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Abstract 

The problem is to considerer a parabolic equation depending on a coefficient 
( )a t , and find the solution of the equation and the coefficient. The objective 

is to solve the problem as an application of the inverse moment problem. An 
approximate solution and limits will be found for the error of the estimated 
solution using the techniques of inverse problem moments. In addition, the 
method is illustrated with several examples. 
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1. Introduction 

We want to find ( )a t  and ( ),w x t  such that 
( )( ) ( ),t x x

w a t w r x t= +  

under the initial condition 
( ) ( ),0w x xϕ=                          (1) 

and the boundary conditions 

( ) ( ) ( ) ( )0, 0, 0, 1, 1,x xw t w t w t w tα= = +                (2) 

about a region ( ){ }, ,0 1,0 .D x t x t T= < < ≤ ≤  
In addition it must be fulfilled 

( ) ( )1

0
, d , 0w x t x E t t T= ≤ ≤∫                     (3) 
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where ( )xϕ , ( ),r x t  and ( )E t  are known functions and α is an arbitrary 
real number other than zero. 

We also assume that the underlying space is ( )2L D . 
This problem is studied in [1]. Citing the abstract of this work: “this paper in-

vestigates the inverse problem of simultaneously determining the time-dependent 
thermal diffusivity and the temperature distribution in a parabolic equation in the 
case of nonlocal boundary conditions containing a real parameter and integral 
overdetermination conditions, and under some consistency conditions on the 
input data the existence, uniqueness and continuously dependence upon the da-
ta of the classical solution are shown by using the generalized Fourier method”. 

In general the methods applied to solve the problem are varied. Other works 
that solve the parabolic equation but under different conditions are [2] [3] [4]. 

There is a great variety of inverse problems in which a parabolic equation 
must be solved and additionally we must determine an unknown parameter, 
under various conditions [5] [6] [7] and [8] [9] [10] [11], to name some exam-
ples. 

I have considered one of these problems and my objective in this work is to 
show that we can solve this problem using the techniques of inverse moments 
problem two-dimensional as an alternative and different technique. We focus 
the study on the numerical approximation. 

The problem has already been solved as a moment problem two-dimensional 
in [12] for a domain ( ){ }, ,0 1, 0D x t x t= < < > . 

But if you want to apply this work for 0 t T< <  it would be necessary to 
know the value of the function ( ),w x t  in t T=  and this data is not consi-
dered in the boundary conditions. For this reason we must make a change in the 
way of solving the problem, and this implies significant differences with the work 
done in [12]. 

As was done in [12], first we find an exact expression for ( ) ( )1,a t w t . Then, 
we wrote ( ) ( ) ( )* , ,w x t a t w x t= . 

We resolve a first step in numerical form  

( ) ( )
1

1, 1 d d 1
i

i
D

tG x t x x t i
T

ψ
−

−  − = 
 ∫∫  

where ( )1 iψ  is written in terms of known expressions, and 

( ) ( ) ( )
22

* *, 1 , 1 ,x t
x t tG x t w x t x w x t
T T T
   = − − − −   
   

 

it is the function to be determined. 
In a second step the following integral equation is solved in numerical form 

( ) ( ) ( )* , , , , d d 2 ,
D
w x t K i z x t x t i zψ=∫∫  

with ( )* ,w x t  is the unknown function, ( )2 ,i zψ  is an expression in function 
of the approximation found for ( ),G x t  with ( ), , ,K i z x t  known. 

Both integral equations are solved numerically by applying the moment prob-
lems two-dimensional techniques. 
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Then we find an approximation ( ),aAp x t  for ( )a t  using the solution 
found in the second step and condition (3). 

Finally we find an approximation for ( ),w x t  using ( )aAp t  and the solu-
tion found in the second step. 

2. Inverse Generalized Moment Problem 

The d-dimensional generalized moment problem [13] [14] [15] and [16] [17] 
can be posed as follows: find a function f on a domain dΩ⊂ R  satisfying the 
sequence of equations 

( ) ( )d ,i if x g x x i Nµ
Ω

= ∈∫                   (4) 

where ( )ig  is a given sequence of functions lying in ( )2 ΩL  linearly indepen-
dent, and the sequence of real numbers { }i i N

µ
∈

 are the known data. N is the set 
of natural numbers. 

The moments problem of Hausdorff is a classic example of moments problem, 
is to find a function ( )f x  in ( ),a b  such that 

( )d ,
b i

i a
x f x x i Nµ = ∈∫  

In this case ( ) ,i
ig x x i N= ∈ . If the interval of integration is ( )0,∞  we have 

the problem of moments of Stieltjes, if the interval of integration is ( ),−∞ ∞  we 
have the problem of moments of Hamburger. 

It can be proved that [17] a necessary and sufficient condition for the exis-
tence of a solution of (4) is that ( )2

1 1
i

ij ji j C µ∞

= =
< ∞∑ ∑  where ijC  are given by 

(11) and (12). 
Moment problem are usually ill-posed in the sense that there may be no solu-

tion and if there is no continuous dependence on the given data. There are vari-
ous methods of constructing regularized solutions, that is, approximate solutions 
stable with respect to the given data. One of them is the method of truncated 
expansion. 

The method of truncated expansion consists in approximating (4) by finite 
moment problems 

( ) ( )d , 1, 2, ,i if x g x x i nµ
Ω

= =∫                  (5) 

and consider as an approximate solution of ( )f x  to ( ) ( )0
n

n i iip x xλϕ
=

=∑ . 
The ( ){ } 1, ,i i n

xϕ
= 

 result from orthonormalize 1 2, , , ng g g  and { } =1, ,i i n
λ



 
are coefficients as a function of the { } =1, ,i i n

µ


. 
Solved in the subspace 1 2, , , ng g g  generated by 1 2, , , ng g g  (5) is sta-

ble. Considering the case where the data ( )1 2, , , nµ µ µ µ=   are inexact, conver-
gence theorems and error estimates for the regularized solutions they are applied. 

3. Resolution of the Parabolic Partial Differential Equation 

We consider the equation ( )( ) ( ),t x x
w a t w r x t= + . If we integrate with respect 

to x between 0 and 1 we obtain 
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( ) ( ) ( ) ( )1 1

0 0
d 1, 0, , dt x xw x a t w t w t r x t x= − +  ∫ ∫  

If we write ( ) ( )1*
0

, dr t r x t x= ∫  and ( ) ( )d
d

E t E t
t

′ =  then 

( ) ( ) ( )( ) ( )*1, , 0E t a t w t r t t Tα′ = − + ≤ ≤  

Thus 

( ) ( ) ( ) ( )*

1, , 0
r t E t

a t w t t T
α

′−
= ≤ ≤                (6) 

On the other hand we consider the vector field 

( ) ( )( ) ( )* * *, ,x xF a t w a t w w w= − = −  

Let ( ), , ,u i z x t  be the auxiliary function 

( ), , , 1
z

i tu i z x t x
T

 = − 
 

 

Then 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

x x t

x x xx t t

div uF ua t w ua t w

u a t w u t w u a t w ua t w ua t w

∗ = −

′= + − − −
 

Also 

( ) ( ) ( ) ( )xx tudiv F ua t w ua t w u t w∗ ′= − −  

Moreover, as 

( ) ( )udiv F div uF F u∗ ∗ ∗= − ⋅∇  

( ) ( )d d d
D D D

udiv F A div uF A F u A∗ ∗ ∗= − ∇∫∫ ∫∫ ∫∫              (7) 

where ( ),x tu u u∇ =  besides 

( ) ( ) ( )( )
( ) ( ) ( )( )

* *

* *

d d

d d

xD D x t

x x tD D

div uF A uw uw A

udiv F A u w u w A

∗

∗

= −

= + −

∫∫ ∫∫

∫∫ ∫∫
      (8) 

Then of (7) and (8) 

( )* * d dx x tE E
u w u w A F u A∗− = ∇∫∫ ∫∫                   (9) 

Can be proven that, after several calculations, (9) is written as 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1 * * 1 * 1
0 0

1
1 11 * *
0 0 0 0

,0 d 1, 1 1 0, 0 1 d
1

1 , d d 1 , d d
1

z z
Ti i i

z z
T Ti i

x t

z t tw x x x w t w t t
T i T T

z t tx w x t t x x w x t t x
T i T T

− −
+ +

−
+

    − − − −     +     

   = − − − −   +    

∫ ∫

∫ ∫ ∫ ∫
 

In the deduction of the previous formula it is used that  

( )1 *
0

, 1 d 0
z

i Tw x T x x
T

 − = 
 ∫  with 0z > . 

At work [8] the auxiliary function is ( ) ( )1, , , e z tiu i z x t x − += . 
Then ( ) ( )1 1*

0
, e d 0z Tiw x T x x− + →∫  when T →∞  with 1 0z + > . 
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If 1z i= +  then 

( ) ( )

( ) ( ) ( )

( )

1 22
1 1 * *
0 0

1 1 1 1
1 * * 1 * 1
0 0

1 1 , 1 , d d

1,0 d 1, 1 1 0, 1 0 d

1

i
T i

x t

i i
Ti i i

t x t tx w x t x w x t t x
T T T T

t tw x x x w t w t t
T T T

iϕ

−
−

+ − + −
+ +

      − − − − −             
    = − − − −         

=

∫ ∫

∫ ∫  

Note that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

*
* 0 0

,0 0 ,0 0 , 0
1

r E
w x a w x a x aϕ

αϕ
′−

= = =  

and 

( ) ( ) ( )* 1, 1,w t a t w t=  

previously calculated. 
We wrote 

( ) ( ) ( )
22

* *, 1 , 1 ,x t
x t tG x t w x t x w x t
T T T
   = − − − −   
   

 

We solve the integral equation numerically 

( ) ( )1

0 0
, d d 1

T
i iG x t H t x iϕ µ= =∫ ∫                  (10) 

with 

( )
1

1, 1
i

i
i

tH x t x
T

−
−  = − 
 

 

and we will obtain an approximate solution for ( ), .G x t  
We can apply the truncated expansion method detailed in [16] and genera-

lized in [17] [18] [19] to find an approximation ( )1 ,np x t  for ( ),G x t  for the 
corresponding finite problem with 1, ,i n= 

 where n is the number of mo-
ments iµ . We consider the base ( ), , 1, 2,i x t iφ =   obtained by applying the 
Gram-Schmidt orthonormalization process on ( ), , 1, 2, ,iH x t i n=   and add-
ing to the resulting set the necessary functions until reaching an orthonormal 
basis. 

We approach the solution ( ),G x t  with [17] [18] [19]: 

( ) ( )1
1 1

, , where , 1,2, ,
n i

n i i i ij j
i j

p x t x t C i nλφ λ µ
= =

= = =∑ ∑   

And the coefficients ijC  verifies 

( )
( ) ( )

( )
( )

1 1

2

, ,
1 , ,1 ; 1

,

i
i k

ij kj i
k j k

H x t x t
C C x t i n j i

x t

φ
φ

φ

− −

=

 
 = − ⋅ < ≤ ≤ <
 
 
∑     (11) 

The terms of the diagonal are 

( ) 1
, , 1, ,ii iC x t i nφ

−
= = 

                   (12) 

The proof of the following theorem is in [19] [20]. In [20] he proof is done for 
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t in a finite interval. In [21] the demonstration is done for the one-dimensional 
case. We consider a more general notation: 

Theorem Let { } 0

n
i i

µ
=

 be a set of real numbers and suppose that 
( ) ( ) ( )( )2

1 1 2 2, , ,f x t L a b a b∈ ×  verify for some ε and M (two positive numbers) 

( ) ( )2 1

2 1

2
2

0
, , d d

n b b
i ia a

i
H x t f x t x t µ ε

=

− ≤∑ ∫ ∫               (13) 

( ) ( )( )2 1

2 1

2 22 2 2
1 1 2 2 d d

b b
x ta a

b a f b a f x t M− + − ≤∫ ∫  

then 

( )
( )

2 1

2 1

2
2 T 2

2, d d min ; 0,1, ,
8 1

b b

a a i

Mf x t x t CC i n
i

ε
  ≤ + = 

+  
∫ ∫       (14) 

where C is the triangular matrix with elements ( )1 ;1ijC i n j i< ≤ ≤ < . And 

( ) ( )
( )

2 1

2 1

2
2 T 2

1 2, , d d
8 1

b b
na a

Mp x t f x t x t CC
n

ε− ≤ +
+

∫ ∫         (15) 

Dem.) The demonstration is similar to that we have done for the unidimen-
sional generalized moment problem [18], which is based in results of Talenti [16] 
for the Hausdorff moment problem. Here we simply introduce the necessary 
modification for the bi-dimensional case. 

Without loss of generality we take { } 0
0 n

i i
µ

=
=  in (13). 

We write 

( ) ( ) ( ), , ,n nf x t h x t d x t= +  

where ( ),nh x t  is the orthogonal projection of ( ),f x t  on the linear space that 
the set ( ){ } 0

,
n

i i
H x t

=
 generates and ( ) ( ) ( ), , ,n nd x t f x t h x t= −  is the ortho-

gonal projection of ( ),f x t  on the orthogonal complement. In terms of the ba-
sis ( ){ } 0

,i i
x tφ

∞

=
 the functions ( ),nh x t  and ( ),nd x t  reads 

( ) ( ) ( )
0 1

, , ; ( , ) ,
n

n i i n i i
i i n

h x t x t d x t x tλφ λφ
∞

= = +

= =∑ ∑  

with 

0
, 0,1,

i

i ij j
j

C iλ µ
=

= =∑   

and the matrix elements ijC  given by (11) and (12). 
In matricial notation: 

1 1

2 2, ,

n n

C

λ µ
λ µ

λ µ λ µ

λ µ

   
   
   = = =
   
   
   

 

 

Besides 

( ) ( ) ( ) ( )2 1 2 1

2 1 2 1
, , d d y , , d d

b b b b
i i i ia a a a

f x t x t x t f x t H x t x tλ φ µ= =∫ ∫ ∫ ∫  

Therefore 
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( )2 1

2 1

2 2T T T 2, d d , ,
b b

na a
h x t x t C C C C C Cλ λ µ µ µ ε= = ≤ ≤∫ ∫  

To estimate the norm of ( ),nd x t  we observe that each element of the or-
thonormal basis ( ){ } 0

,i i
x tφ

∞

=
 can be written as a function of the elements of 

another orthonormal basis, in particular the set ( ){ } , 0
,kl k l

P x t
∞

=
 con 

( ) ( ) ( )1 2,kl k lP x t L x L t=  with ( )1kL x  Legendre polynomial in ( )1 1,a b , ( )2lL t
Legendre polynomial in ( )2 2,a b  

( ) ( ),
0 0

, ,i kl i kl
k l

x t P x tφ γ
∞ ∞

= =

= ∑∑  

The Legendre polynomials ( )1kL x  verify 

( )( ) ( ) ( ) ( )1 1 1 1
d 1 , 0,1,2,
d k ka x b x L x k k L x k

x
− − = + =   

 

and analogous property for the polynomials ( )2 .lL t  
Defining ,= 1=kl i kl ii nλ λ γ∞∗

+∑  we can demonstrate that 

( ) ( )

( )
( ) ( )

2 1

2 1

2 1

2 1

2 2

0 0

2 2
1 12

, d d 1

1 , d d
4 1

b b
n kla a

k l

b b
xa a

d x t x t k k

b a f x t x t
n

λ
∞ ∞

∗

= =

≤ +

≤ −
+

∑∑∫ ∫

∫ ∫
 

and 

( ) ( )

( )
( ) ( )

2 1

2 1

2 1

2 1

2 2

0 0

2 2
2 22

, d d 1

1 , d d
4 1

b b
n kla a

k l

b b
ta a

d x t x t l l

b a f x t x t
n

λ
∞ ∞

∗

= =

≤ +

≤ −
+

∑∑∫ ∫

∫ ∫
 

From these equations we deduce that 

( )
( )

( ) ( )2 1 2 1

2 1 2 1

2 2 22 2
1 1 2 22

1, d d d d
8 1

b b b b
n x ta a a a

d x t x t b a f b a f x t
n

 ≤ − + − +
∫ ∫ ∫ ∫  

( )
( )

2 1

2 1

2
2

2, d d
8 1

b b
na a

Ed x t x t
n

∴ ≤
+

∫ ∫  

Adding the expressions for the two standards ( ),nh x t  y ( ) 2
,nd x t  result 

(14) is reached. An analogous demonstration proves inequality (15). 
If we apply the truncated expansion method to solve Equation (10) we obtain 

an approximation ( )1 ,np x t  for  

( ) ( ) ( )
22

* *, 1 , 1 ,x t
x t tG x t w x t x w x t
T T T
   = − − − −   
   

. 

Then we have an equation in first order partial derivatives 

( ) ( ) ( )
22

* *
11 , 1 , ,x t n

x t tw x t x w x t p x t
T T T
   − − − − =   
   

 

of the form 

( ) ( ) ( ) ( ) ( )* *
1 2 1, , , , ,x t nA x t w x t A x t w x t p x t+ =  
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where ( )
2

1 , 1x tA x t
T T
 = − − 
 

 and ( )
2

2 , 1 tA x t x
T

 = − − 
 

. It is solved as in [20],  

i.e., we can prove that solving this equation is equivalent to solving the integral 
equation 

( ) ( ) ( )1 *
0 0

, , , , d d 2 ,
T
w x t K i z x t t x i zϕ=∫ ∫  

where 

( ) ( ) ( ) ( )
1

11 1
1 2

1, , , , , , 1
z

zi i
z

tK i z x t K i z x t x z i x T t
T T

−
+− +

+
 = − = − − 
 

 

and 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2

1 2

, , , , , 1

, 1 ,

x t

tK i z x t A x t A x t x
T

t tiA x t x A x t
T T

  = + −    
   + − −   
   

 

that is 

( ) ( ) ( )
( )

1 1* 1
20 0

2 ,
, d d

T zi
izz

i z
w x t x T t t x

T z i
ϕ

µ++
+− = =

−∫ ∫  

with 

( ) ( ) ( ) ( )

( ) ( ) ( )

*
10

1 1*
2 10 0 0

2 , 1, , ,1, 1, d

,0 , , ,0 ,0 d d d

T

T
n

i z A t u i z t w t t

A x u i z x w x x up t x

ϕ  =  

− −

∫

∫ ∫ ∫
 

In the deduction of the expression ( )2 ,i zϕ  it is also used that 

( )1 *
0

, 1 d 0
z

i Tw x T x x
T

 − = 
 ∫  with 0z > . 

Again we consider the base ( ), , 0,1, 2, ; 1,iz x t i z iφ = = +   obtained by ap-
plying the Gram-Schmidt orthonormalization process on  

( ) ( )11 , , 0,1, 2, ; 1,zi
izx T t K x t i z i++ − = = = +   and is taken as a measure 

( )2 d d
D

T t x t x−∫∫  , and then the above equation can be transformed into a gene-

ralized moment problem 

( ) ( )1 *
0 0

, , d d
T

iz izw x t K x t t x µ=∫ ∫  

Applying again the techniques of generalized moments problem to the cor-
responding finite problem, we found an approximate solution ( )*

2 ,np x t  for 
( ) ( )2 * ,T t xw x t− . 

Therefore an approximation for ( )* ,w x t  is ( ) ( )
( )

*
2

2 2

,
, .n

n

p x t
p x t

T t x
=

−
 

To find a numerical approximation for ( )a t  we use condition (3): 

( ) ( ) ( ) ( ) ( ) ( )1 1
2 30 0

, d , dna t w x t x p x t x p t a t E t≈ = ≈∫ ∫  

Then 
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( ) ( )
( ) ( )3p t

a t aAp t
E t

∴ ≈ =                     (16) 

And 

( ) ( )
( ) ( )2 ,

, ,np x t
w x t wAp x t

aAp t
≈ =                   (17) 

We can measure the accuracy of the approximation (16) using the previous 
theorem, where iµ  would be the ith generalized moment of ( ),wAp x t , that is, 
we consider the moments of ( ),w x t  measured with error. 

An analogous argument is used to measure the accuracy of the approximation 
( )aAp t . 

4. Numerical Examples 

To obtain an approximation ( )1 ,np x t  for  

( ) ( ) ( )
22

* *, 1 , 1 ,x t
x t tG x t w x t x w x t
T T T
   = − − − −   
   

 we consider the base  

( ), , 1, 2, ,i x t i nφ =   obtained by applying the Gram-Schmidt  

orthonormalization process on ( )
1

1, 1 , 1, 2, ,
i

i
i

tH x t x i n
T

−
−  = − = 
 


. 

In other words, it applies the Gram-Schmidt orthonormalization process on 

2 1
2 11, 1 , 1 , , 1

n
nt t tx x x

T T T

−
−

       − − −      
       

  

We will obtain, by applying the truncated expansion method, ( )1 ,np x t . 
Analogously to obtain ( )2 ,np x t , we consider the base  
( ) 1 2, , 1, 2, , ; 1, ,iz x t i n z i nφ = = +   obtained by applying the Gram-Schmidt 

orthonormalization process on ( ) 1 2, , 0,1, 2, , ; 1, ,izK x t i n z i n= = +  , and is 
taken as a measure ( )2 d d

D
T t x t x−∫∫  . 

We will obtain, by applying the truncated expansion method, ( )*
2 ,np x t  so 

that ( ) ( )
( )

*
2

2 2

,
, n

n
p x t

p x t
T t x

=
−

. 

To apply the method must be ( )1,0 0w ≠ . 
It may happen that (16) or (17) have discontinuities because the denominator 

is overridden for certain values of t. In this case we can vary the number of mo-
ments that are taken so that the denominator does not have real roots that cancel 
it. 

It is observed that the greater is M, the more moments are needed to achieve 
precision in approximate solution, which is related to the length of the interval 

( )0,T . 

4.1. Example 1 

We consider the equation 
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( )( ) ( )
3

2 2e π4e π sin , 0 1; 0 2
4 2

t
t

t x x

xw a t w x t
−  = − − < < < < 

 
 

and conditions 

( ) ( )2e π π; ; ,0 sin
π 2 2

t xE t w xα
−  = = =  

 
 

The following conditions are met: 

( ) ( ) ( ) ( )π0, 0; 0, 1, 1,
2x xw t w t w t w t= − =  

the solution is 

( ) ( ) 2π, sin e and e
2

t txw x t a t− − = = 
 

 

We calculate ( )1 ,np x t  with 8n =  moments and ( )2 ,np x t  with 

1 2 4 3 12n n n= × = × =  moments. And approximates ( )a t  with ( ).aAp t  

Accuracy is ( ) ( )2 2

0
d d 0.0291731a t aAp t t x− =∫ . 

Approximates ( ),w x t  with ( ), .wAp x t  

Accuracy is ( ) ( )1 2 2

0 0
, , d d 0.105598w x t wAp x t t x− =∫ ∫ . In Figure 1 and Fig-

ure 2 the exact solution and the approximate solution are compared. 

4.2. Example 2 

We consider the equation 

( )( ) ( ) ( )( ) ( )2 22e cos sec tan , 0 1; 0 1t
t x x

w a t w t t x x x t−= − + < < < <  

and conditions 

( ) ( )( ) ( ) ( ) ( )2
e log cos 1 ; tan 1 ; ,0 tantE t w x xα−= − = − =  

 

 
Figure 1. ( )a t  and ( )aAp t . 
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Figure 2. ( ),w x t  and ( ),wAp x t . 

 
The following conditions are met: 

( ) ( ) ( ) ( ) ( )0, 0; 0, 1, tan 1 1,x xw t w t w t w t= − = −  

the solution is 

( ) ( )
( ) ( ) ( )2sin

, e and cos
cos

tx
w x t a t t

x
−= =  

We calculate ( )1 ,np x t  with 5n =  moments and ( )2 ,np x t  with 

1 2 3 3 9n n n= × = × =  moments. And approximates ( )a t  with ( )aAp t . 

Accuracy is ( ) ( )1 2

0
d d 0.0445868a t aAp t t x− =∫ . 

Approximates ( ),w x t  with ( ),wAp x t . 

Accuracy is ( ) ( )1 1 2

0 0
, , d d 0.0502999w x t wAp x t t x− =∫ ∫ . 

In Figure 3 and Figure 4 the exact solution and the approximate solution are 
compared. 

4.3. Example 3 

We consider the equation 

( )( )
2π π π2e cos sin , 0 1; 0 1

6 6 6
t

t x x

t x tw a t w x t−    = − − < < < <   
   

 

and conditions 

( ) ( ) 21 πcos ; 2; ,0
3 6

tE t w x xα = = − = 
 

 

The following conditions are met: 

( ) ( ) ( ) ( )0, 0; 0, 1, 2 1,x xw t w t w t w t= − = −  

the solution is 

https://doi.org/10.4236/am.2018.93017


M. B. Pintarelli 
 

 

DOI: 10.4236/am.2018.93017 234 Applied Mathematics 

 

 
Figure 3. ( )a t  and ( )aAp t . 

 

 
Figure 4. ( ),w x t  and ( ),wAp x t . 

 

( ) ( )2 π, cos and e
6

ttw x t x a t − = = 
 

 

We calculate ( )1 ,np x t  with 5n =  moments and ( )2 ,np x t  with 

1 2 3 3 9n n n= × = × =  moments. And approximates ( )a t  with ( )aAp t . 

Accuracy is ( ) ( )1 2

0
d d 0.0443166a t aAp t t x− =∫ . 

Approximates ( ),w x t  with ( ),wAp x t . 

Accuracy is ( ) ( )1 1 2

0 0
, , d d 0.0731498w x t wAp x t t x− =∫ ∫ . 

In Figure 5 and Figure 6 the exact solution and the approximate solution are 
compared. 
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Figure 5. ( )a t  and ( )aAp t . 

 

 
Figure 6. ( ),w x t  and ( ),wAp x t . 

4.4. Example 4 

We consider the equation 

( )( )
t-
8 2 21 e e 3 e 2 , 0 1; 0 3

8

x x

t x x
w a t w t x t

−  
= + − + − < < < <  

 
 

and conditions 

( ) ( ) ( )
1
2 8 212 e e ; ; ,0 1 e

2

t x

E t w xα
 − + − 
 = − + = = − +  

The following conditions are met: 
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( ) ( ) ( ) ( )10, 0; 0, 1, 1,
2x xw t w t w t w t= − =  

the solution is 

( ) ( )82, e 1 e and 1
tx

w x t a t t
−− 

= − = +  
 

 

We calculate ( )1 ,np x t  with 7n =  moments and ( )2 ,np x t  with 

1 2 3 4 12n n n= × = × =  moments.  
And approximates ( )a t  with ( )aAp t . 

Accuracy is ( ) ( )3 2

0
d 0.159805a t aAp t t− =∫ . 

Approximates ( ),w x t  with ( ),wAp x t . 

Accuracy is ( ) ( )1 3 2

0 0
, , d d Exactitud 0.0354934w x t wAp x t t x− = =∫ ∫ . 

In Figure 7 and Figure 8 the exact solution and the approximate solution are 
compared. 

5. Conclusions 

We consider the problem of finding ( )a t  and ( ),w x t  such that 

( )( ) ( ),t x x
w a t w r x t= +  

under the initial condition ( ) ( ),0w x xϕ=  and the boundary conditions 
( )0, 0w t =  and ( ) ( ) ( )0, 1, 1,x xw t w t w tα= +  about a region  

( ){ }, ,0 1,0D x t x t T= < < < < . In addition it must be fulfilled ( ) ( )1

0
, dw x t x E t=∫  

where ( )xϕ , ( ),r x t  and ( )E t  are known functions and α is an arbitrary 
real number other than zero. We also assume that the underlying space is 

( )2L D . 
First we find an exact expression for ( ) ( )1,a t w t . Then, we wrote 
( ) ( ) ( )* , ,w x t a t w x t= , and we resolve the integral equation in a first step in 

numerical form 
 

 
Figure 7. ( )a t  and ( )aAp t . 
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Figure 8. ( ),w x t  and ( ),wAp x t . 

 

( ) ( )
1

1, 1 d d 1
i

i
D

tG x t x x t i
T

ψ
−

−  − = 
 ∫∫  

where 

( ) ( ) ( )
22

* *, 1 , 1 ,x t
x t tG x t w x t x w x t
T T T
   = − − − −   
   

 

it is the function to be determined. 
In a second step the following integral equation is solved in numerical form  

( ) ( ) ( )* , , , , d d 2 ,
D

w x t K i z x t x t i zψ=∫∫  

with ( )* ,w x t  is the unknown function, ( )2 ,i zψ  is an expression in function 
of ( ),G x t  with ( ), , ,K i z x t  known. 

Both integral equations are solved numerically by applying the moment prob-
lems techniques. 

Then we find an approximation for ( )a t ; with this approximation we write 

( ),aAp x t , using the solution found in the second step and condition 
( ) ( )1

0
, dw x t x E t=∫ . 

We write this approximation ( ),aAp x t . Finally we find an approximation for 
( ),w x t  using the solution found in the second step and ( ),aAp x t . 
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