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Abstract 
A temporal multiscale hybridization method is presented that carefully 
couples coarse scale gyrokinetic models with exact charged particle solution 
trajectories (that is, with full phase information) in a magnetic field. The ap-
proach is based on the careful approximation of a sum, generally employed 
for time-parallel (TP) computing applications. While the hybridization me-
thod presented is highly parallelizable, a computational efficiency gain is seen 
from considering serial computations only. A complete numerical method is 
only presented for the aforementioned charged particle application, however, 
the general approach depicted likely has relevance to a wide swath of chal-
lenging multiscale/multiphysics problems. Additionally, the approach has ob-
vious relevance to TP computing applications (such as variable selection on 
which to perform TP calculations and fine scale sampling strategies). 
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1. Introduction 
1.1. Motivation and Objectives 

For the modeling of many physical systems, the most detailed and accurate 
means of simulation may be too computationally expensive, and alternatitve 
approaches, which provide a less accurate and less detailed solution at a much 
lower computational cost have been developed. Such model pairs are many, and 
include fluid equations as an approximation to kinetic equations (such as the 
Vlasov equation) [1] [2] and complexity reduction techniques for collisional- 
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radiative physics [3]. Construction of approximate solutions, such as these, has 
been done for eons for some types of problems and includes such approaches as 
a perturbation analysis of an equilibrium state. More recently, general frameworks 
for constructing coarse solutions for more challenging types of problems have 
been developed [4] [5] which are referred to as multiscale methods. The goal of 
these multiscale methods is to indirectly incorporate information from a fine 
scale model in a way that produces a good approximation for only the macroscale 
variables. 

Hybridization methods assume that a means of achieving a coarse appro- 
ximation already exists and aim to use both this coarse approximation and the 
fine solution, in a more substantial way than multiscale methods, to accurately 
model both the micro and macro scales. Ideally, the multiscale hybridization 
should achieve a level of accuracy that is not possible from the coarse model 
alone at a lower computational cost than what is possible using the fine scale 
model. Much of the effort in hybridization has been on schemes that switch 
between coarse and fine propagators in different parts of the space-time domain 
with a focus on proper interface conditions [2] [6]. However, this needs not be 
the only way that hybridization is performed, and this manuscript considers a 
different means of mixing coarse and fine propagators to achieve the goals of 
accuracy and low computational cost.  

In the simplest hybridization case, the coarse and fine propagators act on data 
that is either the same or trivial to convert. But, for many important cases, there 
is a nontrival scale difference between the coarse and fine propagators. The 
hybridization is then referred to as multiscale [7], and some of the terminology 
from multiscale methods, which is summarized in Section 1.2, is appropriate 
even though the desired outcome of applying a multiscale hybridization remains 
the same as that of a hybridization, i.e. a low cost and accurate simulation.  

Time-parallel methods are designed to produce an accurate solution by 
mixing coarse and fine propagators, but for this type of an approach, it is 
generally taken as a given that the total computational cost will be higher than 
simply running the fine scale solution. A “wall clock” speed up is achieved only 
through parallel computing. The most common type of TP method is the so 
called Parareal [8], and variants of Parareal that are designed to work for 
multiscale problems have been developed [9] [10] [11]. 

The method presented here aligns with the goals of a hybridization; there is no 
parallel computing. But, the reason that TP methods are mentioned in this 
Section and in more detail in Section 1.4 is that the numerical methods 
employed to generate the proposed hybridization draw heavily from them. The 
base equation that is transitioned into a multiscale context is not Parareal, as in 
[9] [10] [11] [12], but a related TP equation, and further development is 
required to improve the “wall clock” speed of the computations as discussed in 
Section 1.6. Section 1.7 describes the specific physical problem that the proposed 
hybridization, which we refer to as the hybridization by TP approximation, will 
be applied to and Section 1.7.4 presents the application details. In Section 3, the 
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accuracy and serial computational cost of the proposed hybridization is compared 
against the more common temporal hybridization achieved by switching between 
coarse and fine propagators on the time domain. 

1.2. Multiscale Methods Terminology 

In general terms, the basic ingredients needed for a multiscale method are 1) the 
selection of a fine propagator,  , which advances fine scale, or microscale, 
variables u, 2), the selection of a coarse propagator  , which advances the 
coarse, or macroscale, variable U, 3) the selection of a compression operator, Q, 
to convert data to the macroscale, 4) and the selection of a reconstruction 
operator, R, which converts data to the microscale [4]. The compression and 
reconstruction operators satisfy: 

( )
( )

U Q u Qu

u R u RU

= ≡

= ≡                         
(1) 

The brackets are often not written for simplicity [4] and this convention is 
followed with other operators throughout the manuscript as well. 

For the current purposes, attention is restricted to differential equations (DEs) 
of the general form: 

( )d
d
u f u
t
=

                          
(2) 

where : fDu →   and : f fD Df →  . This equation is typically solved 
sequentially by repeatedly applying a fine propagator  : 

( ) ( )( ) [ ] ( )( ) [ ] ( ), ,, , t s t su t s u s t s u s u− = ≡ ≡  
           

(3) 

for t s> . While the notation of Equation (3) is not standard for serial 
propagators, the TP equations in Sections 1.4, 1.5, and 1.6 can be written more 
succinctly in this way. Analogous to Equation (3), on the coarse scale, we have 

( ) ( )( ) [ ] ( )( ) [ ] ( ), ,, , t s t sU t s U s t s U s U− = ≡ ≡  
           

(4) 

It is assumed that the coarse propagator of Equation (4) attempts to model the 
same general physics as the fine propagator of Equation (3) but with only an 
approximation of the coarse scale variables. The additional microscale 
information can be inferred from the macroscale variables and coarse 
propagator, though it generally cannot be determined with sufficient accuracy. 
While inaccurate microscale information may not be of interest for multiscale 
methods, it may be still be accurate enough that it can be corrected using a TP 
approach [11]. A modified version of U, given by *U , contains the macroscale 
information of U along with a poor approximations of the fine scale variable that 
do not affect the propagation of the macroscale variables. A modified version of 
the compression and reconstruction operators, *Q  and *R  respectively, can 
be defined in which the reconstruction operator takes the full fine scale variables, 
u, from the last time it was available as an input: 
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( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

* * *

* * * *, 0

U t Q u t Q u t

u t R U t u R U t

= ≡

= ≡
                 

(5) 

It is these modified versions of U, Q, and R that are considered for the 
remainder of the manuscript. While playing a similar role as the standard 
general operators employed for multiscale methods, they ensure that microscale 
information is not lost, and with the inclusion of a TP equation approximation 
defined through Sections 1.4, 1.5, and 1.6, allow for an accurate modeling of 
both the macroscale and the microscale. 

1.3. Temporal Multiscale Hybridization by Propagator Switching 

The degree to which a coarse propagator is appropriate for a given physical 
simulation can be characterized by considering a coarse propagator suitability 
function, ( )( )h u t , where ( )( )0 h u t≤ , and   and   are taken to be 
equivalent when ( )( ) 0h u t ≡ , and disagree to a larger extent as h increases. A 
simple type of hybrid solution can then be defined by the multiscale propagator, 

 , which switches between   and   based on the value of h: 

[ ] ( )( ) [ ] ( )( )
[ ] ( )( )

*
d ,

d , *
d ,

if needed if
ifif needed

t t t

t t t

t t t

Q h
u t

hR

+

+

+

 <=  >


 



          

(6) 

for 0> . It is implausible in the general case to wait until the physical 
approximations associated with   are exactly met ( 0h ≡ ) as the coarse 
propagator would then likely never be used. A basic consistency criterion for 
implementing Equation (6) would be to require a set of choices, written 
succinctly as { }* *, , ,Q RΩ ≡   , to satisfy the following: 

{ }( )* *, , , :MS Q R QR IΩ = 
                   

(7) 

A better criteria for * *{ , , , }Q R   is the set HΩ : 

{ } [ ] [ ] [ ] ( )( )(
[ ] [ ] )

* * * * * *
, d d , ,0d 0

* *
[ ,0], d d ,

, , , : lim 0

0

H T t t t t t tt

tT t t t t t

Q R R Q R Q u

R Q

+ +→

+ +

Ω

− =

    

  
       

(8) 

Essentially, the above criterion for this set states that when propagating the 
coarse variables U, switching to the fine scale and propagating for a negligible 
amount of time should have a negligible effect on the final solution. Approaches 
to satisfying this condition, or one like it, have been developed for hybridization 
schemes [13]. 

The simple switching hybrid propagator,  , attempts to use the low cost 
propagator   if it will be sufficiently accurate and the higher cost propagator 
  otherwise. Determing the error of   relative to   directly by evaluating 
the two types of propagators would negate any computational speed up from 
this approach, and hence h, which is assumed to be a relatively low cost 
computation, is used as replacement. In addition to the the sensitivity of   
on h, another limitation of this type of hybridization is that it relies only on local 
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in time evalutions of the error, i.e. no attempt is made to approximate how an 
error from the selection of   will affect the solution at the end time. 

1.4. Time-Parallel Computing Background 

TP methods are a means of solving differential equations at a lower “wall clock” 
time by parallelizing computations in the time domain. They have been applied 
to surprisingly complicated physics such as plasma turbulence [14]. In this 
Section, some of the mathematics that underlies TP equations is summarized 
and two TP equations are highlighted, the standard Parareal equations and an 
alternative TP equation, that is further modified in Sections 1.5 and 1.6 to derive 
a temporal multiscale hybridization that serves as an alternative to the simple 
switching hybridization of Equation (6). 

A straightforward characterization of the local in time error of u with respect 
to a DE of the form in Equation (2), is given by: 

( )( ) ( )

( )( ) ( )

d
d

d
d

f

c

uu t f u
t

uu t c u
t

ϕ

ϕ

= −

= −
                     

(9) 

where c and f are similar but not equal. For simplicity, in this section, all 
equations are written only in terms of the fine variables u. The following Section 
1.5 describes the modifications necessary for the multiscale case. 

A simple functional, that is always non-negative and 0 when u satisfies 
Equation (2), is given by: 

[ ] ( )( ) ( )( )0

1 d
2

T
f fu u t u t tϕ ϕΦ = ⋅∫

                
(10) 

where the dot product within the integral is taken over the dimension of u, at 
every t. The 2L  inner product is: 

( ) ( ) ( ) ( )2 0
, d

T

L
h t k t h t k t t= ⋅∫                  

(11) 

and the 2L  gradient is given explicitly as [15]: 

( )2

d
d

T
f

fL
u

u
ϕ

ϕ
 

∇ Φ =  
                       

(12) 

This gradient can be used to solve a DE in parallel, though the use of other 
functional gradients produces superior results [16] [17]. One such preferred 
gradient is derived from an inner product space based on the coarse solution of 
the differential equation (CDE) at a solution approximation u: 

( ) ( )
0

d d d d, d
d d d d

T

CDE

h c k ch t k t h k t
t u t u

   = − ⋅ −   
   ∫

          
(13) 

A formula for the CDE functional gradient is found from comparing the CDE 
norm and 2L  norm. 

( ) ( )2 2, ,CDE LCDE L
u h u h∇ Φ = ∇ Φ

               
(14) 
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A weak form solution of the CDE functional gradient, holding for every ( )h t , 
is then given by: 

( )
0 0

dd d d d
d d d

T T fc c
CDE fu h t h t

u u u
ϕϕ ϕ

ϕ ∇ Φ ⋅ = ⋅ 
 ∫ ∫

            
(15) 

The finite element method is a natural choice for optimization problems [18] 
[19]. However, a direct finite element discretization of Equation (15) above 
would problematic, as it would generate symmetric operators, and this is a 
hyperbolic problem, in the sense that information should only be propagated 
forward in time. Finite element methods designed for hyperbolic problems, such 
as the Discontinuous Galerkin method [18], may be applicable. But, for the 
current purposes, a direct strong form solution is found, given by: 

( )
1 dd d

d d d

TT
fc c

CDE fu
u u u

ϕϕ ϕ
ϕ

− −     ∇ Φ =     
                   

(16) 

Allowing for the solution to be written in terms of a coarse propagator, ( )u  
(where ( ) ( )* *u R Q u=  , where   is defined to be a function of the coarse 
variables U, as in Equation (4)), we have: 

( )
[ ]

( )

[ ] [ ]
( )

0 ,

0 , ,

d d d
d d

d d d d d d d
d d d d d

t
CDE

t s

t t

s t r r sr r

uu f s s
u s

c f u f s r s
u u u u s

 ∇ Φ = − 
 

   + − −   
  

∫

∫ ∫



 

    

(17) 

Computation of the CDE gradient can be thought of as a type of propagator 
itself, as the value is only dependent on computations at previous times, though 
it is one that need not be computed serially. The functional Φ  is locally 
maximally increased, with respect to the CDE inner product, by advancing the 
solution u in the direction of the above gradient. Reversing the direction of this 
propagation and updating u can produce a maximum decrease of the functional Φ . 
The gradient descent equation, which contains an additional variable γ , such that 
( ),u t γ  should approach the fine solution as γ  is increased, is given by: 

[ ]
( )

[ ] [ ]
( )

0 ,

0 , ,

d d d d
d d d

d d d d d d d
d d d d d

t

t s

t t

s t r r sr r

u uf s s
u s

f c uf s r s
u u u u s

γ
 = − 
 

   + − −   
  

∫

∫ ∫



 

       

(18) 

With the propagators taken over discrete steps of size dt, a solution update, 
uδ , can then be written, for integers r , s , and t , with dr t= r , ds t= s , and 

dt t= t  as: 

( )
( ) ( )( )

( ) ( ) ( )

( )
( ) ( )( )

1
11 d , d0

d , 1 d

1 1

0
d , 1 d 1 d , d 1 d , d

11 d , d
d , 1 d

d
d

d d d
d d d

d
d

t t
t t

t t t t t t

t t
t t

u u u
u

u u u

u u
u

δ = −
++ =  +  

= − = −

= =
+ + +          

++  +  

= −

 
+ −  

 

−

∑

∑ ∑

s t

t s ss ss
t s

s t r t

s r s
t t r r r r

s ss s
t s




  




    

(19) 
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The first part of Equation (19), looks at independent, local differences 
between the current solution u, and the behavior of the fine propagator  , and 
propagates these differences forward in time using the coarse propagator 
derivative with respect to u. The second part of the equation goes one step 
further, looking at the differences of the fine propagator derivative and coarse 
propagator derivative. The second term can significantly add the TP scheme 
accuracy, [17], though it adds to the numerical complexity. 

Using only the first part of Equation (19) along with the additional 
approximation that the coarse propagator derivative is computed as: 

( ) ( )d
d

u u
u

≈ + −

   

                     
(20) 

leads to the following: 

[ ] ( )( )

[ ] ( )( ) ( ) ( ) [ ] ( )( )

( ) ( ) [ ] ( )( )

d ,0

1
d ,0 d ,0d , 1 d 1 d , d0

1
d ,0d , 1 d 1 d , d0

0

0 0

0

t

t tt t t t

tt t t t

u

u u

u

= −

   + +=    

= −

   + +=    

= +

−

∑

∑





T

t T

T tT t t tt

t T

tT t t tt



   

  
       

(21) 

where the coarse propagator   need not be the same as  . Convergence can 
be achieved even when   is replaced with a generic operator like a Sobolev 
Gradient [16], though a large number of iterations are required. Conversely, 
replacing   with   will maximally reduce the solution error but the 
computing cost will likely be too high in practice. 

The standard Parareal equation, denoted  , [8], is the following update in 
serial after the fine propagator has been applied in parallel on each time interval: 

[ ] ( )( ) [ ] [ ] ( )( ) [ ] [ ] ( )( ) [ ] ( )( )d ,0 d , ,0 d , ,0 d ,00 0 0 0t t t t t t t t t t t tu u u u+ + + += + −     
  

(22) 

Both Equations ((21) and (22)) produce similar accuracy in practice, but 
Equation (22) is more common as it requires fewer applications of the coarse 
propagator. We refer to [17] for more details. This drawback is not as relevant 
for the current purposes as the summand will only be sampled and some of the 
many well established approaches to approximating a sum will be relied upon. 

1.5. Time-Parallel Computing with Multiple Scales 

Time-Parallel methods that try to incorporate multiscale features generally focus 
on modifications to Equation (22). A Parareal method that incorporates 
compression and reconstruction operators into the Parareal equation is 
presented in [11]. This work explains that a modified reconstruction operator 
that incorporates fine scale information at a previous time is required for a 
sensible TP update. In [9] [10], a very efficient modified Parareal equation is 
considered for the specific case where the oscillations are linear. And lastly, for 
the class of problems where the separation of fine and coarse scale variables is 
unknown, a means of extracting the necessary phase adjustments from both the 
parallel fine propagators and a sequential propagation alongside the Parareal 
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corrections of Equation (22) is given in [12]. 
The serialization of Equation (22) is seen as having an acceptable cost for TP 

applications due to the lower computational cost of   relative to  . However, 
the serialization that is present does not make it immediately clear how to 
construct an approximation of Equation (22) that does not apply   on the 
entire time domain. In contrast, Equation (21) is simply a sum which can be 
approximated by a vast and well established number of approaches. 

With known modified compression and reconstruction operators, *Q  and 
*R , respectively, Equation (21) can be altered to account for the fact that 

propagator   only acts on the modified macroscale variables ( ( ) ( )* *u R Q u=  ). 

[ ] ( )( )

[ ] ( )( ) ( ) ( ) [ ] ( )( )

( ) ( ) [ ] ( )( )

d ,0

1* * * * * *
d ,0 d ,0d , 1 d 1 d , d0

1 * *
d ,0d , 1 d 1 d , d0

0

0 0

0

t

t tt t t t

tT t t t t

u

R Q u R Q R Q u

R Q u

= −

   + +=    

= −

   + +=    

= +

−

∑

∑





 T

t T

T tT t t tt

t T

tt t tt



   

  
 

(23) 

An alternative formulation to Equation (23), which performs the summations 
with respect to the modified macroscale variables, is given by: 

[ ] ( )( )

[ ] ( ) ( ) [ ](
( ) ( ) [ ] ) ( )( )

d ,0

1* * *
d ,0 d ,0d , 1 d 1 d , d0

1 *
d ,0d , 1 d 1 d , d0

0

0

t

t tt t t t

tt t t t

u

R Q R

Q u

= −

   + +=    

= −

   + +=    

= +

−

∑

∑





T

t T

T tT t t tt

t T

tT t t tt



   

  
         

(24) 

Equations ((23) and (24)) are only different when *Q  and *R  are nonlinear, 
which is the case for the specific application described in Section 1.7 and many 
problems of interest. Equation (24) is seen as somewhat preferable, and is the 
equation implemented for the application given in Sections 1.7 and 2, as the 
summations are performed in a natural coordinate system for describing the 
coarse solution, though not the fine. With the modified coarse variables, an 
approximation that does not run   on the entire time domain is constructed 
more easily and kinetic energy is inherently preserved as discussed in Sections 
1.6 and 2.5. 

While Equation (24) can offer a considerable improvement in accuracy 
relative to the simple switching hybridization of Equation (6), on the negative 
side, the operators *Q  and *R  are applied many more times in Equation (24) 
than Equation (6) which necessitates even more care in their selection. Ideally, 
the choice for { }* *, , ,Q R   should be in the set: 

( )( ), , , : Equation 24  is convergent as d 0,TP Q R t TΩ → →∞ 
    

(25) 

TP H MSΩ ⊂ Ω ⊂ Ω                        (26) 

1.6. A Hybridization Approach Derived From Time-Parallel 
Methodology 

The summand of Equation (24) can be written succinctly with the denotation 
( )D t : 

https://doi.org/10.4236/jamp.2018.63046


C. Lederman, D. Bilyeu 
 

 

DOI: 10.4236/jamp.2018.63046 506 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) [ ] ( ) ( ) [ ]
* *

d ,0 d ,0d , 1 d 1 d , d , 1 d 1 d ,t tt t t dt t t t dtD t Q R       + + + +       
= − 

t tT t t t T t t t
     

   
(27) 

We consider a summand interpolation function I that approximates ( )D t  at 
an arbitrary [0, ]t dt∈ T . For integers 0,1, ,= j J  and a mapping ( )τ j  from 
these integers to the time domain, an approximation of Equation (24) is: 

[ ] ( )( )

[ ]( ( )( ) ( )( ) ( )( )( )) ( )( )
d ,0

1* *
d ,0 0

0

0 , 1 , , , 0

t

t

u

R I D D D Q uτ τ τ= −

=
= +∑ 

T

t T

T t
J t




  

(28) 

A considerable computational speed up is achieved if I is constructed from 
functions whose summation is known analytically or can otherwise be easily 
obtained. A polynomial interpolation function is a standard choice, but is 
inadequate to describe the complexity of ( )D t . From Equation (27), it is 
apparent that the value of ( )D t  is determined from how the propagator   
differs from the propagator   over a single step of size dt and where these 
evaluations take place. While it is assumed that there is no easy way to 
characterize the fine propagator, the location where   is applied is 
determined solely by the coarse propagator. Hence, the coarse propagator can 
inform how the interpolation should be constructed. Section 2 details how this is 
done along with specific computational strategies including approximation of 
the sum by an integral and substitution of variables. 

A few attempts have been made to bypass performing TP computations over 
the whole domain, such as the formulation presented in [20] [21], which 
incorporates wavelets and only performs TP computation over a beginning 
portion of the time domain. An approximation of TP terms was also performed 
in previous work [17] although the time intervals over which this was performed 
were small enough that simple polynomial interpolation was feasible. 

The remaining sections of the manuscript focus on a careful implementation 
of Equations ((27) and (28)) for the specific application of modeling charged 
particle trajectories in a magnetic field. The final section of the introduction 
below, Section 1.7, defines the specific fine propagator  , and coarse 
propagator   that will be used. Section 2.1 gives the modified reconstruction 
operator, *R  and Section 2.2 the modified compression operator *Q . Sections 
2.3, 2.4, and 2.5 provide details on how the interpolation and summation of 
Equation (28) are performed. 

Lastly, it is noted that the circumstances under which a stable and accurate 
solution can be achieved for this general type of approach are a bit more 
complicated than for standard numerical methods which can be analyzed under 
the condition that d 0t → . But from the derivation of Equations ((27) and (28)), 
it can be seen that reasonable results should be expected if both of the following 
are true: 1) A pure TP method, with no approximation, can reduce the solution 
error after one iteration (see [8] [17] for some discussion of TP method 
convergence) and 2) the approximation of the TP summand can be accurately 
approximated with the chosen interpolation function. In Section 3.2, some 
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discussion is presented as to how the time parallel approximation differs from an 
exact TP calculation. 

1.7. Particle Trajectories in a Magnetic Field 
1.7.1. The Fine Scale Governing ODE 
The position and velocity of a charged particle,  

( ) ( ) 3 3
1 2 3 1 2 3, , , , , ,u x v x x x v v v= = ∈ ×  , in a magnetic field is: 

( )
( )

( )

( )( ) ( )( )
d d
d d

v tx tu
qv tt t v t b x t
m

    = =   ×                    

(29) 

where, q and m are constants and ( ) 3 3:b x →   is the magnetic field. This 
ODEs will be highly oscillatory, even in the simple case of a constant magnetic 
field. 

1.7.2. The Limitations of Standard Numerical Modeling Techniques 
Explicit methods for solving Equation (29) have stability and accuracy 
limitations that generally restrict the time step size to less than one period of an 
oscillation [22]. Implicit methods may, in theory, be stable over many periods, 
but still do not capture the oscillatory nature of the solution with any accuracy. 
A standard choice for a propagator for Equation (29) is the leapfrog scheme [23], 
which, due to its accuracy over only small time scales and full incorporation of 
the physics, is considered the fine propagator,  . 

1.7.3. Exponential Propagator 
The exponential propagator,  , is the exact solution to Equation (29) for the 
special case when the magnetic field is constant, ( )( ) 0b x t b=  and the ODE is 
linear. The scheme can be applied to non-linear magnetic fields by simply 
recomputing b at each time step. The helical trajectory of this scheme can be 
described simply by calculating the guiding center: 

( )0
0

1 ˆ
cx x b v

b
− = ×

                      
(30) 

and an orthonormal coordinate system ( )1 2 3, ,e e e e=  defined by the magnetic 
field: 

( )
( )

0 0
1

0 0

2 1 3

3 0

ˆ ˆ

ˆ ˆ

ˆ

v v b b
e

v v b b

e e e

e b

− ⋅
=

− ⋅

= ×

=                       

(31) 

In polar coordinates ( ) ( ), , , , , , ,c P p z p zP x e u u x x x v v vθ θ= = , where the drift 
direction, 3e  is aligned with polar direction, z, ( 3zv v e= ⋅ ), this propagator is 
then simply: 

[ ] ( ) ( )0 0,0 , , , , ,P p z z p pt u x b t x x tv v b t v vθ θ= + + +
        

(32) 
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One approach to creating a propagator for Cartesian variables  
( ) 3 3,x v ∈ ×  , as delineated in [24], would be through direct expansion and 
modification of the linear exponential propagator. For the current effort, the 
coarse propagator is taken to act on only on the coarse scale, or macroscale, 
variables ( ),c zU x v= , and focus is on the careful construction of the 
compression and reconstruction operators as discussed in Sections 2.1 and 2.2 
below. If only the propagation of U is considered, then the propagator   is 
simply the exact solution to the following linear ODE: 

0
d ˆ
d
d

0
d

c
z

z

x
v b

t
v
t

=

=
                         

(33) 

The robustness of the exponential propagator,  , is dependent on the 
degree of non-linearity present in the magnetic field, in contrast to more 
standard propagators like the leapfrog scheme,  , whose stability and accuracy 
is mostly dependent on the time step size, which will be limited even in the case 
of a constant magnetic field. Higher fidelity models for when the magnetic field 
is non-linear, though models that still neglect the fine scale features of the true 
rapidly oscillating particle trajectories, i.e. gyrokinetic models, can be employed 
for more accurate propagation of the coarse scale solution. 

1.7.4. Gyrokinetic Models 
Gyrokinetics generally refers to a means of solving for a charged particle’s 
trajectory in a magnetic field that neglects the precise modeling of the particle’s 
rapid orbits, and hence, avoids the time step size limitations of a direct 
implementation of Equation (29). Rather than modeling the true particle position 
( )x t , only the guiding center, ( )cx t  is solved for. As the guiding center does 

not oscillate in the magnetic field in the way that an actual particle would, the 
time step size limitations are alleviated. This approach is particularly suitable 
when the magnetic field is strong and nearly constant, and the gyro radius, px , 
is small. The coarse propagator suitability function, h, is given by [25]: 

( )( )
( ) ( ) ( )

( )

T dˆ ˆ
d

c
p c c

c

b x
x b x b x

x
h u t

b x
≡

                
(34) 

A gyrokinetic approximation is suitable for small values of h. A gyrokinetic 
model in terms of the guiding center, cx , and the drift velocity zv , and the 
phase angle, is given by [25]: 

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

2

2 2
T

ˆdd ˆ ˆ ˆ
d d

dd 1 ˆ ˆ
d 2 d

cc z
z c c c

c

cz r z
c c

c

B xx vv b x b x b xqt xb x
m

b xv v v b x b x
t xb x

 
= + × 

  

−
= −

          

(35) 

That Equation (35) only approximates Equation (29) is most apparent from 
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the fact that the b calculations are made non-locally, at cx  rather than at the 
true particle location x. This is indicative of the need for a sampling of the fine 
propagation at the true solution location for improved accuracy. It is also noted 
that additional well established terms can be added to this ODE including time 
variation in the EM field and additional applied forces [25]. 

The propagator that solves the DE of Equation (35) is referred to as the coarse 
propagator,  , and it does not suffer from the fine scale limitations described in 
Section 1.7.2. A standard high order time stepping scheme (RK4) is implemented 
for propagating the macroscale variables ( ),c zU x v= . 

2. Numerical Methods 
2.1. Reconstruction Operator 

As described in Section 1, the fine scale variables, ( ) 3 3,u x v= ∈ ×  , are 
simply the particle position and velocity in three dimensional space, and the 
coarse scale variables are ( ),c zU x v= , that is, the three position coordinates of 
the guiding center and the drift velocity. In order to facilitate the transition 
between u and U, auxiliary variables of the coarse scale are defined that are 
derived from U. Importantly, these auxiliary variables should not affect the 
propagation of U, as this could potentially introduce fine scale effects and 
adversely affect the capability for   to propagate with large time scales. 

For a static magnetic field, the kinetic energy, ξ , is simply: 

( ) ( )2 2 2 2 20 r z pv t v v v vξ = = ≡ = +
                

(36) 

where pv  is the radial velocity, 
2 2

p r zv v v= −                         (37) 

The phase angle vθ , can be approximated from the radial acceleration 
implied in Equation (35) (with the assumption that the second derivative in time 
of px  is much smaller than pv , which is consistent with Equation (34)): 

( )d
d c
v qv b x
t m
θ

ω= =
                     

(38) 

The modified macroscale variables can then be defined as ( )* , ,c zU x v vθ= . 
Though phase information is now included, vθ  is very easily off by half a 
rotation or more and reliable information about the phase can only be achieved 
by incorporating adjustments from the fine propagation. 

The remaining auxiliary variables are given by the polar variables, and can be 
calculated on the fly only when a reconstruction is needed: 

( ) ( ) ( )T d1 ˆ ˆ
2 d

d
d

0

c
c c

p
p

z

b x
x v b x b x

x
x

x
t

v
x

x
x

θ θ

θ
ω

ω

= −

=

=

=
                 

(39) 
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Computation of these auxiliary variables need not be performed until a 
reconstruction is needed. When a reconstruction is called for, these polar 
coordinates need to be paired with a coordinate system (as well as a guiding 
center, but this is propagated as a part of  ). Unlike the case of the linear 
propagator described in Section 1.7.3, the coordinate system cannot be 
considered fixed and is written as ( ) ( ) ( ) ( )( )1 2 3, ,e t e t e t e t= . While 
( ) ( )( )3

ˆ
ce t b x t= , can be computed on the fly, ( )1e t  and ( )2e t  rely on 3v∈ , 

which, after the gyrokinetic propagation, is no longer known. A solution is to 
remember the coordinate system at its last known time (assumed to be 0t = ) 
and merge it to what is known about the coordinate system at the current time, 
which is ( )3e t . This is achieved by rotation matrix M, which rotates the other 
two coordinates based on the rotation of b̂ : 

( ) ( )( ) ( )( )( ) ( )ˆ ˆ0 , 0i c c ie t M b x b x t e=
               

(40) 

With the guiding center, cx , the orthonormal coordinate system, ( )e t , and 
polar coordinate variables, pu , established, the conversion to real coordinates is 
then simply achieved by an inverse polar transform 1P− : 

( ) ( )( ) ( ) ( ) ( )( )* * 1, 0 , 0 , ,c Pu R U e P x t e t u tξ −= =
           

(41) 

2.2. Compression Operator 

If the guiding center only needed to be found a single time, a reasonable choice 
would be to use Equation (30). However, a guiding center exactly consistent with 
polar coordinates of Equations (37)-(39) is given by: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )( )

1

1

ˆ0,0,0 cos

ˆsin

c c c

z c

G x x x x x v b x t v

x x v v v b x t

ω θ θ

ω θ θ

−

−

= ≡ − + − ×

+ − −
       

(42) 

All of the computations are based on magnetic field evaluations at cx , which 
is known to the coarse propagator, to allow for a seamless transition between 
coarse and fine scales. While cx  does need to be solved for, via Newton’s 
Method, a very good initial guess is given by Equation (30), which can also be 
differentiated in place of Equation (42). 

The compression operator is then simply: 

( ) ( ) ( )( ) ( )( )* * 1 ˆ, , 0,0,0 , ,c z cU Q u x v v G v v b xθ θ
−= = = ⋅

        
(43) 

A simpler compression than the one given by Equations ((43) and (42)) results 
in error accumulation from just the variable transformations which can degrade 
the accuracy of the overall time-parallel approximation hybrid approach.  

2.3. Time Substitution 

The summand of Equation (27) oscillates nonlinearly in time. In order to allow 
for a simple interpolation of the summand, a substitution is drawn upon from 
the coarse solution geometry: 
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1d d
d dvv tω

θ

−= 
                         

(44) 

This substitution is inserted directly into the coarse and fine propagators. This 
makes the non-linear oscillations of the integrand linear, and allows for 
interpolation of the summand, radially around the guiding center and along its 
length, by standard techniques. The substitution is derived from the initial 
coarse propagator and fixed for all computations, allowing for the TP 
approximation to still compute adjustments related to the phase angle. 

2.4. Spline Solution Representation 

A coarse solution is used as an initial guess on which the TP approximation 
improves. In order to allow the TP summand to be easily and accurately 
evaluated at any θ , a spline (cubic Hermite) representation of the initial coarse 
solution is constructed. 

( ) [ ] ( )( )*
,0 0S Uθθ ≈ 

                     
(45) 

A splines interpolation was chosen for its robustness and ease of 
implementation [26]. It avoids known problems that can arise from other types 
of interpolation such as Runge’s phenomenon. 

2.5. Approximation of the TP Sum 

In order to keep the integration as simple as possible, the TP sum is 

approximated from 0 to max
4
5

Hθ = + , where H is an even number. Points of 

TP summand are to be evaluated at the 15 locations given by π
4 π

Hg hθ = +  

where { }0,1,2,3,4g ∈  and { }0,1,2h∈ . 

( ) [ ] [ ] [ ] ( )
max maxd ,, d ,,D g h Q RS Sθθ θ θθ θ θ θ θ θ++= −   

          
(46) 

Inceasing the number of points in the temporal domain where D is evaluated 
should increase the accuracy of subsequent interpolation. The number of points 
is chosen to be as small as possible while still large enough as to not add 
significant error to the overall method. 

This evaluation is the most computationally intensive part of the algorithm, 
consisting of 15 compressions, fine propagations, and expansions and 30 coarse 
propagations. Two propagations of   can likely be replaced with a single 
propagation of the derivative of   with respect to *U , [17], though this 
potential computational improvement adds another layer of complexity and 
remains future work. And, while it is not factored into the results of Section 3, 
the computation of D is, of course, trivial to parallelize. 

The basis ( ), ,g hχ θ , is composed of second order polynomial and sinusoidal 
components. 

( ) ( ) 1 2 1 2
1 1 2 2

1 2 1 2

if and1
, , , ,

if or0
g g h h

g h g h
g g h h

χ θ χ θ
= =

=  ≠ ≠          
(47) 
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The time parallel approximation is then given by: 

[ ] ( )( ) ( ) ( ) ( )( )max

4 2* *
max,0 0 0

0 , , ,g h

g h
u R S g h D g h Qθ θ

θ χ θ= =

= =
= +∑ ∑ ∫

   
(48) 

While an analytical sum of χ  is possible, an integral which approximates the 
sum with sufficient accuracy is less intensive computationally. The overall 
algorithm for obtaining   is summarized in Algorithm 1. 

3. Results and Interpretation 
3.1. Example Problems 

The first simulation is of a charged particle, trapped in a magnetic mirror, given 
by: 

( )

( )

( )

3
1 3

1 4

3
2 3

2 4

4
3

3 4

2

2

1

Cx x
b x

a
Cx x

b x
a

x
b x C

a

−
=

−
=

 
= − 

                        

(49) 

The other example is of a charge particle near a magnetic dipole (a common 
type of magnetic field in nature) with fixed magnetic moment vector m, 

( ) ( )0
5 3

3
4π

x x m mb x
x x

µ  ⋅
 = −
 
                    

(50) 

Particle trajectories for these examples are shown in Figure 1. Simulations 
were performed using 6 different schemes for both examples to assess accuracy 
and computation time (Figure 2). The simple switching hybrid method is more 
appropriate when the coarse propagator suitability function, ( )( )h u t , varies 
over several orders of magnitude; these conditions were present only for the 
magnetic mirror. For this example, there is a large area around the center of the 
magnetic mirror ( 3x  near 0) where the magnetic field is nearly constant as can 
be seen from Equation (49). In this area,   should be a good approximation 
while the fine propagator,   will be switched to automatically near the edges 
of the magnetic mirror where the field is more nonlinear. 

For the simple switching hybrid propagator,  , the parameter   was 
varied from 0= , where only the fine propagator is run, to K= , where K is 
sufficiently large to ensure all coarse propagation, to generate different accuracy/ 
efficiency tradeoffs. We also considered a slight variant of the simple switching 
hybrid method that adjusted the time step size to ensure that a coarse propagation 
was performed over an integer number of rotations (

dtvar ). This was done to 
present the best possible results as some of the error accumulated over one 
rotation cancels out when a rotation is complete. For the other methods, the time 
step size was varied. The accuracy was compared against a highly accurate “silver 
standard” solution and scaled based on the change in the silver standard solution 
over the course of the simulation. Additionally, Figure 3 presents the error of 
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the coarse gyrokinetic solution in comparison to a highly computationally 
expensive exact TP and the low computational cost TP approximation. 

3.2. Scheme Performance 
3.2.1. Coarse Propagator Performance 
The coarse gyrokinetic propagator (  , the blue line in Figure 2 and Figure 4)  

 

 

 
Figure 1. The trajectory of a charged particle in a magnetic field is shown for a magnetic 
mirror (top) and for a particle near a magnetic dipole (bottom). Simulations were per-
formed using 6 different schemes for both examples to assess accuracy and computation 
time.  
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Figure 2. Computation time was compared against error for a magnetic mirror simulation (top) and magnetic dipole simulation 
(bottom). The leapfrog scheme (F, orange) and exponential propagator (Lexp, red) achieved high accuracy at a relatively high 
computational cost. The coarse gyrokinetic propagator (C, blue) with compression and reconstruction operators, achieved mod-
erate accuracy at a low computational cost, but possessed a hard limit on its accuracy regardless of the time step 
size/computational cost. The simple switching hybrid propagator (Hsw, green) and TP approximation (Htpa, purple) both at-
tempted to bridge the divide between the coarse (C) and fine (F) propagators. The switching hybrid propagator was also run with 
a variable time step size (Hsw_vardt, cyan) to reduce error, though this had a limited effect. The same simple and direct code for 
the coarse and fine propagators was shared amongst all schemes. No parallel computing was deployed. 
 

with modified compression and reconstruction operators, which receives and 
returns microscale variables ( ) 3 3,u x v= ∈ ×  , achieved moderate accuracy at 
a low computational cost, but possessed a hard limit on its accuracy regardless of 
the time step size/computational cost. As discussed in Section 1.7.4, the guiding 
center model does not resolve the fine scale features of the true rotating particle 
and does not converge to a solution of Equation (29). 

3.2.2. Switching Hybrid Propagator Performance 
This magnetic mirror simulation seems, at least at first glance, very suitable to a  
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Figure 3. The accumulated error in both x (top) and v (bottom) is plotted for the magnetic mirror simulation (left) and dipole 
simulation (right) over a single time step. (The plots in Figure 1 and data in Figure 2 are performed over longer time intervals.) 
The error in the gyrokinetic solution is plotted in blue (-  ), a highly computationally expensive exact TP update is plotted in red 
(-  ), and the low computational cost TP approximation is marked with purple crosses (×  ). 
 

simple switching hybrid implementation (  , green line in Figure 2 and 
Figure 4), given by Equation (6), as the coarse propagator suitability function, h, 
varies over several orders of magnitude. The magnetic field becomes nearly 
constant at the mirror’s center while being more challenging toward its edges. 

The simple switching hybrid propagator produced “oscillations” as seen in 
Figure 2 and Figure 4 which signify that running   more often and   less 
often can result in more error depending on the phase angle change associated 
with a coarse step size. The simple switching hybrid propagator with a variable 
time step size (

dtvar , the cyan line in Figure 2 and Figure 4) did manage to 
damp out these “oscillations” by choosing a coarse step size that resulted in an 
integer number of rotations. Even this result does not produce strictly decreasing 
error with increased computational cost, on a small scale, for the magnetic 
mirror example as a result of h not being an exact measure of the difference 
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between   and  . On a larger scale, the two types of simple switching 
hybridizations produce similar overall results; the green and cyan curves in 
Figure 2 and Figure 4 equate to either the coarse or fine solutions at their end 
points and in between the curves bow strongly to the upper right indicating a 
long period of increasing computational cost without a substantial reduction in 
error. This is an undesirable result for a hybridization. 

3.2.3. Time-Parallel Sum Approximation Performance 
In both examples, the hybridization by TP sum approximation ( TPA , purple  

 

 

 
Figure 4. The timestep size is plotted versus error for a magnetic mirror simulation (top) and magnetic dipole simulation (bot-
tom). The timestep axis is flipped to enable a comparison with Figure 2, and for the TP approximation scheme (Htpa,purple) the 
timestep size refers to the coarse scale on which an entire TP update is performed. The data from this figure is similar to Figure 2 
for most of the schemes presented (F,(fine),orange; Lexp,(exponential propagator),red; C,(coarse),blue; Hsw,(simple switching 
hybrid),green; Hsw_vardt,(simple switching hybrid with a variable time step size),cyan), though it is more clear in this figure that 
Htpa is being shifted downward (corresponding to error reduction) from the high accuracy coarse propagator (C,blue). The shape 
of Htpa and C is qualitatively similar when accounting for this shift, though the presence of other, smaller, sources of error in the 
TP approximation (see Sections 2.5 and 3.2.3) are present.  
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line in Figure 2 and Figure 4) does seem to be able to achieve a result that is 
distinct from either the coarse or fine solutions from which it is composed. It 
offers a solution that is both more accurate than the coarse propagator is capable 
of achieving at any computational cost while being less computationally costly 
than the fine for the accuracy achieved (Figure 2). In Figure 4, it can be 
observed that the TP approximation, for a particular time step size, reduces the 
error from the high accuracy coarse gyrokinetic propagator on which it is based. 
The error introduced from the interpolation and integration steps of Section 2.5 
should be small in comparison to the error introduced from the coarse and fine 
propagators. Determining if a significant error is being introduced in this way is 
simply a matter of comparing to an exact sum, if feasible, or a higher order 
version of the basis for interpolating the summand, χ . 

4. Conclusions 

Overcoming the incongruities present between two computational models of 
different scales to develop an efficient temporal multiscale hybridization is a 
challenging problem. But a means to accomplish this was presented, for the 
specific case of modeling particle trajectories in a magnetic field, by borrowing a 
key equation from time-parallel computing methods and encompassing it in a 
suitable multiscale framework. A primary limitation of this approach is the great 
care that is required when converting between the microscale and macroscale 
variables to ensure that the error resulting from this conversion is sufficiently 
small. An additional limitation is that the solution must be stored at a few 
previous time points, rather than only the current time, though the number of 
time locations at which the solution must be found is greatly reduced from what 
is needed in pure TP applications. But the improvement in performance, in 
terms of both accuracy and computational cost, in comparison to more 
established multiscale hybridization methods, such as switching back and forth 
between fine and coarse scale propagators based on the suitability of a coarse 
model, is substantial. The proposed approach is capable of generating a particle 
trajectory with accuracy on par with the fine propagator at a computational cost 
more akin to the pure coarse propagation. 

Future work will hopefully extend the general multiscale hybridization 
approach described here to more challenging areas of study. While the TP sum 
approximation performs as expected for the charged particle trajectory examples 
presented, each type of hybridization problem has its own unique challenges, 
and the generality of this approach remains to be seen. In particular, this 
approach requires more stringent conditions for the compression and 
reconstruction operators than typical hybrid approaches, as well as a means of 
transforming the TP sum to something computationally tractable, akin to the 
substitution of the time variable presented here. These additional development 
steps may be justified for other multiscale/multiphysics problems in order to 
achieve quality results on par with those presented here. 
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Appendix 
Algorithm 1. Multiscale Hybrid TP Approximation 

1) ( ) ( )( )* *0 0U Q u=  

2) Run the coarse propagator [ ] ( )*
,0 0T U  

3) Derive a spline representation of the coarse solution (in terms of θ ), ( ) [ ] ( )( )*
,0 0S C Uθθ ≈  

4) Compute terms of the TP Sum, Equation (46), at π
4 π

Hg hθ = +  for { }0,1,2,3,4g∈  and 

{ }0,1,2h∈ . 
5) Approximate the TP Sum using Equation (48). 
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