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Abstract 

In silico analysis can be useful to infer about the horizontal gene transfer 
(HGT) as well as to deduce about the evolutionary relations of catabolic genes. 
In this study, we performed the analysis of two housekeeping genes (fabD and 
rpoD) and two catabolic genes (alkB and catA) from 12 bacterial genus usual-
ly founded in marine environments. Comparing the trees obtained from 
Bayesian Inference hypotheses of these genes with 16S rDNA sequences, we 
noted the topologies are different among housekeeping or catabolic genes 
trees comparing to 16S gene tree. The HGT may be used with the purpose to 
spread genes within bacterial community according to environmental condi-
tions in marine ecosystems. In this way, using our analysis, we concluded that 
hydrocarbons catabolism genes as well as housekeeping genes can be subject 
to horizontal gene transfers among marine bacterial communities. 
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1. Introduction 

The phylogeny of bacteria has received very attention and discussion on micro-
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bial ecology. Molecular structures and genomics sequences have been used to 
infer phylogenetic hypothesis among different organisms [1] [2] [3]. On the last 
decades, morphological characteristics ceased to be the main default to compare 
microorganisms and the improvement of molecular techniques contributed to 
new data that could help on the classification of organisms [4] [5]. Woese et al. 
(1990) [2] showed in a study based on small subunit ribosomal RNA (SSU rRNA 
16S) that the life in our planet should be divided into three primary groups of 
organisms: Bacteria, Eukaria and Archaea. However, different topologies are 
generated when phylogenetic hypotheses are made with other genes. 

In Bacteria domain the different topologies can be result of horizontal gene 
transfers (HGTs) that occur frequently in these organisms [6] [7]. Nakamura 
and his collaborators (2004) [8] revealed that considerable proportions of most 
bacterial genomes consist of horizontally acquired genes and the HGT provides 
basis for quantitatively understanding the evolution of the prokaryotic genome. 
Many events of HGT occur likely to cause deleterious effects in the chromosome 
of the host, whereas other acquisitions might be effectively neutral. However, the 
HGT that confers a selective advantage to the bacterial recipient has potential to 
spread rapidly within a bacterial population as well as mobile genetic elements 
that encode their own transfer and maintenance functions [6]. Despite of genes 
of the central cellular machinery such as replication, maintenance, transcription 
and translation which tend not to spread within a population, some housekeep-
ing genes were reported in integrative and conjugative elements [9]. 

Petroleum hydrocarbons enter the environment directly of accidents, spills 
during transportation and extraction, leakage from waste disposal or storage site 
and industrial facilities [10]. The entry of petroleum in marine environments 
receives attention because it causes many problems. Polycyclic aromatic hydro-
carbons (PAH) are present as natural constituents in crude oil and are highly 
recalcitrant. The size of the hydrocarbon molecule is inversely proportional to its 
volatility, water solution and possibility to be degraded by microorganisms [11] 
[12]. These compounds perform chronic effects on the local biota, like endocrine 
deregulation, stress, affect the competition for food, and are carcinogenic and 
other physiological effects [13] [14] [15] [16] [17]. Many hydrocarbons are very 
hydrophobic and their persistence within the ecosystem is due largely to their 
hydrophobicity and low water solubility [18]. Exposure of aquatic habitats and 
organisms to whole oil and toxic components causes acute mortality and chronic 
effects that can be felt during several years [16] [19] [20]. 

Some bacteria found in contaminated environments with oil show the ability 
to metabolize many hydrocarbons and mineralizing this organic matter [21]. 
The degradation of many hydrocarbon compounds is known to be mediated by 
plasmid encoded enzymes [22]. The bacteria known to degrade PAHs and others 
hydrocarbons have many of the genes often located on plasmids [23]. A plasmid 
may encode a complete degradative pathway or partial degradative step. Some 
plasmids may allow the host to grow on several hydrocarbons as sole carbon and 
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energy sources [24]. 
The importance of HGT is strictly related with the construction of new plas-

mids and genomes to allow the evolutionary success [25]. Bosma et al. (2001) 
[26] showed that slightly differs from homologous operons, encoding for cata-
bolic pathways have been found frequently in phylogenetically distant organ-
isms, suggesting the occurrence of extensive HGT. This work aimed demon-
strates the utility of molecular phylogenetic methods in studies of horizontal 
transfer of functional genes of crude oil degradative pathways in bacteria. 

2. Materials and Methods 

2.1. Nucleotide Sequences 

The complete nucleotide sequences of 16S rRNA genes used in present study 
(Table 1) were obtained from European Molecular Biology Laboratory—EMBL 
(http://www.ebi.ac.uk/genomes/bacteria.html) and the others sequences were 
obtained from the National Center for Biotechnology Information-GenBank 
(http://www.ncbi.nlm.nih.gov). For analyses involving the alkB and catA genes, 
12 sequences were selected (Table 1) from 12 different bacterial genus. Others 
two housekeeping genes were searched, rpoD and fabD genes (Table 2) for the 
same bacterial genus. Functionally, the 16S, housekeeping genes and catabolic 
genes are unrelated to the others. The choices were made to evaluate the phylo-
genetic relationships of these taxonomic groups and try to relate them. 

2.2. Phylogenetic Analysis 

Previously all the sequences, except of 16S rRNA, were translated into amino  
 

Table 1. Bacterial genus and NCBI accession number of rpoD, fabD, alkB and catA se-
quences used in this work. 

Bacterial Genus 
NCBI Accession Numbers 

rpoD fabD alkB catA 

Acinetobacter sp. CP001172.1 CP001172.1 CP000521.1 AF009224.2 

Arthrobacter sp. CP000474.1 CP000454.1 FJ014912.1 AJ000187.1 

Burkholderia sp. CP009147.1 CP000614.1 CP003774.1 CP001052.1 

Corynebacterium sp. CP008924.1 AP009044.1 CP003696.1 CP005959.1 

Gordonia sp. CP003119.1 CP001802.1 AB112870.1 CP001802.1 

Marinobacter sp. CP003735.1 CP003735.1 FO203363.1 FO203363.1 

Mycobacterium sp. CP008980.1 CP009100.1 CP000580.1 CP000656.1 

Nocardia sp. FO082843.1 FO082843.1 FO082843.1 AP006618.1 

Pseudomonas sp. CP006832.1 CP006832.1 CP000076.1 AE015451.1 

Ralstonia sp. AL646052.1 FP885906.2 CP001645.1 CP001644.1 

Rhodococcus sp. CP003949.1 AP008957.1 HM771646.1 AP008957.1 

Streptomyces sp. BA000030.3 CP003990.1 CP006259.1 AF277051.1 
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Table 2. Bacterial genus names and EMBL accession number of 16S rRNA sequences 
used. 

Bacterial Genus EMBL Accession Numbers 

Acinetobacter sp. CP006768.1 

Arthrobacter sp. X80742.1 

Burkholderia sp. CP000458.1 

Corynebacterium sp. CP003697.1 

Gordonia sp. CP002907.1 

Marinobacter sp. FO203363.1 

Mycobacterium sp. CP009100.1 

Nocardia sp. AP006618.1 

Pseudomonas sp. CP004061.1 

Ralstonia sp. FP885897.1 

Rhodococcus sp. CP000431.1 

Streptomyces sp. CP003990.1 

 
acid sequences for to do the aligning with Clustal W in MEGA 6.0 software [27]. 
The individuals’ phylogenetic hypothesis were performed with Baysian inference 
[28] with MrBayes 3.1 [29] to the five set of genes. To infer the tree through the 
Bayesian inference made two independent analyses with four chains each, one 
cold and three hot chains. Bayesian phylogenetic analyses were conducted by 
Markov Chain Monte Carlo simulations (MCMC) for 10 million generations. 
The likelihood was checked after burned-out 25% of the trees and to construct 
the consensus tree.  

3. Results and Discussion 

The Bayesian Inference hypotheses for the 16S gene are shown in Figure 1, 
which presents the expected pattern of genus. 

In the Figure 2 are showed the Bayesian Inference hypotheses for the rpoD 
and fabD housekeeping genes. The topologies are different among both tree and 
these with 16S gene tree. Gordonia, Nocardia and Rhodococcus are very near ge-
nus, however, appear no so much near on the rpoD tree, these genus appear in 
over half of the disrupted mycobacterial clans, suggesting relatively short-distance 
transfers of genetic material either into or out mycobacterial species [30]. The 
genus Gordonia and Nocardia are distinct only by ability of Gordonia represen-
tants may reduce nitrate, which not occur with Nocardia [31] [32].  

It is expected that molecular phylogenies based on single genes lead to appar-
ently conflicting results with alternative branches [33]. This conflict is also ob-
served in phylogenetic tree constructed from hydrocarbons catabolism genes, 
such as alkB and catA genes (Figure 3).  

The conflicting topologies shown in Figures 1-3, with very different branches, 
suggesting that the all the four genes (rpoD, fabD, alkB, and catA) were indeed 
subjected to horizontal transfer events among these bacterial genus. Yamamoto  
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Figure 1. Tree obtained by Bayesian Inference analysis from sequences of the 16S gene. 

 

 
Figure 2. Trees obtained by Bayesian Inference analysis from sequences of the rpoD (left) and fabD (right) housekeeping genes. 
 

 

Figure 3. Trees obtained by Baysean Inference analysis from sequences of the alkB (left) and catA (right) hydrocarbons catabolism 
genes. 
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& Harayama (1998) [34] suggested that the genetic distances among two house-
keeping genes may be caused by single-event mutations introducing multiple 
substitutions. Soler et al. (2004) [35] observed that exist distinct nucleotide subs-
titution rates between gyrB and rpoD sequences, so it may be a significant factor 
to driving the evolution of two housekeeping genes. In addition the possibility of 
horizontal gene transfer involving housekeeping genes not very likely, it must be 
taken into account. Because these doubts, the study of several housekeeping gene 
sequences and multilocus analysis has already been recommended for improving 
the reliability of phylogenetic inference [36] [37]. Soler et al. (2004) [35] proved 
that rpoD and gyrB housekeeping genes, independently, are excellent molecular 
makers for assessing phylogeny in the genus Aeromonas, which suggest that ho-
rizontal transfer maybe not occur between closely species, but yet may occur 
between other taxonomic levels. 

Hydrocarbon catabolism genes are largely distributed in bacteria and many of 
them are located in plasmids [38] [39] [40]. Many studies showed HGT occur-
ring between bacteria with genes involved with catabolism of distinct hydrocar-
bons and plasmids are closely related with this process [22] [41] [42], this may 
explain the divergence of topologies of trees obtained by Bayesian Inference 
analysis from sequences of the hydrocarbon catabolism and housekeeping genes. 
Polycyclic aromatic hydrocarbon (PAH) degrading bacteria are known by its 
ability of transfer horizontally these genes inside the community, one example is 
the Catechol 1,2-Dioxygenase (catA) [39] [40] [42]. 

Bacterial alkane degradation is important for the bioremediation of petro-
leum-contaminated environments since these compounds are predominant in 
crude oil [43] [44]. A number of bacteria have multiple alkane hydroxylase genes 
which proven to potentially expand the n-alkane range of the host strain [45]. 
More than 60 genus of aerobic bacteria and 5 genus of anaerobic bacteria have 
been reported to be able to degrade n-alkanes [46] [47]. Some Rhodococcus 
strains are known to contain more than one alkB homologous genes, which have 
different substrate ranges and induction styles [48] [49]. These facts corroborate 
with the ability of the alkane hydroxylase genes to be spread in the microbial 
community by HGT. 

High molecular weight hydrocarbons and the PAH caused chronic effects on 
the biota, because its recalcitrant properties, low solubility and hard to volatiliza-
tion makes it will remain a long time on the environment [50] [51]. The PAH 
may be adsorbed to particular matter in suspension on water and consequently 
deposited in the sediment, which become a contaminant reservoir, playing eco-
toxicological effects to marine biota [52] [53]. The HGT may be used with the 
purpose to spread hydrocarbon catabolism genes within of bacterial community 
to metabolyze faster the environmental contaminants in marine ecosystems.  

4. Conclusion 

The genotypic plasticity ability of the bacterial community to adapt on different 
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environments is a great evidence of the occurrence of horizontal gene transfer in 
nature. On this way, we conclude that phylogenetic tools can be useful for infer-
ring horizontal transfer events through the comparison with tree obtained by 
16S rRNA sequence analysis. In this way, hydrocarbons catabolism genes as well 
housekeeping genes can be subject to horizontal gene transfers. The spreading of 
catabolic routes genes on the bacterial community provides a great diversity of 
ecological niches. In this way, bioaugmentation strategies can consider the abili-
ty of HGT to accelerate the hydrocarbons degradation in natural environments. 
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