero, they are approximately  

1
1

1
2

2exp ,

21 exp .

b

b

Ep
k T

Ep
k T

 − ∆
≈  

 
 − ∆

≈ −  
 

                        (3) 

In this cold limit, putting n beam splitters together by taking the exit ports to 
the input port of the next beam splitter will give a final upper exit port 
probability of 1

np  and this corresponds to decreasing the temperature from T 
to T/n:  

( ) 1 1
1

2 2exp exp ,
n

n

b b

E Ep
k T k T n

    − ∆ − ∆
≈ =         

                (4) 

Thus connecting identical thermal beam splitters has the effect of reducing the 
temperature. This temperature effect will also work in the quantum situation. 

2.2. Classical Two Particle Beam Splitters  

The reader may be relieved to read that now we consider beam splitters that act 
on a particle beam with two kinds of particles, type 1 and type 2. The two 
particles arrive with rates 2

1A  and 2
2A  and the probabilities that they leave 

via the upper exits are 1p  and 2p . If the output of the beam splitter is sent to 
another identical beam splitter, the probabilities will square so that  

( )
( )

2 2 22
1 1 1 1 1 1

2 2 22
2 2 2 2 2 2

,

.

B p p A p A

B p p A p A

= =

= =
                   (5) 

We can rewrite the above equations in 2 2×  diagonal matrix form:  
2 2

1 11 1
2 2

2 22 2

0 00 0
0 00 0

B Ap p
p pB A

        =           
            (6) 

See Figure 3. 
The reader may notice that we could have put the 

2
jB  and 

2
jA  numbers 

into vectors instead of matrices. We’re doing it with matrices so that our 
presentation will be compatible with the density matrices of quantum mechanics. 
For arguments supporting density matrices as a superior way of representing 
quantum states see [8]. 
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Figure 3. Two identical, classical beam splitters connected together. Particles of type 1 

and 2 arrive mixed together in a single beam with rates 2
1A  and 2

2A . The beam 

splitters have probability 1p  and 2p  for the two types so their overall probabilities are 

( )2
1p  and ( )2

2p . This can be expressed with matrix multiplication. 
 

With the probabilities for the two particle types being 1p  and 2p , the 
corresponding probabilities for the lower exit will be 11 p−  and 21 p− . This is 
represented by a matrix with those numbers on the diagonal. So if we recombine 
the lower and upper exit ports the resulting experiment will be represented by 
the sum of the two matrices which is the unit matrix:  

1 1

2 2

0 1 0 1 0
1̂.

0 0 1 0 1
p p

p p
−     

+ = =     −     
              (7) 

The unit matrix has no effect on particle rates so, as expected, the effect of 
recombining the two outputs of a beam splitter is to give back a beam identical 
to the original. 

3. Quantum Beam Splitters  

In the classical situation, particles do not interfere with each other so we can use 
rates such as 

2
jA  to completely describe a mixture. For such a situation, the 

rates add the same way that probabilities do. For example, if we have two beams 
each with the same rate 2

1A , combining the beams will give a beam with twice 
that rate 2

12 A . 
In the classical situation, we used real diagonal matrices to represent the beam 

splitters and the product of two real diagonal matrices is also real diagonal so 
real diagonal matrices were sufficient to represent a single beam splitters as well 
as a connected series of beam splitters. For the quantum case, an individual 
beam splitter will be represented by an Hermitian matrix and products of these 
matrices are more general than Hermitian. 

3.1. Pauli Spin Matrices 

Most of this paper is restricted to the subject of beams with only two particle 
types. For quantum mechanics the standard example is su(2) spin-1/2 where the 
two particle types are typically taken to be spin-up which we will label with +z 
and spin-down which we will label as −z. There being nothing special about the 
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z direction, we can also consider spin-1/2 measured in other directions such as 
x± , y±  or for spin measured in a general direction u. 
A matrix zρ+  for measuring spin-1/2 in the +z direction will give spin-up in 

the upper exit. The reverse measurement zρ− , for spin in the −z direction will 
give spin-down in the upper exit. The (classical or quantum) matrices for these 
measurements are:  

1 0
,

0 0

0 0
.

0 1

z

z

ρ

ρ

+

−

 
=  
 
 

=  
 

                           (8) 

The above matrices are idempotents, that is, they are not changed by squaring 
( )2

z zρ ρ± ±= . This is an important feature of spin measurements; repeating the 
measurement gives the same result. And the two matrices sum to 1̂ ; that is, 
spin-up and spin-down account for all the possible measurements (exit ports). 
We require that the matrices for spin-1/2 measurements in any other direction 
have these features. 

Consider a general idempotent 2 2×  complex matrix where we’ve included a 
factor of 1/2 for later convenience:  

( ) 21, , , , where .
2

a b
a b c d

c d
ρ ρ ρ

 
= = 

 
                (9) 

This gives four equations:  

( )
( )
( )
( )

2

2

2 4,

2 4,

2 4,

2 4.

a a bc

b b a d

c c a d

d d bc

= +

= +

= +

= +

                        (10) 

If we let 0b c= = , we would have the classical case. Dividing the middle two 
of the above four equations by b or c implies that 2a d+ = . Applying this to the 
sum of the first and fourth equation we get ( )2 21 2 4a d bc= + + . 

Now consider spin measurements on the 0z =  plane, that is, the equator of 
the sphere ( ) ( )( )cos ,sin ,0θ θ . These directions are equidistant from the 

( )0,0, 1z± = ±  directions so we expect to get equal particle rates when we insert 
one of these measurements between two zρ+  or two zρ−  measurements. 
Computing we find  

( ) ( )
( ) ( )

, , , 2 ,

, , , 2 .
z z z

z z z

a b c d a

a b c d d

ρ ρ ρ ρ

ρ ρ ρ ρ
+ + +

− − −

=

=
                  (11) 

And so for ( ), , ,a b c dρ  to have the same effect on spin-up as it does on 
spin-down, we must have that a d= . Together with 2a d+ =  this shows that 

1a d= =  giving  

( ) ( )
( ) ( )

, , , 1 2 ,

, , , 1 2 .
z z z

z z z

a b c d

a b c d

ρ ρ ρ ρ

ρ ρ ρ ρ
+ + +

− − −

=

=
                  (12) 
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Having solved for a and d we find that 1c b= . This gives the general solution 
for matrices for spin measurements on the 0z =  plane as  

( ) 1

11 .
12
b

b
b

ρ −

 
=  

 
                       (13) 

We need different b values for spin-1/2 measurements in the +x and +y 
directions. Call these xb  and yb . 

Consider a sequence of measurements that begin with spin in the +x 
direction, then +y, and finally +x. This complex measurement will end up as a 
(1/2) multiple of xρ+  just as we found in Equation (12). Calculating we have  

( )

( )11 1 1

1 2 ,

11 1 11 1 1 11 2 .
11 1 12 2 2 2

x y x x

yx x x

yx x x

bb b b
bb b b

ρ ρ ρ ρ+ + + +

−− − −

=

      
=      

      

       (14) 

Multiplying out the matrices gives four equations, each of which is equivalent 
to 2 = 2 x y y xb b b b+ +  or  

2 2 0 or .x y x yb b b ib+ = =                      (15) 

This shows that in order to model 3 dimensions, we will need complex 
numbers. 

So for any complex number x yb b ib= = , with b  not zero, we obtain three 
projection operators;  

1

1

11 ,
12

11 ,
12

1 1 01 .
0 1 12

x

y

z

b
b

ib
ib

ρ

ρ

ρ

± −

± −

±

± 
=  ± 

 
=  ± 

± 
=  

 





                     (16) 

The above projection operators are of the form ( )( )ˆ0.5 1u u bρ σ± = ±  where 
( )u bσ  are three matrices:  

( )

( )

( )

1

1

0
,

0

0
,

0

1 0
.

0 1

x

y

z

b
b

b

ib
b

ib

b

σ

σ

σ

−

−

 
=  
 

− 
=  
 
 

=  − 

                     (17) 

These matrices each square to 1̂  and anti-commute:  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 1,

,

,

.

x y z

x y y x

y z z y

z x x z

b b b

b b b b

b b b b

b b b b

σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

= = =

= −

= −

= −

                (18) 
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With the choice 1b = , they are called the “Pauli spin matrices” and are 
Hermitian. From here on we will use them:  

0 1
,

1 0

0
,

0

1 0
.

0 1

x

y

z

i
i

σ

σ

σ

 
=  
 

− 
=  
 
 

=  − 

                        (19) 

Any Hermitian 2 2×  matrix H can be written using 1̂  and the Pauli spin 
matrices as a basis over the real numbers:  

0 1 2 3

0 1 2 3

1 0 0 1 0 1 0
,

0 1 1 0 0 0 1

1̂ .x y z

i
H h h h h

i

h h h hσ σ σ

−       
= + + +       −       

= + + +

        (20) 

where jh  are four real numbers. Pure or mixed density matrices will have 

0 1 2h =  so that the trace is 1. The pure and mixed cases are distinguished by 
2 2 2

1 2 3 1 4h h h+ + =  and 2 2 2
1 2 3 1 4h h h+ + < , respectively. At the infinite 

temperature limit, 1 2 3 0h h h= = = . 
With the Pauli spin matrices, the projection operators for spin in the x± , 
y±  and z±  directions are defined as:  

( )
( )
( )

1̂ 2 ,

1̂ 2,

1̂ 2.

x x

y y

z z

ρ σ

ρ σ

ρ σ

±

±

±

= ±

= ±

= ±

                       (21) 

One can also define a spin-1/2 matrix for spin in other directions. Given a 
unit vector ( ), ,x y zu u u u= , the spin matrix is:  

,

.

u x x y y z z

z x y

x y z

u u u

u u iu
u iu u

σ σ σ σ= + +

− 
=  + − 

                   (22) 

Like the usual Pauli spin matrices, uσ  squares to 1̂  and can be used to define 
the projection operator for spin-1/2 in the u direction by ( )1̂ 2u uρ σ+ = + . 

The assumption that observables are Hermitian is often included as an axiom 
of quantum mechanics. The justification is that observables should be real 
numbers and, since Hermitian matrices have real eigenvalues, they are a natural 
choice. As hinted at in Equation (17), one can modify Hermitian matrices by 
multiplying a column by a nonzero complex number b and the corresponding 
row by 1b− . This transformation is a isomorphism in that it preserves matrix 
multiplication and addition. The transformation, in general, takes Hermitian 
matrices to non Hermitian matrices but leaves their eigenvalues unchanged and 
only slightly modifies their eigenvectors. So we see that while it is convenient for 
quantum mechanics to use Hermitian matrices it is not necessary. 
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Two Hermitian matrices H and K have a product HK that is not in general 
Hermitian. The product will be Hermitian if and only if the two matrices 
commute. We can write ( ) ( )2 2HK HK KH HK KH= + + −  and split the 
product into an Hermitian part ( ) 2HK KH+  and an anti-Hermitian part 
( ) 2HK KH− . Multiplying the anti-Hermitian part by i gives the Hermitian 
matrix ( ) 2i HK KH− . For matrices that represent beam splitters, the non 
commutative case corresponds to the physical situation where the order of 
measurements has an effect as we discuss in Subsection 3.2. 

A perfect beam splitter for spin-1/2 in the +u direction is represented by the 
matrix ( )1̂ 2u uρ σ+ = + . The particles that take the lower exit will be spin-1/2 in 
the -u direction so that port will be represented by the matrix ( )1̂ 2u uρ σ− = − . 
These two matrices sum to unity:  

( ) ( )ˆ ˆ ˆ1 2 1 2 1,u u u uρ ρ σ σ+ −+ = + + − =                 (23) 

so, as in the classical case, combining the outputs of a single perfect beam splitter 
results in an experiment that has no effect on the beam. 

Recombining the two exits has the effect of canceling the measurement. This 
behavior may seem contradictory to the concept that measurements affect 
quantum systems. Perhaps beam splitters can be better described as devices that 
split waves rather than devices that make measurements on particles. The 
traditional notation we use in this paper promotes the “separation fallacy’’ well 
described in [9]. To make a measurement requires something to absorb the 
particle and be permanently altered such as a photographic plate. Beam splitters 
do not measure, they allow measurements. Until measurement the particle is just 
a wave and can be recombined the same way that the electric and magnetic fields 
of a light wave can be recombined. 

3.2. Geometric Phase/Perfect Beam Splitter Calculations 

Suppose we have three perfect quantum beam splitters, two for spin-1/2 in the 
+x direction and one for spin-1/2 in the +z direction. We connect them up so 
that a particle is measured first for spin in +x direction, then spin in the +z 
direction and finally spin in the +x direction. The matrix corresponding to the 
three consecutive measurements is given by the product of the matrices. 
Computing with the above matrix definitions we have:  

( )21 1 2 .
2x z x x z x x xρ ρ ρ ρ ρ ρ+ + + + + + + += = =                 (24) 

Compared with a single measurement of spin-1/2 in the x+  direction, the 
compound measurement is decreased by a factor ( )2

1 2 . In the second 
equality, the 1/2 indicates that the compound measurement has a reduction in 
the particle rate of 1/2, i.e. ( )2 2

1 11 2B A= . The rate reduction is the result of 
particles having to navigate the change in the measurements between +z and +x. 
But there are two such navigation changes so each is having an effect of 1 2  
as shown in the third equality. 
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Suppose we have four perfect quantum beam splitters, two for spin-1/2 in the 
+z direction (i.e. zρ+ ) and one each for spin in the +x and +y direction (i.e. xρ+  
and yρ+ ). We connect the beam splitters so a particle first enters one of the +z 
spin-1/2 measurements, then if it reaches the upper exit it is made to enter a 
beam splitter for the +x spin-1/2 measurement, then the +y spin-1/2 
measurement and finally it enters the second +z spin-1/2 measurement. 
Computing, we find:  

( )( ) ( )31 2 π 21 e 1 2
4

i
z x y z z y x z z z

iρ ρ ρ ρ ρ ρ ρ−
+ + + + + + + + + +

−
= = =         (25) 

The final equality in the above shows that the results of connecting the four 
beam splitters is a complex multiple of the last (or first) beam splitter, and so is 
not Hermitian. There are a number of observations to make here. The first is 
that since the initial and final beam splitters are identical, the compound beam 
splitter is a complex multiple of that initial/final beam splitter. This is a general 
fact about products of primitive idempotent matrices that begin and end with 
the same primitive idempotent matrix. 

A second observation is the factor ( )3
1 2 . As with Equation (24), this 

comes from the particles having to navigate three changes in measurement: +z to 
+x, then from +x to +y, and finally from +y to +z. More generally, if two perfect 
quantum beam splitters have directions that differ by θ  degrees, combining 
them will reduce the amplitude by ( )( )1 cos 2θ+ . This can be verified by 
putting ( ) ( )( )sin ,0,cosu θ θ=  and computing  

( )
2

1 cos
.

2z u z z u z z
θ

ρ ρ ρ ρ ρ+ + + + + + +

 +
 = =
 
 

              (26) 

That is, there are two transitions, +z to +x and then to +z so the factor appears 
squared. 

The last observation on Equation (25) is in regard to the complex phase 
( )( )( )exp 1 2 π 2i − . This is called a “geometric phase” as it depends on the 

geometric area included in the path. Our path goes from +z to +x to +y and then 
back to +z. This is one octant of the surface of the sphere. The total surface of 
the sphere is 4π steradians so an octant is an eighth of this which gives the factor 
4π 8 π 2= . The area is oriented and our path is traversed in the negative 
direction so the π/2 takes a minus sign giving (−π/2). The remaining factor of 
1/2 has to do with this being a path in the spin of a spin-1/2 particle. The factor 
1/2 implies that when the path is taken around the equator (or any great circle), 
the quantum phase will be ( )( )1 2 2π π=  so the particle will get πe 1i = − . This 
is the −1 one obtains by rotating a fermion through 360˚. A good exercise for 
students is to find the “remaining factor” for the 1, 0 and −1 cases of spin-1. For 
one of these cases, they may find it useful to read Subsection 3.4. 

Together, these three observations allow quick computation of the matrix 
corresponding to compound perfect quantum measurements in spin-1/2. For 
example, suppose the path includes one face of an icosahedron. Letting 

65.435θ ≈   be the angle between two adjacent points on an icosahedron, the 
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product of the matrices will include a factor of ( )( )( )3 2
1 cos 2θ+  for the three 

changes in spin direction. Since the icosahedron has 20 faces, the geometric 
phase will be ( )( )( )exp 1 2 4π 20i ±  where the sign depends on which direction 
is taken. 

3.3. Quantum Amplitudes  

We now rewrite our particle rates 
2

jA  in terms of amplitudes jA  as is 
traditional for quantum mechanics. We begin with a classical beam splitter 
acting on a beam with two particle types. From Subsection 2.2, the incoming 
particle rates 

2
jA  are related to the exit particle rates 2

kB  by  
2 2

1 11
2 2

22 2

0 00
00 0

B Aq
qB A

       =         
               (27) 

where jq  are probabilities for the passage of the two particle types. The two 
particle rate matrices are treated the same way; we’ll discuss the 

2
jA  matrix. 

We replace the matrices as follows:  

( ) ( )
2

1 1 * *
1 22

22

0 0
0 0 .

00

A A
A A

AA

      = +         
             (28) 

This factors an entry in the rate matrix into a product of two matrices, one 
2 1×  and the other 1 2× . These are called bras and kets. The kets are:  

1
1 1

2 2
2

1
,

0 0

0 0
,

1

A
A A z

A A z
A

   
= = +   

   
   

= = −   
  

                     (29) 

while the bras are:  

( ) ( )

( ) ( )

* * *
1 1 1

* * *
2 2 2

0 1 0 ,

0 0 1 .

A A A z

A A A z

= = +

= = −
                  (30) 

In most quantum mechanics textbooks, our notation z±  is replaced with 
↑  and ↓ . We will use the z±  notation as we are concerned with other 

spin measurements in other directions besides z. 
In the bra ket notation, the particle rates are a product of bras and kets:  

2 2*
1 1 1 1

2 2*
2 2 2 2

,

.

A A z A z A z z

A A z A z A z z

= + + = + +

= − − = − −
              (31) 

The above multiplications give a calculation which is bracketed “ ”. Hence 
the  is called a bra and the  is called a ket. In this notation, the matrix of 
particle rates in Equation (28) becomes:  

2
1 * *

1 1 2 22
2

2 2
1 2

0
,

0

.

A
A z A z A z A z

A

A z z A z z

 
  = + + + − −
 
 

= + + + − −

          (32) 
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Splitting the rate matrix into +z and −z components allows us to rewrite 
Equation (27) which deals with the particle rates 

2
jB  and 

2
jA  into a pair of 

equations that relate the amplitudes jA z±  and jB z± :  

1
1 1

2

1
2 2

2

0
,

0

0
,

0

q
B z A z

q

q
B z A z

q

 
+ = + 

 
 

− = − 
 

                      (33) 

This shows that classical beams, like the quantum case, can naturally be 
analyzed in terms of amplitudes instead of probabilities. 

3.4. Berry-Pancharatnam Phases  

Geometric phases are related to the “Berry-Pancharatnam phases” that a 
quantum state receives when it is adiabatically sent through a cycle. In the last 
example of Subsection 3.2, the cycle is from spin-1/2 in the +z direction, through 
a sequence of spin measurements in other directions and then back to the +z 
direction. 

To make the cycle adiabatic, we insert intermediate spin measurements 
between two consecutive pairs of measurements. For example, between the +z 
and +x measurement, we would insert a large number N of spin-1/2 
measurements in the directions ( ) ( )( ) ( )( )( )sin π 2 ,0,cos π 2u n n N n N=  so 
that consecutive measurements differ in direction by only ( )1 π 2N  radians. 
The intermediate measurements are on the great circle route between the +z and 
+x directions. If we deviated from this path, the area enclosed by the cycle could 
change and this would change the geometric phase. 

Any two points on the surface of the sphere define a great circle route unless 
those two points are on opposing ends of a diameter (antipodal). For a unit 
vector u, the points u and -u are on the opposite ends of a diameter and we have  

0.u uρ ρ− =                              (34) 

That is, the projection operators for opposite spin measurements annihilate 
each other and there is no unique great circle route to make the transition 
adiabatic. 

The usual introduction to spin-1/2 uses raising and lowering operators. For 
the spin-1/2 case, these are operators that negate the direction of a quantum 
state (amplitude), for example the raising operator for spin-1/2 takes the 
spin-down state to a spin-up state. More general raising and lowering operators 
change a state from one spin state to an orthogonal spin state and again the 
projection operators annihilate. 

The absence of a great circle route between annihilating spin projection 
operators means that there is no natural phase that can be assigned for such an 
operator. For example, the raising operator for spin-1/2 can be written as:  

( ) ( )0 exp
0 0

iθ
ρ θ+

− 
=  
 

                        (35) 
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where θ  is any angle. In the standard presentation of raising operators, θ  is 
chosen as zero. We can obtain the general case by making a choice for the 
intermediate measurement along the equator of the sphere at the point 
( ) ( ) ( )( )cos ,sin ,0u θ θ θ=  so that  

( ) ( ) ( )( )1 cos sin 2.u x yρ θ θ σ θ σ+ = + +                 (36) 

Then the arbitrary phased raising operator can be written as a product of 
projection operators:  

( ) ( )0 exp
2

0 0 z u z
iθ

ρ ρ θ ρ+ + −

− 
= 

 
                 (37) 

where the factor of 2 is included due to the 1 2  loss in amplitude in the two 
transitions. The standard raising operator is obtained by choosing the 
intermediate measurement as ( )1 2x xρ σ+ = + . 

3.5. Quantum Temperatures 

Temperatures work the same in the quantum situation as they do in the classical. 
Using the classical numbers from Equation (1), a quantum beam splitter acting 
on a beam with only a single particle type will be identical to the classical case. 
To make it more interesting we can consider such a device acting on a beam 
with two particle types. Consider a measurement of spin-1/2 in the +z direction. 
A perfect measurement (temperature zero) is given by ( )1 2zσ+ . At finite 
temperatures some of the spin-up particles end up in the lower exit and some of 
the spin-down particles take the upper exit. Using E+∆  for the first particle 
type and E−∆  for the second we have a matrix for the upper exit port:  

( )
exp 0

exp exp
0 exp

b

b b

b

E
k T E ET

k T k TE
k T

ρ

  +∆
       +∆ −∆  = +       −∆          

     (38) 

In the low temperature limit, and choosing to keep the sum of the 
probabilities 1, these become  

( )

21 exp 0
,

20 exp

b

b

E
k T

T
E

k T

ρ

  − ∆
−  

  ≈   − ∆     

              (39) 

similar to the classical result in Equation (4). 
We can connect n of these experiments together so that the upper exit of one 

beam splitter goes to the entrance of the next; the composite experiment is 
modeled by the n power of the matrix ( )Tρ :  

( )( )
21 exp 0

.
20 exp

n b

b

E
k T n

T
E

k T n

ρ

  − ∆
−  

  ≈   − ∆     

            (40) 
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The above is diagonal, as would be obtained for a classical thermal two 
particle beam splitter. To get off diagonal elements we need to consider spin in 
directions other than z± . Our calculations have been for spin-1/2 in the +z 
direction but that is not a special direction so we can generalize to the +u 
direction. To do that, we need to rewrite the above in the Pauli spin matrix basis. 
We find  

( )( ) 21̂ 1 exp 2.
n

u
b

ET
k T n

ρ σ+

   − ∆
≈ + −        

               (41) 

where zσ  has been replaced with uσ+  to give the general spin-1/2 case. 
Squaring a low temperature matrix ( )Tρ  approximately gives the matrix for 

an even lower temperature ( )2Tρ . For general temperatures, the squaring 
does not necessarily divide the temperature by two but (other than the high 
temperature limit) it does reduce the temperature. The high temperature limit 
has probabilities 1/2:  

( )
1 2 0

.
0 1 2BT E kρ

 
∆ ≈  

 
                     (42) 

Since the matrices for the upper and lower exits must sum to 1̂ , the lower exit 
matrix must be identical to the above. Squaring the above matrix gives a matrix 
with 1/4s on the diagonal instead of 1/2s but the matrix must still correspond to 
the same high temperature limit so we need to multiply the matrix by 2. This 
“renormalization” was (approximately) unnecessary at very low temperatures. 
At higher temperatures, one can maintain the trace as one by dividing the matrix 
by the trace after squaring. The trace of the above matrix is 1/2 so dividing by 
1/2 will renormalize it. Density matrices are beyond the scope of this paper 
however we note that requiring our matrices to have trace 1 makes them 
mathematically identical to “mixed density matrices” and when density matrices 
are used in statistical physics, squaring and renormalization is a method used to 
reduce their temperature [10]. 

3.6. Superselection Sectors  

Suppose we have a beam of spin-up electrons and we split it with a beam splitter 
measuring spin-1/2 in the ( ), ,x y zu u u u=  direction. The entering beam is 
represented by a ket that is pure spin-up:  

1
,

0
z  

+ =  
 

                            (43) 

and the matrix representing the measurement is  

( ) 111̂ 2 .
12

z x y
u u

x y z

u u iu
u iu u

ρ σ+

+ − 
= + =  + − 

                (44) 

Performing the matrix multiplication u zρ+ + , the exiting beam is 
represented by a ket for spin-1/2 in the +u direction:  
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1 11 .
2 2 2

x yz z

x y

u iuu uu z zu iu
++ + + = = + + − + 

            (45) 

The above shows that it is physically possible to begin with a beam of pure 
spin-up and from it make a beam that is a “linear superposition” of spin-up and 
spin-down. This is accomplished by arranging for the matrix uρ+  to have non 
zero off diagonal elements. That is, we will get a linear superposition provided 

xu  or yu  is non zero. 
It’s natural for students to imagine that it’s possible to create a superposition 

of any quantum states, given that physicists talk about superposition of states 
consisting of a live and dead cat. But in fact, not all quantum superpositions can 
be created; superpositions are limited by “superselection sectors” and this is 
what we will discuss in this subsection. Superselection sectors can be attributed 
to two subjects beyond the scope of this paper, symmetry and decoherence so we 
will provide only an outline of the ideas. The subject is explained in [11]; we will 
explore the subject from the point of view of binary measurements. 

Our starting point is to assume, as Julian Schwinger did, that given a 
“complete set of commuting observables” to define a quantum state, it is possible 
to define a beam splitter whose upper exit passes only that particular state, for 
example, spin-up. The spin-1/2 symmetry defines states for all the possible 
directions u so we can use intermediate states to obtain a superposition between 
spin-up and spin-down as was illustrated in Equation (45). 

We will now consider a binary measurement on a particle beam that contains 
electrons and neutrinos. There are no intermediate quantum states between the 
electron and neutrino so there is no way for us to use our spin-1/2 example to 
convert an electron beam into a beam that is a superposition of electron and 
neutrino. This is the most common case for “internal” symmetries, however, the 
particle “generations” are an exception and in fact, the weak force converts an 
electron into a linear superposition of neutrinos from different generations. 

Since it’s not possible to create linear superpositions of electrons and 
neutrinos, it is only possible to make statistical mixtures of these particles. This 
is the same case as the classical beams we considered in the previous section. 
Classical beams are represented by matrices of particle rates that are diagonal as 
in Equation (6). Before we split the particle rates into bras and kets, we 
represented spin-1/2 particles with 2 2×  Hermitian matrices. 

By reconsidering our splitting we can create a 4 4×  matrix that represents a 
statistical mixture of electrons and neutrinos, each of which is a quantum 
superposition of spin-up and spin-down. Suppose our beam is 40% electrons 
with spin-1/2 in the +u direction and 60% neutrinos with spin-1/2 in the +v 
direction. Then the matrix representation is:  

( ) , ,0.4 , , 0.6 , , 0.4 0.6

0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2

0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3

u e v

z x y

x y z

z x y

x y z

T u e u e v v

u u iu
u iu u

v v iv
v iv v

νρ ν ν ρ ρ+ += + + + + + = +

+ − 
 + −
 = + − 
 + − 

  (46) 
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where T is some arbitrary temperature and, for the sake of clarity, we’ve left the 
forbidden matrix entries blank instead of zero. This matrix is in the form of a 
mixed density matrix subject to the requirement that its bras and kets not cross 
the superselection sector boundary. That is, the kets are split into two halves and 
only one of the halves can be non zero. If it is the top half, then the ket is an 
electron ket while the bottom half defines a neutrino ket. 

We’ve just shown that the particle rate matrix for beams that include more 
than one superselection sector must be in block diagonal form. The splitting of 
two superselection sectors is a classical beam splitter and this can always be 
done. After reducing a beam to a single superselection sector we can do 
quantum measurements on it with the methods discussed above. We can do this 
to both the particle types and then reassemble the two beams into one. This way 
we can design a beam splitter whose output stream will have the properties of 
40% electron and 60% neutrino beam discussed above, at least given an input 
stream with both electrons and neutrinos. 

We can also consider thermal measurements of beams composed of particles 
from two different superselection sectors. As before with Equation (42), the high 
temperature limit for each superselection sector will be a multiple of the unit 
matrix for that sector. If we balance the sectors to have the same multiple, the 
high temperature limit will be a multiple of unity. Setting the trace to be 1, the 
high temperature limit for the electron/neutrino block diagonal matrix will be:  

1 0

0 11 ,
4 1 0

0 1

 
 
 
 
 
 
 

                         (47) 

where again we’ve left the forbidden entries blank rather than zero. 
We can reduce the temperature of the above matrix ( )Tρ  in Equation (46) 

by squaring and renormalizing to keep the trace 1. This is easily done in the 
form , ,0.4 0.6u e v νρ ρ+ ++  as ,u eρ+  and ,v νρ+  are idempotent, annihilate each 
other and have unit trace. We find:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), ,0.4 0.6 0.4 0.6n n n n n n
u e vT tr T νρ ρ ρ ρ+ += + +      (48) 

In the limit as n →∞  the ( )0.6 n  terms dominate giving a limit  

( ) ,0 .v νρ ρ+=                            (49) 

It should be clear that this is a general attribute of quantum beam splitters that 
cross superselection sectors. That is, their 0T =  limit falls into a single sector. 

If we are able to make calculations in an algebra and want to know what 
particles it contains this implies an algorithm. We begin with the high 
temperature limit of Equation (47) and add a small Hermitian modification to it. 
Then repeatedly square and renormalize the trace to unity. It will approach the 
primitive idempotent for a particle. 
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For our example of the electron/neutrino, the operator for electric charge is 
zero in the neutrino part and ˆ ˆ1 11− = −  in the electron part:  

1 0
0 1

.
0 0
0 0

Q

− 
 − =
 
 
 

                        (50) 

This matrix commutes with any element of the measurement algebra for the 
electron/neutrino beam. In fact, the definition of a charge that creates 
superselection sectors is that the symmetry must commute with every possible 
measurement (observable). 

Given an algebra, we can define the possible charges that define its 
superselection sectors. Each diagonal block can take a different charge. For the 
electron/neutrino algebra, the possible charges are:  

( )

0
0

, .
0

0

e

e
e

q
q

Q q q
q

q

ν
ν

ν

 
 
 =
 
 
 

                    (51) 

where eq  and qν  are the charges for the electron and neutrino blocks. This 
observation is trivial for block diagonal algebras but becomes interesting when 
the algebra is defined more subtly. 

4. Standard Model/Dark Matter  

The Standard Model of elementary particles is built around symmetries. This is a 
natural consequence of the experiments; humans look for patterns in the 
experimental results and the nicest way to define patterns is with symmetry. So 
the quantum mechanics that models the elementary particles is defined using the 
symmetries that are observed in the experiments. While this method is clearly 
the easiest way of obtaining a model that matches experiment, it should also be 
clear that the seeking of symmetries is a human attribute and not necessarily an 
indication of how Nature is most easily understood. Here we explore an 
alternative way of describing elementary particles. 

The Standard Model of elementary particles consists of representatives of 
SU(3) × SU(2) × U(1) symmetry. Why did nature choose this symmetry rather 
than, for example, SU(4) × E4 × U(1) × U(1)? The Standard Model provides no 
explanation for the arbitrariness of the choice of symmetry. On the other hand, 
what is interesting here is that SU(3) × SU(2) × U(1) is a block diagonal 
symmetry. 

It is not enough to choose the symmetry SU(3) × SU(2) × U(1). The particles 
are taken as irreducible representations of this symmetry so one must also 
choose these irreps. To define an irrep of SU(3) × SU(2) × U(1) one chooses an 
irrep of SU(3), one of SU(2) and one of U(1). Each of these has an infinite 
number of choices; the ones used by the fermions in the Standard Model are:  
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( ) ( ) ( )SU 3 SU 2 U 1 Particles
1 1 2 right-handed electron
1 1 0 right-handed neutrino
1 2 1 left-handed leptons
3 1 4 3 right-handed upquark
3 1 2 3 right-handed downquark
3 2 1 3 left handed quarks

−

−

−

          (52) 

Why did Nature choose these six representations? And why do they appear in 
three generations identical except for mass and the weak force? The Standard 
Model provides no explanations for the arbitrariness of the above choice of 
symmetry representations. 

What we would like is a single mathematical object that is natural, and 
reproduces the arbitrary choices of the Standard Model. To do that, we can 
assume that the symmetry and representations both arise from a single choice of 
algebra instead of a choice of symmetry. One problem with this idea is that 
SU(3) × SU(2) × U(1) is a gauge symmetry and the tool this paper develops is 
the particle content. In addition, the SU(2) portion of the Standard Model 
symmetry is unbroken only in the high temperature limit. This paper looks at 
putting several particles into a single density matrix due to the consequences of 
block diagonal form. Another way of putting multiple representations into 
mixed density matrices is explored in [8]. 

At normal temperatures, the weak SU(2) symmetry that relates the left handed 
electron and neutrino is broken. In fact, left handed fermions travel at speed c 
and so do not appear at all at zero temperature. This implies that the zero 
temperature particle content needs to deal with the electron, neutrino, up-quark 
and down-quark rather than their left and right handed components. Under this 
assumption, there are 4 Standard Model fermions. Ignoring spin and anti 
particles, the electron and neutrino will appear as two 1 1×  blocks. The up and 
down quarks are color SU(3) triplet states so they will appear as two 3 3×  
blocks. 

If we have a finite group G, we can create an algebra from it that is called 
( )G , the “complex group algebra”. A complex group algebra can be put into 

block diagonal form [12]. We can then read the particle content off by noting 
the size of the blocks. Again, note that the particle content is not the same as a 
gauge symmetry. 

In Subsection 3.2 we showed that consecutive measurements in the +z, +x, +y 
and +z directions resulted in the beam picking up a geometric phase of −π/4. On 
the other hand, any complex plane wave picks up a phase through translation in 
space or time according to ( )exp ikx tω− . We cannot distinguish these two 
effects; either one will give a phase change to a beam that we can detect by seeing 
changes in an interference pattern. If Nature were truly simple, these two causes 
of phase changes would be the same. For that to happen, the movement of 
spin-1/2 particles would have to be accompanied by changes in their spin 
direction [13]. 
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The left and right handed fermions of Equation (52) are massless and travel at 
speed c. A stationary electron with spin-1/2 in the +z direction is produced by 
combining a right handed electron with speed c in the +z direction and a left 
handed electron with speed c in the −z direction. The “Feynman checkerboard 
model’’ of the electron is a 1-dimensional model of the Dirac equation based on 
sums over discrete paths on the corners of a checkerboard [14]. The axes on the 
checkerboard correspond to position z and time t. Each step in a path the 
electron moves one unit forward in time by   and steps by a distance c±  in 
z. So the electron is moving up the checkerboard on diagonal lines, the way a 
checker moves in a game of checkers or draughts. Each time the electron 
changes direction the path receives a factor of 2i mc−  . In the 0→  limit, 
the sum of all paths gives a propagator that satisfies the 1-d Dirac equation. 

The 1-dimensional Feynman checkerboard paths have been extended to 
3-dimensional [15] [16]. The particle paths in space are on the points of a cubic 
lattice. The possible symmetries of a cubic lattice are defined by the isometric 
crystallographic point groups:  

Group:
Size: 12 24 24 24 48

h d hT T O T O
                    (53) 

in Schoenflies notation. 
The block diagonal structure of a complex group algebra can be read off of the 

group character table. Each irreducible character corresponds to a block on the 
diagonal and the size of the block is given by the irreducible character of the 
identity E [12]. For example, the character table for T is given by  

2 3 3

2

2

Size: 1 3 4 4
1 1 1 1
1 1
1 1
3 1 0 0

T E C C C

A
E
E
T

ω ω
ω ω

′

′

−

                      (54) 

where ( )exp 2 π 3iω =  and “Size” is the number of group elements in that 
class. For a derivation of this character table see Section 4-1, table 4-6 in [12]. 
Each row corresponds to an irreducible representation of the symmetry. There 
are four: , , ,A E E T′  and each irrep will appear in the algebra as a block on the 
diagonal. So there are four blocks in ( )T ; three of size 1 1×  and one of size 
3 3× . 

A general element of the ( )T  algebra, in block diagonal form, looks like:  

11 12 13

21 22 23

31 32 33 ,

α
η

η
τ τ τ
τ τ τ
τ τ τ

 
 
 
 ′
 
 
 
  
 

                   (55) 
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where , ,α η η′  and jkτ  are complex numbers. For the Standard Model 
fermions we need two 1 1×  blocks for the leptons and two 3 3×  blocks for the 
quarks so T symmetry will not suffice. As we can count from Equation (55), the 
total number of complex degrees of freedom in the ( )T  algebra is 

2 2 2 21 1 1 3 12+ + + = . This is the same as the size of the finite group T. In other 
words, putting the algebra into block diagonal form is just a way of rewriting its 
degrees of freedom. 

Examining the character tables of the five isometric crystallographic point 
groups [12] we find that their particle content consists of:  

: 3 1 1 1
: 3 3 1 1 1 1 1 1 1
: 3 3 2 1 1
: 3 3 2 1 1
: 3 3 3 3 2 2 1 1 1 1

h

d

h

T
T
T
O

O

                 (56) 

and we find that all but the T group include the 3311 particle content of the 
Standard Model. Of these five groups, hT  and hO  include an inversion i or 
point reflection. Such a symmetry transforms an object into its mirror image. In 
the Standard Model the weak interaction is not symmetric under parity so we 
will reject those groups. 

This leaves dT  and O which share the same characters:  

3 2 2 4

3 2 4

1

2

1

2

:
:

Size: 1 8 3 6 6
: 1 1 1 1 1

.
: 1 1 1 1 1
: 2 1 2 0 0
: 3 0 1 1 1
: 3 0 1 1 1

d d

O E C C C C
T E C C S

A
A
E
T
T

σ
′

− −
−

− −
− −

                     (57) 

In the above table, we’ve included an extra vertical line between the first three 
conjugacy classes and the last two. This is to note that E, 3C  and 2C  are even 
while the two right classes are odd. Even and odd are determined by the 2A  or 
“sign” irrep. We assign the jA  pair to the leptons and the jT  pair to the 
quarks. These pairs differ only in their odd characters so we presume that it is 
the odd characters that define their weak isospin and weak hypercharge 
quantum numbers of the handed Standard Model fermions. The remaining irrep 
E is distinctive in that it has no odd characters. So we assume that it corresponds 
to a particle with no weak hypercharge or weak isospin and assign it to dark 
matter. 

5. Conclusions 

We’ve shown that binary measurements are quite similar whether they are 
classical or quantum. Since binary measurements form a foundation for 
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quantum mechanics as demonstrated in the Schwinger measurement algebra 
textbook introductions to quantum mechanics [5] [6], this shows that this 
formulation of quantum mechanics is more closely aligned with our classical 
intuition than the other formulations. This makes this formulation important for 
pedagogy as well as the foundations of quantum mechanics. 

The paper shows a new way of introducing quantum mechanics to students 
from the point of view of classical mechanics. This allows students to have an 
intuitive understanding of how quantum mechanics works. We’ve shown how 
the use of complex numbers and amplitudes instead of probabilities is natural to 
quantum mechanics. 

Some of the subjects discussed in this paper including quantum phase, 
Berry-Pancharatnam phase, superselection sectors and quantum statistics are 
introduced in this paper at an elementary level. These subjects provide 
interesting subjects to study for students in their first lectures on quantum 
mechanics with interesting problems available for assignment. 

Finally, we’ve illustrated the possible uses of this new formulation of classical 
and quantum mechanics in explorations of the nature of the elementary 
fermions. We show that the choice of an algebra defines both symmetry and 
particle representations. This may be a method of wrapping the symmetries of 
the Standard Model into an algebraic description that will be much more tightly 
determined than the arbitrary choice of symmetry and representations found in 
the Standard Model. 
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