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Abstract 
Password security is a crucial component of modern internet security. In this 
paper, we present a provably secure method for password verification using 
combinatorial group theory. This method relies on the group randomizer sys-
tem, a subset of the MAGNUS computer algebra system and corrects most of 
the present problems with challenge response systems, the most common 
types of password verification. Theoretical security of the considered method 
depends on several results in asymptotic group theory. We mention further 
that this method has applications for many other password situations includ-
ing container security.  
 

Keywords 
Password Security, Combinatorial Group Theory, Free Group Cryptography, 
Group Randomizer System 

 

1. Introduction 

This material essentially appeared in [1], but we feel it is an important 
application that should be more widely publicized and is a perfect entry for the 
present special volume on Cryptography and Internet security. 

Secure password identification is a crucial component of modern internet 
security. Password verification is essential and this requires a backup system. 
Backup password security is handled most often by a challenge response system 
(see [2]) accompanying the password. In the simplest systems, this takes the 
form of secondary password questions such as the prover’s mother’s maiden 
name or place of birth. There are many inherent difficulties with these types of 
challenge response systems such as the trivial problem of the provers 
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remembering their responses. More critical is the problem that this type of 
information for many people is readily available and easily found or guessed by 
would-be attackers or eavesdroppers. Challenge response systems are also 
subject to middleman attacks and replay attacks. There have been many attempts 
to alleviate these problems, including zero-knowledge password proofs and 
challenged responses somewhat based on RSA as well as timed out responses 
(see CRAM-MD5, Password Authenticated Key Agreement, [2] [3]). 

This article presents an alternative method for challenge response password 
verification using combinatorial group theory. Further, this method is provably 
secure. It depends upon the theoretical and practical difficulty of solving the 
search membership problem within a given finitely presented group without 
knowing the presentation and the difficulty of solving systems of equations 
within free groups. This latter problem has been proved to be NP-hard. This 
alternative method uses the group randomizer system; a computer program that 
is a subset of MAGNUS, a much larger computer algebra system, designed to 
handle algorithmic problems in combinatorial group theory. MAGNUS was 
developed at CAISS, the Center for Algorithms and Interactive Scientific 
Software, a research laboratory housed at City College of the City University of 
New York and under the direction of the first author. The group randomizer 
system can be placed on a simple hand held computer device presently under 
development at CAISS. The system can also be used from computer to 
computer. 

The group theoretic techniques have several major advantages over other 
challenge response systems. Using standard authentication terminology, the 
password presenter will be denoted the prover while the presentee is the verifier. 
The methods we present can be used for two-way authentication, that is the 
same method authenticates both the prover to the verifier and the verifier to the 
prover. 

From the standpoint of cryptology, the method is a symmetric key 
authentication protocol. In its application, each prover has a standard password 
that is a common shared secret with the verifier. In addition, each prover is 
assigned a finitely presented group G. This group is called the challenge group. 
The total common shared secret between prover and verifier consists of ( ),P G  
where P is a standard password and G is the challenge group. The challenge 
group will provide an unlimited set of back-up challenges to the password. These 
challenges are in the form of group theoretical questions concerning G. The 
assignment of the challenge group to a given prover will be done randomly by 
the group randomizer system which we will explain. Cryptographically, we 
assume the adversary can steal the encrypted form of the group theoretic 
responses. From a security viewpoint, this does not present a problem. Each set 
of back-up challenges forms a virtual one time code as we will explain in the 
paper. Therefore, the adversary must steal three things—the original password, 
the challenge group and the group randomizer. Hence there is almost total 
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security in this challenge response system. Further, there is an infinite supply of 
finitely presented groups to use as challenge groups and an infinite supply of 
challenge response questions that never have to be duplicated. These will be 
explained in the paper. Finally in distinction to other backup password protocols 
the group theoretic method is a two-way protocol between the prover and the 
verifier; while the verifier authenticates the prover’s password, simultaneously 
the prover authenticates that he or she is dealing with the true verifier. 

A major advantage of this technique it that it is provably secure. The proof of 
its security depends upon asymptotic group theory which we explain in Section 
6. A result of Lysenok [4] implies that stealing the challenge group is NP-hard 
while a result of Jitsukawa [5] says that the asymptotic density of using 
homomorphisms (see Section 6) to attack the group randomizer protocol is zero. 

In the next section, we provide a brief primer on combinatorial group theory 
and then a description of the group randomizer system. We then present several 
variations on how the group randomizer system can be used for secure password 
verification protocols. After this with we give the security model showing that it 
is provably secure. 

Finally we describe how the group randomizer system and password methods 
can be used as a secure lock for container security. 

This group randomizer system password security approach is part of a large 
program to use computational combinatorial group theory as a tool in secure 
data storage and data identification. 

Sadly the first author, who inspired much of this work, passed away 
during the preparation of the paper. We thank him posthumously for his 
many ideas. 

2. Finitely Presented Groups and Combinatorial Group Theory 

Combinatorial group theory attempts to study groups via group presentations. A 
group presentation can be thought of as an encoded method to describe a given 
group. 

A group presentation for a group G consists of a set of generators X for G and 
a set R of defining relators on the generators X. In this case we write ;G X R= . 
For purposes of this paper and the challenge response password authentication 
protocols we propose, we may assume that G is a finitely presented group. By 
this we mean that both the set of generators X and the set of defining relators are 
finite. The books by Baumslag [6], Lyndon and Schupp [7], Magnus, Karrass and 
Solitar [8] Camps, GrRebel and Rosenberger [9] are standard references for this 
material. Another reference for the use of combinatoiral group theory in 
cryptography is the book by Baumslag, Fine, Kreuzer and Rosenberger [10]. 

Consider a finite alphabet, { }1, , nX x x=   and the formal inverses 

{ }1 1
1 , , nx x− −
 . Then the set { }1, , nX x x=   is a set of generators for a group G 

if every element g G∈  has an expression as a word in the generators and their 
inverses. The identity is considered the empty word. We do not assume that this 
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expression is unique. A relator on X is a word ( )1, , nW x x  which represents 
the identity in G. A relator of the form 1

i ix x−  or 1
i ix x−  is called a trivial relator. 

A set { }1, , kR R R=   of words on X is a complete set of defining relators if 
every relator W can be transformed into the empty word by finitely many 
insertions and deletions of elements of R and trivial relators. Two words 1 2,W W  
on the generators represent the same group element G if and only if 1W  can be 
transformed into 2W  by insertions and deletions of relators in R and trivial 
relators. If X is a set of generators for G and R is a set of defining relators we say 
G has the presentation ;G X R= . A finite presentation will always define a 
group (see [8]) for which this is the presentation. A set of words 1, , ,mW W   
in one-to-one correspondence with the elements of G is said to determine a set 
of normal forms for G. 

Presentations are in no way unique, however in principle all group theoretic 
questions about G should be answerable given a presentation. For a group 
presentation, the word problem asks whether given any word on X, is there an 
algorithm to determine in finitely many steps whether this word represents the 
identity in G. In general the word problem is undecidable. That is there exist 
group presentations for which it can be proved that no such algorithm exists (see 
[6]). A particularly nice class of groups, which have both normal forms and 
solvable word problems, are the automatic groups (see [11]). 

For a group G and a subgroup H of G the membership problem (also called 
the generalized word problem) is the problem of determining algorithmically 
whether a given word W, written in terms of the generators of G, lies in the 
subgroup H. As with the word problem, the membership problem is in general 
undecidable. Clearly a solution to the membership problem, in a given group, 
implies a solution to the word problem. 

Fundamental to combinatorial group theory is the concept of a free group. Let 
A be a set. Then, a group F is free on A if every mapping :f A G→ , where G is 
a group, can be extended to a unique homomorphism of F to G. We denote this 
by [ ]F A . A group is free if it is free on some set A. It can be proved that given a 
set A, there exists a free group on A and further if two sets 1A  and 2A  have the 
same size then the corresponding free groups [ ]1F A  and [ ]2F A  are 
isomorphic. If { }1, , nA x x=   is a finite set, we say that [ ]F A  is a free group 
of rank n and sometimes denote this by nF . 

From the viewpoint of group presentations free groups are groups with a 
presentation with an empty set of defining relators. If F is free on 

{ }1, , nX x x=   then there are no nontrivial relators on X and a presentation for 
F is 1, , nF x x=  . In this case the elements of F can be considered as reduced 
words on the alphabet { } 1

1, , nx x ±
 . The identity element is considered as the 

empty word. Reduced means that we can cancel any occurrences of 1
i ix x−  or 

1
i ix x− . It is clear that each word has a unique reduced form and hence the word 

problem for F is solvable. 
A well-known theorem due to Nielsen and Schreier (see [6]) says that a proper 
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subgroup of a free group is again a free group, of course on a different set of 
generators. For our purposes what is important is that a finitely generated 
subgroup of a free group is completely determined by a finite set of words which 
have only trivial cancellation between them. 

Essential to the group randomizer system protocols is that algorithmically 
both the word problem and the membership problems are solvable in free 
groups. That is given a free group ( )1, , nF F x x=   of finite rank n we can 
decide algorithmically whether or not a word ( )1, , nW W x x=   represents the 
identity; given two words ( )1 1 1, , nW W x x=  , ( )2 2 1, , nW W x x=   we can 
decide algorithmically whether 1 2W W=  in F; given a finitely generated 
subgroup H of F and a word W, we can decide algorithmically whether the 
element defined by W lies in H. Details on these algorithmic procedures can be 
found in [6] [8] [9]. 

3. The Group Randomizer System  

The group randomizer system is a computer program that can handle several 
elementary tasks involving finitely presented groups. It is a subset of MAGNUS, 
a large computer algebra system, developed at CAISS—the Center for 
Algorithms and Interactive Scientific Software. The program MAGNUS is 
specifically designed to handle computations and algorithmic problems in 
combinatorial group theory. At present there are various versions of the group 
randomizer, including a portable hand held version now under development. 

The scope of a particular group randomizer system will depend on the type of 
login protocol or cryptographic protocol desired. At the most basic level the 
group randomizer system has the ability to do do the following things: 

1) Recognize a finite presentation of a finitely presented group with a solvable 
word problem and manipulate arbitrary words in the alphabet of generators 
according to the rewriting rules of the presentation. In particular if the group is 
automatic the group randomizer can rewrite an arbitrary word in the generators 
in terms of its group normal form. 

2) Given a finite presentation of a group G, with a solvable word problem, 
recognize whether two free group words have the same value in the given group 
when considered in terms of the given generators of the group. 

3) Randomly generate free group words on an alphabet of any finite size. 
4) Recognize and store sets of free group words 1, , kW W  on an alphabet 

1, , nx x  and rewrite words ( )1, , kW W W  as the corresponding word in 

1, , nx x . 
5) Given a free group of finite rank on 1, , nx x  and a set of words 

1, , kW W  on 1, , nx x  solve the membership problem in F relative to 

1, , kH W W=  , the subgroup of F generated by 1, , kW W . 
6) Given a stored finitely presented group or a stored set of free group words, 

the randomizer can accept a random free group word and rewrite it as a normal 
form in the finitely presented group in the former case or as a word in the 
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ambient free group in the latter case. 
7) Evaluate a group word on a set of n n×  rational matrices. 
In the next section we show how this can be used for secure password 

verification in both directions—verifier to prover and prover to verifier. 

4. Secure Password Verification  

We now present several variations on secure password verification using the 
group randomizer. First we give an overall outline of the protocol. 

1) General Outline of the Authentication Protocol 
At a theoretical level, this protocol is a symmetric key cryptographic 

authentication protocol. Both the prover and verifier use a single private key to 
both encrypt and decrypt within the authentication process. At first, the prover 
and verifier must communicate directly, either face-to-face or by a public key 
method, to set the private shared secret. This is the model now used for most 
password/password back-up schemes. We assume that both the user and verifier 
have a group randomizer system. For security analysis, we assume that an 
adversary or eavesdropper has access to the encrypted form of the transmission 
but is passive in that the adversary will not change any transmissions. 

Step (1): The prover and verifier communicate directly to set up a common 
shared secret ( ),P G  where P is a standard password and G is a challenge 
group. Each prover’s challenge group is unique to that prover. The challenge 
group is a finitely presented group with a solvable word problem and satisfying 
the strong generic free group property (see Section 5). The password is chosen 
by the prover while the challenge group is randomly chosen by the group 
randomizer system. 

Step (2): The prover presents the password to the verifier. The group 
randomizer of the verifier presents a group theoretic “question” (see parts (2) 
and (3)) concerning the challenge group G to the prover. The assumption is that 
this “question” is difficult in the sense that it is infeasible to answer it if the 
group G is unknown. The question is then answered by the group randomizer. 
This is repeated a finite number of times. If the answers are correct the prover 
(and the password) is verified. 

Step (3): The protocol is then repeated from the viewpoint of the prover, 
authenticating the verifier to the prover. 

2) Free Subgroup Method 
The first method we present uses a free group as the basic group theoretic 

object. 
We assume that both the prover and the verifier has a group randomizer. Each 

prover has a standard password. Suppose that F is a free group on { }1, , nx x . 
The prover’s password is linked to a finitely generated subgroup of a free group 
given as words in the generators—that is the prover’s password is linked to 

1, , kW W  where each iW  is a word in 1, , nx x . The group 1, , kG W W=   
is called the challenge group. In general, k n≠ . The prover doesn’t need to 
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know the generators. The randomizer can randomly choose words from this 
subgroup and then freely reduce them. The verifier has the challenge group or 
subgroup also stored in its randomizer. 

The prover submits his or her standard password to the verifier. This activates 
the verifier’s randomizer to the prover’s set of words. The verifier now submits a 
random free group word on 1, , ky y  to the prover’s randomizer say ( )1, , kW y y . 
The prover’s randomizer treats this as ( )1, , kW W W  and then reduces it in 
terms of the free group generators 1, , nx x  and rewrites it as ( )1, , nW x x

 . 
The verifier checks that this is correct—that is ( ) ( )1 1, , , ,k nW W W W x x= 

  
on the free group on 1, , nx x . If it is the verifier continues and does this three 
times (or some other finite number of times). There is one proviso. A challenge 
word or submitted word can never be reused. The prover’s randomizer will 
recognize if a presented challenge word has been submitted previously and reject 
it. This is a further authentication to the prover of the verifier and directly 
hinders middle man attacks. 

To verify that the verifier is legitimate the process is repeated from the 
prover’s randomizer to the verifier. 

An attacker only has access to the transmitted words. Given a series of free 
group words, reconstructing the subgroup involves solving systems of equations 
in free groups. Solving such systems has been shown to be NP-hard (see Section 
6). To prevent an attacker using an already used word to gain access the group 
randomizer system allows a free group word, submitted as a challenge word, to 
be used only once. If an attacker gets access to the verifier and submits an 
already submitted word or vice versa from the prover this will red flag the 
attempt. We also suggest that if there is a previously used word, indicating 
perhaps an attack, the group randomizer should change the prover’s group. The 
beauty of this system is that this can be done extremely easily—change several of 
the words for example. Essentially this presents an essential one-time keypad 
each time the prover presents the password. Hence there is very strong security 
in this back-up system. The map i iy W→  is a homomorphism and an attacker 
can manipulate various equations in an attempt to solve. Presumably if there are 
enough equations the words 1, , kW W  can be discovered. However in section 6 
we will present a security proof based on several results in asymptotic group 
theory showing that this can not happen with asymptotic density one. 

We suggest a noise/diffusion enhancement. The prover’s challenge group 
generator words 1, , kW W  are indexed. With each use the randomizer applies 
a random permutation φ  on { }1, ,k  to scramble the indices. These 
permutations are coded and stored both in the prover’s randomizer and the 
verifier’s. These coded permutations are set at the time of initialization of the 
protocol and become part of the common shared secret. This prevents a length 
based attack by an eavesdropper since discovering for example what 37W  is, is 
of no use since it will be indexed differently for the next use. The coded 
permutation is sent as part of the challenge. 
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3) General Finitely Presented Group Method 
Rather than working with an ambient free group we can work with a given 

finitely presented group with a solvable membership problem. Let ;G X R=  
be the group. As before we assume that the group G has a solvable word problem 
and satisfies the strong generic free group property. Further, as before, we 
assume that both the prover and the verifier has a group randomizer. Each 
prover has a standard password. Suppose that { }1, , nX x x=   and F is a free 
group on { }1, , nx x . The prover’s password is linked to a finitely generated 
subgroup of G, again given as words in the generators X. That is the prover’s 
password is linked to 1, , kW W  where each iW  is a word in 1, , nx x . As 
before, k n≠ . The randomizer can randomly choose words from this subgroup 
and then reduce them via the finite presentation. The verifier has the group or 
subgroup also stored in its randomizer. 

The remainder of the procedure is exactly the same as in the free group case. 
The prover submits his or her standard password to the verifier. This activates 
the verifier’s randomizer to the prover’s set of words. The verifier now submits a 
random free group word on 1, , ky y  to the prover’s randomizer say 

( )1, , kW y y . The prover’s randomizer treats this as ( )1, , kW W W  and 
rewrites it as ( )1, , nW x x

 . The verifier checks that this is correct, that is 
( ) ( )1 1, , , ,k nW W W W x x= 

  with equality this time in the group G. If it is 
true then the verifier continues and does this three (or some other finite number) 
of times. There is one proviso. The verifier submits a word to the prover only 
once so that a submitted word can never be reused. The prover’s randomizer will 
recognize if it has ( this is a verification to the prover of the verifier). 

To authenticate that the verifier is legitimate the process is repeated from the 
prover’s randomizer to the verifier. 

As in the free group method, an attacker has access only to the transmitted 
words. Given a series of group words it is infeasible to reconstruct the group. 
Further, as in the free group method, a given challenge response word is to be 
used only once. Since we assume that the group has the strong generic free 
group property, it follows that previous challenge words cannot be used to 
discover the challenge group or subgroup of the challenge group. 

5. The Strong Generic Free Group Property  

Part of the theoretical security of the group randomizer protocols depends upon 
the strong generic free group property and asymptotic density. Asymptotic 
density is a general method to compute densities and/or probabilities on infinite 
discrete sets where each individual outcome is tacitly assumed to be equally 
likely. The origin of asymptotic density lie in the attempt to compute 
probabilities on the whole set of integers where each integer is considered 
equally likely. The method can also be used where some probability distribution 
is assumed on the elements. It has been effectively applied to determining 
densities within infinite discrete finitely generated groups where random 
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elements are considered as being generated from random walks on the Cayley 
graph of the group. The paper by Borovik, Myasnikov and Shpilrain [12] 
provides a good general description of this method in group theory. Let   be a 
group property and let G be a finitely generated group. We want to determine 
the measure of the set of elements which satisfy  . For each positive integer n 
let nB  denote the n-ball in G. Let nB  denote the actual size of nB  (which is 
an integer since G is finitely generated) or the measure of nB  if a distribution 
has been placed on the elements of G. Let S be the set of elements in G satisfying 
 . The asymptotic density of S is then  

lim n

n
n

S B
B→∞



 

provided this limit exists. We say that the property   is generic if the 
asymptotic density of the set S of elements satisfying   is one. 

This concept can be easily extended to properties of finitely generated 
subgroups, We consider the asymptotic density of finite sets of elements that 
generate subgroups that have a considered property. For example to say that a 
group has the generic free group property we mean that  

,

,
,

lim 1m m n

m n
m n

S B

B→∞
=



 

where mS  is the collection of finite sets of elements of size m that generate a 
free subgroup and ,m nB  is the collection of m-element subsets within the n-ball. 
We refer to the papers [12] and [13] for terminology and further definitions. 

We say that a group G has the generic free group property if a finitely 
generated subgroup is generically a free group. For example a result of Epstein 
[14] says that the group ( ),GL n R  satisfies the generic free group property. A 
group G has the strong generic free group property if given randomly chosen 
elements 1, , ng g  in G then generically they are a free basis for the free 
subgroup they generate. Jitsukawa [5] proved that free groups have the strong 
generic free group property. That is given k random elements 1, , kW W  in the 
free group on 1, , ny y  then with asymptotic density one 1, , kW W  are a free 
basis for the subgroup they generate. We compare this with the Nielsen-Shreier 
theorem that says that 1, , kW W  generate a free group. In the context of the 
group randomizer protocols the strong generic free group property implies that 
if ( ) ( )1 1 1, , , , , ,m k mV y y V y y    have already been presented as challenge 
words then the density is zero that a new challenge word ( )1, , mV y y  lies in 
the subgroup generated by 1, , kV V  and hence a homomorphism attack is 
nullified. 

The strong generic free group property has been extended to arbitrary free 
products of infinite groups and many other amalgams including surface 
groupsaid groups and br by Fine. Myasnikov and Rosenberger [13] and 
Carstensen, Fine and Rosenberger [15]. 
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6. Security Analysis of the Group Randomizer Protocols 

For the security analysis of the group randomizer password protocols, we make 
the security assumption that an adversary has access to the coded group 
theoretic responses. The strength of the proposed protocol is that an attacker 
must steal three things; the original password, the group randomizer and the 
challenge group. There is no access without all three. This immediately nullifies 
middelman attacks. If the adversary pretends to be the verifier to obtain the 
group words the attack is thwarted by the facts that the prover can verify the 
verifier and further if the attacker just transmits from the middle, nothing can be 
stolen since each time through a new challenge word must be used. Further the 
group randomizer has an infinite supply of both subgroups and challenge 
responses that are done randomly. In addition since a challenge word can be 
used only once the protocol nullifies replay attacks. Since challenge responses 
are machine to machine there is an essential probability of zero of an incorrect 
response. The protocol shuts down with an incorrect response and hence repeat 
attacks are harmless. 

These are in distinction to answer-driven challenge-response systems where a 
prover often forgets or misspells a response. In these systems a prover is usually 
permitted several opportunities to answer. This makes these systems susceptible 
to both middleman and repeat attacks. 

There are two theoretical attacks that must be dealt with. Relative to these 
attacks, the security of the system, and hence a security proof for the protocol, is 
provided by several results in asymptotic group theory. 

The most straightforward attack is for the adversary to collect enough 
challenge words and responses. This provides a system of equations in a free 
group (or a finitely presented group)  

( )1, , , 1, , .i i ny W x x i m= =   

An adversary can then break the protocol by solving the system  

( )1, ,i i my W x x=   

to obtain the challenge group. 
A result of Lysenok [4] shows that solving such systems of equations in free 

groups (and in most finitely presented groups) is NP-hard. Hence this method 
of attack is impractical in most cases. 

A second method of attack is based on the following. The mapping i iy W→  
is a homomorphism. If a challenge word appears in the subgroup generated by 
previous challenge words then an attacker can use this to answer a challenge 
without ever solving for the challenge group. However this approach fails due to 
the strong generic free property. Each set of challenge words is a free basis for 
the subgroup they generate with asymptotic density 1. Hence as explained in the 
previous section the probability converges to zero that a new challenge word is 
in the subgroup generated by previous challenge words. 
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There are several enhancements that can perhaps improve security: 
1) Permutation Diffusion and Noise: Both the prover’s randomizer and the 

verifier’s randomizer have a fixed coded set of permutations on { }1, ,k  where 
k is the rank of the challenge group. Each presentation of a challenge word is 
accompanied by a random one of these permutations. If φ  is the presented 
permutation then the challenge word ( )1, , kW y y  is evaluated on 

( ) ( )( )1 , , kW y yφ φ . As mentioned earlier this prevents hinders attacks by an 
eavesdropper since discovering for example what 37W  is, is of no use since it 
will be indexed differently for the next use. The set of coded permutations is 
agreed upon at initialization and becomes part of the common shared secret. 

2) Short Challenge Words: In each challenge word ( )1, , kW y y , we assume 
that not all k variables are used. In actual implementation we specify that the 
number of variables t that appear in any challenge word is small relative to k the 
rank of the challenge group. For example, we may have 5 8t≤ ≤  with 256k = . 
Hence each equation that can be stolen by an attacker has only a relatively small 
number of variables. This increases the number of equations necessary to impact 
on a homomorphism solution which in turn is NP-hard to solve. 

3) Frequent Reset: We recommend that the challenge group be reset relatively 
often. Since this protocol is symmetric the rest must be done via some sort of 
direct communication as in the original initialization of the secret key. 

7. Actual Implementation of a Group Randomizer  
System Protocol  

The actual implementation of a workable group randomizer system protocol 
involves several choices of parameters and subprograms. These include 

1) The choice of the rank of the ambient free group in the free group method. 
2) An enhancement program which takes a random choice of words 

1, , kW W  in a free group F and finds a new set of words 1, , kV V  generating 
the same subgroup for which the words formed in 1, , kV V  have a great deal of 
free cancellation. This involves what is called Nielsen transformations (see [7] [8] 
[9]). 

3) The choice of parameter sizes for the lengths of the randomly chosen words. 
In an actual implementation all words in the generators will have lengths 
between a and b where a and b are to be determined. All words used as test 
logins will have lengths between c and d with c and d to be determined, The 
optimal values for these parameters must be determined. 

4) The implementation of a coded permutation system on { }1, ,k  where k 
is the rank of the challenge group and so that a coded permutation can be sent 
with each challenge word. 

5) The development of an automatic reset protocol for the challenge group. In 
an ideal situation this can be done without actually communicating the changes 
between verifier and prover—that is each randomizer system does the same 
protocol automatically when reset is called for. 
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8. Alternative Methods Using Rational Matrices  

Free groups have faithful representations in terms of rational and integral 
matrices (see [16] [17]), or integral 2 2×  matrices there is an algorithm to go 
back and forth between a free group and the corresponding matrices in its 
representation. This is explained in [16]. This can be used in several ways in 
conjunction with the group randomizer. 

First the basic free group method can be enhanced with the matrix 
representation in the following manner. We assume that the group randomizer 
has been extended to include the algorithm to go back and forth between a free 
group and ( )2,SL Z  mentioned above. Then what can be sent from verifier to 
use is an integral matirx rather than a free group word. This is then deciphered 
by the algorithm into a word in the free group. The prover’s group randomizer 
then proceeds as in the standard free group method rewriting thw word in terms 
of the stored password subgroup. Finally, this is rewritten in terms of the matrix 
representation and an integral matrix sent back to the verifier. This presents a 
further time obstacle to an attacker. 

There is a simpler variation of the whole system solely using matrices. Each 
prover is assigned a set of m m×  invertible rational matrices 1 2, , , kM M M . 
These are linked to the prover’s standard password as before. Each matrix is 
assigned a free group variable 1 1, , k kx M x M= = . As in the standard free 
group method when the prover presents a password the verifier sends a a free 
group word ( )1, , kW x x . The prover’s group randomizer evaluates this word 
on 1, , kM M  to obtain a rational matrix ( )1, , kM W M M=  . This matrix M 
is then sent back to the verifier. The verifier checks to see if the evaluation of the 
sent word is correct or not. As before to verify that the verifier is legitimate the 
process is repeated from the prover’s randomizer to the verifier. 

An attacker here sees a matrix polynomial equation ( )1, , kW x x M= . This 
must be solved for matrices 1, , kM M  in order to obtain access. For 3n ≥  
there is no factoring algorithm or solution algorithm for such equations and 
hence if k is large (or even moderately large) the equation is feasibly insolvable. 
This again present a one-time keypad type of approach. As mentioned earlier, if 
the matrices are over the reals R, the group ( ),GL n R  has the generic free 
group property. 

9. The Group Randomizer and Container Security  

Another very common security problem is container safety or container security. 
Here a container means a large shipping unit and the fear is that some 
contraband material or dangerous people will be stored or shipped via a 
container. Our contention is that the group randomizer can be used here as a 
secure lock. 

We make the assumption that the shipper is legitimate and that we are only 
interested in the main lock—that is we don’t consider the situation where a 
terrorist group saws through the center of the container. We only want to check 
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that the main lock has not been tampered with. 
We assume that the main lock has been outfitted with a group randomizer. 

When it is sealed, the group randomizer is given a finitely presented group as in 
the password case. Since the protocol is symmetric key, the group is be 
transmitted via some secure key exchange to the receiver. The main lock is set so 
that when it is opened or tampered with the group is lost. When the container 
gets to its destination, its group is checked by a group randomizer at the far end. 
This of course can be done electronically. Without stealing the group, as in the 
password case, the lock cannot be tampered with. 
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