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Abstract 
Eleven steel grades were designed to be used as metallic interconnects for Sol-
id Oxide Fuel Cells (SOFC). Low carbon, high chromium steel with different 
additives of niobium, vanadium, aluminum, molybdenum, silicon, manganese 
and titanium were produced. Phase transformation temperatures; eutectoid 
temperature (Ac1) and temperature at which transformation of ferrite to aus-
tenite is completed during heating (Ac3) were measured by L75-76 dilatome-
ter. The influence of the alloying elements on transformation temperatures 
was analyzed using MATLab. Considering the interaction between different 
alloying elements two equations for predicting Ac1 & Ac3 were obtained. The 
obtained Ac1 & Ac3 by these equations showed more compatibility than that 
obtained by traditional ones. In addition, the coefficients of thermal expan-
sion of these steel grades were detected. The influences of chemical composi-
tion and temperature on the thermal expansion coefficient were analyzed; the 
obtained equations were verified to certain extent by using several kinds of 
steels. The predicted values were in good accordance with the experimental 
results which proof the validation of calculation model. 
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1. Introduction 

Recent research results have enabled to decrease the operating temperature of 
the Solid Oxide Fuel Cells (SOFCs) from 1000˚C to 800˚C [1]. This progress has 
been made by reducing the thickness of the electrolyte [2] and improving the 
cathode electrolyte interface reaction (i.e. Triple Phases Boundaries (TPB) to In-
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ternal Diffusion (ID) mechanism) [3]. The lower operating temperature autho-
rises metallic alloys as possible candidates for interconnects [4]. Solid oxide fuel 
cells (SOFC) are environmental friendly energy conversion device with high 
efficiency and prolonged-ranging fuel utilization [5]. The thermal expansion 
coefficient (TEC) of interconnects should be around 10 - 13 × 10−6 K−1 [6] [7]. It 
was reported that the rare earth elements and their oxides can be used to de-
crease the oxidation rate [8] [9]. 

Metallic materials have higher electrical and thermal conductivities, are easier 
to fabricate, and, in general, have lower cost compared to the ceramic intercon-
nects [4] [10]. Chromium is the most important element because of the forma-
tion of chromia as protective and semiconducting layer. The presence of other 
elements could improve the characteristics of this layer, limiting the growth rate 
and the acceptable area-specific resistance (ASR), reducing the poisoning of the 
electrodes due to the oxidation gaseous species (CrO3 or CrO2(OH)2) at temper-
atures close to 1000˚C and higher [11] [12], but also observed at lower tempera-
tures due to the severe operation conditions, such as the presence of water vapor 
[11] [12] [13] [14] [15]. The formation of a protective, single-phase chromium 
layer requires chromium content of approximately 17% - 20% [10] [16]-[21], 
depending on the temperature, surface treatment and minor alloying additions. 
Mn and Ti are used in a few tenths of the percent to improve the oxidation re-
sistance. Mn tends to form a Cr-Mn spinel on the external surface layer to de-
crease the formation of volatile Cr species [10] [11] [17] [22] [23] [24]. 

Although the influences of chemical composition on transformation temper-
atures have been studied since the 1960s and several equations suitable for dif-
ferent situations were deduced by analyzing the corresponding data of hundreds 
types of steels [25] [26] [27], these classic equations were not high precise and 
not effective, as these analyses were too general and many types of steels were 
involved. Furthermore, as these analyses were mainly multiple linear regressions, 
the interactions of the alloying elements were seldom considered. In view of 
these facts, the phase transformation temperatures of SOFCs steel were studied 
systematically in this research. Two equations were obtained to predict Ac1 and 
Ac3 considering the effect of chemical compositions. The predicted Ac1 and Ac3 
by designed equations are compared with the traditional ones.  

In the case of SOFCs steel, small thermal expansion is required because higher 
coefficients always mean higher stresses during the periodic process of heating 
and cooling. Generally, coefficients of thermal expansion of steel will increase 
along with the increase in the total content of the alloying elements. The influ-
ences of the interactions of the elements on the coefficient are more complicated. 
Therefore, the thermal expansion coefficients of the samples at annealed state 
are also measured. Model has been established to predict the thermal expansion 
coefficient as a function of chemical composition and temperature. The novelty 
of this work; the effect of the interaction combination among different alloying 
elements and/or temperature on Ac1, Ac3 and thermal expansion coefficient was 
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taken into consideration. 

2. Experimental 

Eleven developed ferritic stainless steel (SOFCs) with different refractory alloy-
ing elements additives were melted in induction furnace of capacity 10 kg and 
cast in sand mold. Complete chemical analysis has been carried out for all cast 
steels. The cast steels were normalized at 1000˚C for 4 hours, followed by open 
radial forging. Ingots with square diameter 65 mm were hot forged to about 35 
mm square. The steel were reheated up to 1200˚C and hold for 2 hours before 
start forging. Starting forging temperature was 1150˚C while forging process was 
ended at temperatures 950˚C.  

Thermal expansion measurements were carried out with L75-76 dilatometer. 
The specimens were prepared by machining from each steels to form a rectan-
gular shape with the dimensions (3 × 3 × 30 mm) and polished through 600 grit 
prior to testing. Ac1 & Ac3 are estimated from the expansion curve against the 
temperature. The change in coefficient of thermal expansion was recorded dur-
ing heating of the sample from room temperature to 1000oC and cooling from 
1000 to 500oC. Two square matrices—of 10th degree—were designed as func-
tion of alloying elements and measured Ac1 or Ac3. Also, High order square 
matrix was designed between the alloying elements, thermal expansion coeffi-
cient at each temperature. MATLab was used to solve these higher order matric-
es to get Ac1, Ac3 and thermal expansion coefficient as function in alloying ele-
ments (for Ac1 and Ac3) and temperature (Thermal expansion coefficient). 

3. Result and Discussion 

The chemical composition of developed SOFCs ferritic steel grades are listed in 
Table 1. With L75-76 dilatometer, the transformation temperatures Ac1 & Ac3 
of the investigated steels were measured, and the results are shown in Table 2. 

The data listed in Table 1 and Table 2 was analyzed using MATLab. The rela-
tionships between the chemical composition and phase transformation temper-
atures, Ac1 and Ac3, were studied, where two corresponding equations were 
deduced as follows: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
( ) [ ]

2

Ac1 45791.55* C% 150.551* Si% 1385.216* Mn% 27.208* Cr%

          495.9697* Mo% 700.922* Nb% 39115.62* V%

          982.165* Mn% 1606.56* Cr% * C%

          7448.37* Nb V Mo % * C%

= − + −

+ − +

− −

− + +  

 (1) 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
( ) [ ]

2

Ac3 43732.4* C% 161.931* Si% 1294.837* Mn% 25.4274* Cr%

          484.8949* Mo% 606.577* Nb% 38400.17* V%

          923.807* Mn% 1509.54* Cr% * C%

          7417.06* Nb V Mo % * C%

= − + −

+ − +

− −

− + +  

 (2) 

From Equations (1) & (2), it can be seen that, the carbon has a positive effect  
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Table 1. Chemical composition of SOFCS steel grades, wt%. 

Heat No. C Si Mn Cr Mo Al Nb Ti V 

1 0.060 2.00 0.62 33.01 0.052 0.0001 0.0040 0.0037 0.043 

2 0.079 0.35 1.55 25.16 0.060 0.0005 0.0029 0.0031 0.029 

3 0.177 0.37 0.08 23.43 1.150 0.0167 0.0051 0.0032 0.018 

4 0.065 1.13 0.08 22.11 0.049 0.0072 0.0057 0.0029 0.021 

5 0.067 0.29 0.14 25.94 0.050 0.0256 0.0020 0.0781 0.024 

6 0.101 2.20 0.85 23.30 0.906 0.0212 0.6190 0.0602 0.036 

7 0.055 1.05 0.13 25.71 0.909 0.0105 0.0303 0.0083 0.024 

8 0.078 1.25 0.83 28.81 0.043 0.0105 0.0076 0.0923 0.028 

9 0.063 2.64 0.27 30.46 0.052 0.6550 0.0004 0.0107 0.042 

10 0.051 0.43 0.17 27.13 0.054 1.5700 0.0044 0.0067 0.026 

11 0.076 0.38 1.41 25.10 1.160 0.0217 0.0026 0.0032 0.025 

 
Table 2. Measured transformation temperatures of the investigated steels, ˚C. 

Heat No. Ac1 (˚C) Ac3 (˚C) 

1 520 720 

2 560 650 

3 500 720 

4 680 840 

5 530 640 

6 500 610 

7 480 780 

8 480 630 

9 460 610 

10 480 720 

11 480 700 

 
on increasing both Ac1 & Ac3. But in presence of Cr, Nb, V and Mo; carbon will 
cause decreasing in both Ac1 & Ac3. On the other hand, Si, Cr and Nb have a 
tendency to lower Ac1 & Ac3 but Mo and V have a significant effect in increas-
ing both Ac1 & Ac3. Meanwhile Mn has a special effect as its effect is the sum of 
two opposite effect; the first is positive one which related to the manganese con-
tent of the metal to the power one while the second effect related to the manga-
nese content of the metal to the power two. This means that Mn might increase 
or decrease Ac1 & Ac3 depending on its content in steel. Generally, within the 
range of this study, V and Cr are the main alloying elements that affected phase 
transformation temperatures, whereas, Mn, C, Mo, and Si were the less impor-
tant ones. 
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The coefficients of thermal expansion (α) of annealed SOFCs steel grades at 
different temperatures are listed in Table 3. On the basis of the data listed in 
Table 1 and Table 3, the influences of chemical composition and temperature 
on the thermal expansion coefficient of different steel grades were studied, and 
an equation was deduced to predict the thermal expansion coefficient as a func-
tion of alloying elements and temperature as given in Equation (3) 

( )( )
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
( ) [ ]

6Thermal Expansion *10

240* C% 1.99* Si% 0.489* Mn% 0.249* Cr% 5.41* Mo%

  3.63* Al% 7.13* Cr% * C% 62.9* Mo% * C%

  66.3* Nb Ti V % * C% 0.004416*T 3.532468

α −

= + + + +

− − −

− + + + −  

 (3) 

From Equation (3), it can be noticed that: Mn, Si, Mo, Cr and C have a ten-
dency to increase α, but the increasing effect is restrained by the presence of Al 
and carbides of Mn, Nb, Mo, Nb, Ti, V . At the same time the temperature has 
small effect on increasing coefficient of thermal expansion. 

In this section, the calculated thermal expansion by Equation (3) is compared 
by that obtained by applying the traditional Equations (4)-(5), which were given 
by Andrews [20] [21] and modern Equations (6)-(7) given by XIE Hao-jie [28]: 

[ ] [ ] [ ]
[ ] [ ] [ ]

Ac1 723 10.7* Mn% 16.9* Ni% 29* Si

          16.9* Cr 290* As% 6.38* W%

= − − +

+ + +
                    (4) 

[ ] [ ] [ ]
[ ] [ ] [ ]

1/2Ac3 910 203* C% 15.2* Ni% 44.7* Si%

          104* V% 31.5* Mo% 13.1* W%

= − − +

+ + +
                 (5) 

[ ] [ ] [ ]
[ ] [ ] [ ]2

Ac1 36.57605* Mn% 6.279322* C% * Cr%

          74.38445* C% * V% 51.62571* Mn% 858.9063

= −

− − +
        (6) 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

Ac3 777.1057 52.85982* C% * Cr% 10.23115* Cr% * Mo%

         72.39112* V% 2 26.68782* Mo% * V%

= + −

+ +
   ( 7) 

 
Table 3. Experimental result of thermal expansion coefficients of the steels (X 10−6/˚C). 

Heat No. 30˚C 100˚C 200˚C 300˚C 400˚C 500˚C 600˚C 700˚C 800˚C 

1 9.2 10.4 10.93 11.37 11.55 11.65 11.66 12.14 12.66 

2 9.0 10.57 10.99 11.45 11.66 11.73 11.65 11.98 12.33 

3 8.99 10.62 11.25 11.69 11.85 11.81 11.62 11.88 12.55 

4 8.62 10.73 11.42 11.91 12.21 12.44 12.62 12.83 13.04 

5 8.81 10.84 11.83 12.38 12.57 12.64 12.51 12.83 13.25 

6 8.67 10.34 10.97 11.46 11.67 11.73 11.67 11.97 12.34 

7 8.81 10.33 10.82 11.30 11.53 11.62 11.52 11.81 12.08 

8 8.79 10.32 10.77 11.23 11.40 11.49 11.34 11.65 12.09 

9 9.19 10.65 11.24 11.71 11.86 11.74 11.60 11.95 11.88 

10 8.70 10.39 11.07 11.57 11.76 11.77 11.62 11.92 12.56 

11 8.75 10.32 10.80 11.26 11.47 11.60 11.52 11.72 12.82 
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It should be mentioned that Equation (4) and Equation (5) were obtained by 
considering the influence of every single alloying element on the corresponding 
phase transformation, temperature only, whereas, Equation (6) and Equation (7) 
were deduced with consideration of the interaction of the alloying elements. 

On the basis of the chemical composition of different steel grades as listed in 
Table 1, the phase transformation temperatures (Ac1 & Ac3) of the steels were 
calculated using Equations (1)-(2) and Equations (4)-(7). The calculated values 
of both Ac1 and Ac3 are listed in Table 4 and represented in Figures 1-2 re-
spectively. 
 

 
Figure 1. Variation between the measured Ac1 values with the estimated 
values of the authors (Equation (1)), Andrews [20] [21] (Equation (4)) and 
XIE Hao-jie [28] (Equation (6)). 

 

 
Figure 2. Variation between the measured Ac3 values with the estimated 
values of the authors (Equation (2)), Andrews [20] [21] (Equation (5)) and 
XIE Hao-jie [28] (Equation (7)). 
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Table 4. Validity of calculated phase transformation temperatures with experimental results. 

Heat No. 
Ac1 Ac3 

Measured Equation (1) Equation (4) Equation (6) Measured Equation (2) Equation (5) Equation (7) 

1 520 520.0 1332 846 560 560.0 956 864 

2 580 580.0 1142 777 630 630.0 874 866 

3 570 570.0 1129 834 620 620.0 879 721 

4 820 820.0 1129 851 830 830.0 913 842 

5 610 618.1 1168 850 630 662.7 874 856 

6 580 580.0 1171 835 610 610.0 976 686 

7 540 529.1 1187 852 580 553.3 941 613 

8 540 540.0 1237 838 580 580.0 913 884 

9 500 500.3 1311 850 530 530.2 983 862 

10 520 520.0 1192 853 560 560.0 888 835 

11 560 550.0 1143 794 580 580.0 910 581 

 
It can be noticed that as illustrated in Figures 1-2, the values obtained by Eq-

uations (6)-(7) are more close to the measured one than that obtained by Equa-
tions (4)-(5). This is because Equations (6)-(7) take into consideration the inte-
raction between the elements. On the other hand, the values calculated by the 
current work, Equations (1)-(2), are more consistent with the experimental val-
ues than that obtained by Equations (4)-(7).  

The measured thermal expansion coefficients of the investigated annealed 
SOFCs steel grades were compared with that estimated by Equation (3) which 
designed by current work and Equation (8) which designed by XIE Hao-jie [28]. 
The measured and estimated values of thermal expansion coefficients are given 
in Table 5. 

( )
[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] 2

Thermal Expansion Coefficient

0.530592* Si% * V% 0.696172* Mn% * Mo%

  0.173824* Cr% * Mo% 0.001401* Cr% *T

  0.001966* V% *T 0.000005T 11.8656

α

= − +

− +

+ − +

           (8) 

It can be noticed that, for the steels tested in this experiment, the predicted 
values by current work equation, Equation (3), are more consistent with the ex-
perimental values than that obtained by Equation (8). This may be due to Equa-
tion (3) take into consideration the effect of the carbon and Aluminum. 

4. Conclusion 

It is difficult to build up equation to predict Ac1, Ac3 and thermal expansion 
coefficient for a wide range of chemical compositions of different steel grades. 
But it is possible to build up Equations to predict Ac1, Ac3 and coefficient of 
thermal expansion for limited chemical composition range for certain steel  
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Table 5. Thermal expansion coefficients of the steels (X 10−6/˚C), measured, expected by Equations (3) & (8).  

Heat No.  30˚C 100˚C 200˚C 300˚C 400˚C 500˚C 600˚C 700˚C 800˚C 

1 

Measured 9.2 10.4 10.93 11.37 11.55 11.65 11.66 12.14 12.66 

Equation (3) 9.26 9.57 10.01 10.45 10.89 11.34 11.78 12.22 12.66 

Equation (8) 12.93 16.13 20.61 24.99 29.28 33.46 37.54 41.53 45.41 

2 

Measured 9.0 10.57 10.99 11.45 11.66 11.73 11.65 11.98 12.33 

Equation (3) 8.94 9.24 9.69 10.13 10.57 11.01 11.45 11.89 12.34 

Equation (8) 12.72 15.14 18.52 21.81 24.99 28.07 31.05 33.93 36.71 

3 

Measured 8.99 10.62 11.25 11.69 11.85 11.81 11.62 11.88 12.55 

Equation (3) 9.17 9.48 9.92 10.36 10.80 11.24 11.68 12.12 12.57 

Equation (8) 8.23 10.48 13.62 16.65 19.59 22.42 25.16 27.80 30.33 

4 

Measured 8.62 10.73 11.42 11.91 12.21 12.44 12.62 12.83 13.04 

Equation (3) 9.64 9.95 10.39 10.83 11.27 11.72 12.16 12.60 13.04 

Equation (8) 12.59 14.72 17.67 20.52 23.27 25.93 28.48 30.93 33.28 

5 

Measured 8.81 10.84 11.83 12.38 12.57 12.64 12.51 12.83 13.25 

Equation (3) 6.89 7.20 7.64 8.08 8.53 8.97 9.41 9.85 10.29 

Equation (8) 12.73 15.23 18.72 22.11 25.40 28.59 31.67 34.66 37.55 

6 

Measured 8.67 10.34 10.97 11.46 11.67 11.73 11.67 11.97 12.34 

Equation (3) 8.94 9.25 9.69 10.13 10.57 11.02 11.46 11.90 12.34 

Equation (8) 9.67 11.91 15.04 18.06 20.98 23.80 26.52 29.14 31.66 

7 

Measured 8.81 10.33 10.82 11.30 11.53 11.62 11.52 11.81 12.08 

Equation (3) 9.78 10.09 10.53 10.97 11.41 11.86 12.30 12.74 13.18 

Equation (8) 8.95 11.43 14.88 18.24 21.50 24.65 27.71 30.67 33.52 

8 

Measured 8.79 10.32 10.77 11.23 11.40 11.49 11.34 11.65 12.09 

Equation (3) 8.69 9.00 9.44 9.88 10.32 10.76 11.21 11.65 12.09 

Equation (8) 12.87 15.65 19.54 23.33 27.02 30.62 34.11 37.50 40.79 

9 

Measured 9.19 10.65 11.24 11.71 11.86 11.74 11.60 11.95 11.88 

Equation (3) 8.47 8.78 9.23 9.67 10.11 10.55 10.99 11.43 11.87 

Equation (8) 12.82 15.77 19.90 23.92 27.85 31.67 35.40 39.02 42.55 

10 

Measured 8.70 10.39 11.07 11.57 11.76 11.77 11.62 11.92 12.56 

Equation (3) 0.95 1.26 1.72 2.14 2.59 3.03 3.47 3.91 4.35 

Equation (8) 12.75 15.37 19.02 22.58 26.03 29.39 32.65 35.80 38.86 

11 

Measured 8.75 10.32 10.80 11.26 11.47 11.60 11.52 11.72 12.82 

Equation (3) 9.43 9.74 10.19 10.63 11.07 11.51 11.95 12.39 12.83 

Equation (8) 8.99 11.41 14.78 18.05 21.22 24.30 27.27 30.14 32.91 
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category. For SOFCs steel grades, within range of chemical compositions (0.0506% 
- 0.101% C, 0.354% - 2.2% Si, 0.0808% - 1.55% Mn, 25.1% - 33.01% Cr, 0.0427% 
- 1.1% Mo, 0.0001% - 1.5% Al, 0.0004% - 0.0923% Nb and 0.0177% - 0.0433% V) 
Ac1 and Ac3 Eqns. were deduced as a function in chemical composition. It could 
be concluded also that, coefficient of thermal expansion can be predicted as a 
function in chemical composition and temperature. 
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