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Abstract 
 
In this paper, a new controller is proposed by using backstepping method for the trajectory tracking problem 
of nonholonomic dynamic mobile robots with nonholonomic constraints under the condition that there is a 
distance between the mass center and the geometrical center and the distance is unknown. And an adaptive 
feedback controller is also proposed for the case that some kinematic parameters and dynamic parameters are 
uncertain. The asymptotical stability of the control system is proved with Lyapunov stability theory. The 
simulation results show the effectiveness of the proposed controller. The comparison with the previous 
methods is made to show the effectiveness of the method in this article. 
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1. Introduction 
 
In recent years, the control problem of the nonholonomic 
systems has been widely investigated. The wheeled mo-
bile robots have become a practical benchmark of these 
systems and the hot spot of research. However, it is proved 
that such systems cannot be stabilized by use smooth pure 
state feedback controllers because nonholonomic systems 
don't satisfy the Brockett’s necessary condition of smooth 
feedback stabilization [1]. Therefore the researchers pro-
posed many control methods to meet the challenge, for 
instance, continuous time-varying feedback control laws 
[2-4]; discontinuous feedback control laws [5-7]; hybrid 
feedback control laws [8]; and optimal control laws [9- 
11]. 

The tracking control problem of the nonholonomic 
mobile robots is also an important significance in project. 
Many researchers have focused on solving the motion 
control problem under nonholonomic constraints by using 
the kinematic model of a mobile robot [12,13]. These 
methods assume that there are some kinds of dynamic 
controllers that can produce perfectly the same velocity 
which is necessary for the kinematic controller. However, 

it is difficult to design such a dynamic controller for re-
alization of a perfect velocity tracking. There have been 
a few papers where the nonholonomic kinematics contro- 
ller is integrated with the dynamic model of the mobile 
robot [14,15]. Generally speaking, it is impossible to 
obtain the exact parameters of the kinematics and the 
dynamics of robots in reality. Reference [16] developed a 
single layer neural network for real-time motion control 
of a mobile robot with unknown robot dynamics and 
unmodeled disturbance. However, the method can’t be 
applied to mobile robots with unknown kinematic pa-
rameters. In reference [17], an adaptive tracking control-
ler was proposed when both dynamic and kinematic 
model of the mobile robot have unknown parameters, but 
the system controller did not consider the external dis-
turbance. In reference [18], the external disturbance was 
considered, but the distance between the mass center and 
the geometrical center of the model of the mobile robot 
was known. In reference [19], the trajectory tracking 
control problem for the dynamic model of a non-
holonomic mobile robot is discussed even in the pres-
ence of unknown parameters and bounded uncertainties. 
However, these methods did not consider the unknown 
kinematic parameters. *This paper is supported by the National Natural Science Foundation of

China, No. 60874002, and the Key Project of Shanghai Education
Committee, No. 09ZZ158 and the Key Project of Shanghai, No.S30501.
The Fourth Phase of the Projects of Construction of upland with Elec-
trical and Automation from Shanghai Education Committee. 

In this paper, a torque controller is proposed for a 
nonholonomic dynamic mobile robot which has a un-
known distance between the mass center and the geo-
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metrical center. First, a kinematics controller is proposed 
to make the error between the virtual velocity and the 
actual velocity converge zero. Second, a torque is pro-
posed by using backstepping method and adaptive 
method to make the designed velocity converge to the 
virtual velocity which is designed in kinematics contro- 
ller previously. Using Lyapunov method, the control 
system is uniformly asymptotically stable. Lastly, an 
example is provided and the simulation results demons- 
trate the feasibility and efficiency of the proposed meth- 
od. The comparison with the previous methods is made 
to show the advantages of the method in this article. 
 
2. Description of the Problem 
 
2.1. Description of Kinematics 
 
We consider the mobile robot with two actuated wheels, 
which is shown in Figure 1. The geometrical center of 
the mobile robot is C, which is the midpoint of the two 
actuated wheels. The mass center of the mobile robot is 
M, and the distance from M to C is d, (x, y) is the coor-
dinate of M in the world coordinate system {O, X, Y}, θ 
is the heading angle of the mobile robot, which is posi-
tive for anticlockwise rotation. R is the distance from the 
geometrical center to the center of actuated wheels of 
robots, r is the radius of the actuated wheels. 

It is assumed that the mass center and the geometrical 
center of the robot are not coincident, which is very pos-
sible in actual situation. Assume that the wheels purely 
roll without slipping, the nonholonomic constraints can 
be expressed as: 

cos sin 0y x d                  (1) 

Then the kinematic description of the robot can be ex-
pressed by: 
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where υ is the straight line velocity and ω is the angular 
velocity of the robot. 

Equation (2) is represented by the matrix as follows: 

( )q S q V                  (3) 
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Taking the transformation as follows: 
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Figure 1. The model of mobile robot with two actuated 
wheels. 
 

Then the kinematics description is transformed as fol-
low: 
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Because (5) is an orthogonal transformation, which 
doesn’t change the value of modulus, it is concluded that 
the tracking error of original model converges to zero so 
long as the tracking error of the new one converges to 
zero. Suppose that the reference kinematics model is 
given as follows: 
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where r  is the ideal straight line velocity and r  is 
the ideal angular velocity of the robot. 

The tracking error of system is given as follows: 

1 1 1r

2 2 2

3 r

p

e Z Z

e Z Z

e  

 

r

 
        
     

e               (8) 
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1 1r r r( ) ( )

e Z Z Z Z d d

e Z d

    
    

      
     

 

)

 

Therefore, 
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2.2. Description of Dynamics 
 
When the d is known, the common tracking problem is to 
design velocity control inputs υ and ω in order to make 
(10) asymptotically stable. However d is difficult to be 
precisely known in fact. With d is unknown, this article 
gives an adaptive tracking controller in the third section. 
In engineering practice, it is more realistic to formulate 
the nonholonomic control problems at dynamic levels, 
where the torque or force are chosen as control inputs. 

The dynamics description of the robot is [14]: 

d( ) ( , ) ( ) ( ) ( ) ( )      Tq τ τ   M q q C q q q F G q B q A q  

              (11) 

( ) 0A q q                  (12) 

where q is generalized coordinates, and is a sym- 
metric, positive definite inertia matrix,  is the 
centripetal and Coriolis matrix, 

( )M q
( , C q q)

( )F q

( )

 denotes the sur- 
face friction,  is the gravitational vector, τd de- 
notes bounded unknown disturbances including unstruc- 
tured unmodelled dynamics, 

( )G q

B q is the input transfor- 
mation matrix, τ = (τ1, τ2), τ1, τ2 is the torque applied to 
the right and left wheels,   is the vector of constraint 
forces,  is the matrix associated with the con-
straints. Considering the mobile robot under the non-
holonomic constraints, we can get as follows: 

( )A q

(A q)

 ( ) sin cos d   A q          (13) 

From (3) and (12), we have 

( ) ( ) 0A q S q                (14) 

Differentiating both sides of (3), substituting it into 
(11) and pre-multiplying both sides by T ( )S q , one ob-
tains 

 T T T T T T
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(15) 
Giving TM S MS ,  T C S MS CS ,  

T T T
d d, , ,   F S F G S G τ S τ B S BT ,  

then (15) can be transformed as follow: 

d    MV CV Bτ G F τ          (16) 

According to [14], the matrice of dynamic Equation 
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where I is inertia moment of the robot, m is mass, R is 
the distance from the geometrical center to the center of 
actuated wheels of robots, r is the radius of the actuated 
wheels.  

Let VC= (υC, ωC)T be the virtual control velocity of 
kinematics system (10). Assume that the velocity track-
ing error is 

   TT

1 2, ,C C          η V V C   (17) 

Substituting (17) into (16) and using the linear prop-
erty of inertial parameters of robot, we obtain 

d    Mη Cη Bτ Yφ F τ        (18) 

where 

C Yφ MV CV
C             (19) 

φ  is the inertial parameter vector of robot, e.g., inertial 
moment and mass, Y is a known matrix having nothing to 
do with the inertial parameter  of robot. By calculat-
ing, one obtains as follow: 
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In actual motion, surface friction vector  F q  and 
disturbances vector τd are bounded by a known function. 
Therefore  F q  and dτ  are also bounded by a known 
function. It could be assumed that 

  d , F q τ N q q            (20) 

where  ,N q q  is a known function. 
The dynamic tracking problem of robots is to design a 

control force or a torque  in order to make closed- τ
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loop system (10) and (18) be asymptotically stable. This 
problem will be discussed in next section. 
 
3. Adaptive Controller Design 
 
3.1. Adaptive Kinematic Controller Design 
 
To make the error of equation (10) converge zero, as-
sume that  is the estimate of , and  is the es-
timate error of , therefore . Then the vir-
tual trajectory tracking control law of the kinematic 
model of robot can be given as follows. 

d̂ d
 ˆd d

d
d d

Theorem 1 Suppose that  0, ,t    Z1r, Z2r are 
all bounded, and the lower limit of  rw h  satisfies 
the condition that  
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t h t
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then if we apply the velocity control law in (21) and 
the adaptive control law in (22) to system (10), the 
kinematic tracking error described by equation (10) is 
asymptotically stable. And 
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The adaptive control law of  is: d̂
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where k1 > 0, k2 > 0, a is a positive constant. 
The proof below needs two lemmas as follows: 
Lemma 1 (Barbalat’s Lemma [20]) If the differen-

tiable function V has a lower bound as  
, and  is Semi-negative De- 
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Lemma 2 (Extended Barbalat’s Lemma [21]) If a 
given differentiable function f(x) from R+ to R con-
verges to some limit value when x tends to infinity, and 
if the derivative  of this function is the sum of 
two terms, one being uniformly continuous and the 
other one tending to zero when x tends to infinity, then 
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Substituting (22) into (24), yields 
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Clearly, L1 is non-negative monotonically decreasing. 
So L1 has the limit. According to the Lyapunov theory 
and Lemma 1, we have, e1→0,  
→ 0. As Z2r has the limit, then 
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As e1→0, 1  = Z2 ω – Z2r ωr + υ – υr, and υ– υr = υC – 
υr → 0，υC – υr = –k1e1→ 0, it can be obtained that Z2ω 
– Z2r ωr is uniformly continuous. Then according to 
Lemma 2, we have, Z2 ω – Z2r ωr → 0, so Z2 ω – Z2r ω + 
Z2r ω – Z2r ωr → 0, that is to say, e2ω + Z2r(ω – ωr) → 0. 
And because Z2r is bounded, ω – ωr = ωc – ωr = –k2(e1Z2r 

– e2Z1r + e2 d  + e3) → 0. It is easily obtained that e2ω is 
uniformly continuous. So according to Lemma 2, we 
have e2ω → 0. And because ω = ωc = ωr – k2(e1Z2r – e2 
Z1r+ e2 d  + e3) → ωr, we have e2ωr→0, according to the 
assumption about ωr in Theorem 1. Therefore, e2 → 0.  

e
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T
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t

e e e
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ness of  – Z1r, we have, e3→0. Finally, as t → ∞, ep 

→ 0 (p= 1, 2, 3), namely.  
d̂

 
3.2. Adaptive Dynamic Controller Design 
 
In Theorem 1, the kinematic velocity tracking controller 
is just considered. However it is very difficult to get the 
ideal control velocity in reality, that is to say, the error 
between the actual velocity and the ideal control velocity 
isn't equal to zero, which means 0  , so the equation 
(21) is just the ideal kinematic velocity control. To 
realize the torque control, it is apparently needed to make 
the velocity tracking error in Equation (17) converge 
zero. Suppose that the  in this article is unknown, and 

 is the estimate of ,  is the estimate error of , 
φ
φφ̂ φ φ
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therefore . Then the dynamic tracking control 
law of the robot as follows. 

ˆ φ φ φ

Theorem 2 Assume that [0 )  ,t , Z1r , Z2r are all 
bounded. Then by using the velocity control law in (27) 
and the adaptive control law in (28) and (29), the 

velocity V of the robot converges to the virtual velocity 
Vc in theorem 1, which means,  
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the posture tracking error ep → 0 (p = 1, 2, 3). 
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Because 0  , the corresponding adaptive control 
law in Equation (22) should be as follows: The derivative of L is  
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Note that 2M C  is skew symmetric, so T T

dsgn( ) ( , ) ( )2L     η η N q q η F τ  

 T 2 0 η M C η ,  
according to Equation (20), we obtain 

and choose 

T
2 d d( , ) ( ) ( , ) ( ( , ) ) 0L                η N q q η F τ η N q q η F τ η N q q F τ   d          (32) 

 
According to the expression about 1  in equation 

(25), and using the same proof method in Lemma 1, we 
can obtain ep → 0 (p = 1,2,3). 

LAccording to (25), (31), (32), we have 
2 2

1 3 1 4 2 2 0L L k k L             (33) 

 Clearly, L is non-negative monotonically decreasing, 
so L has the limit, according to the Lyapunov theory and 
Lemma 1, we have, η1→0, η2→0, namely  

4. Simulation 

In this section, a numerical simulation is implemented to 
demonstrate the feasibility of the adaptive tracking con-
trollers which are designed in the previous section. The 

T
1 2lim ( , ) 0

t

 


  
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mobile robot’s parameters are chosen as follows [18]: 

R = 0.75 m; r = 0.15 m; d = 0.25 m; a = 1; υr = 10 m/s; 

ωr =10 rad/s; k1 = 2; k2 = 0.5; k3 = 2; k4 = 0.5; 

m = 20 kg; I = 5 kg·m2; 1 = 0.8; 2  = 1.5; 3  = 0.3; 

The original posture of robot is (0.1, –0.1, 0.1), and 
the original velocity is (10, 10). Implementing the simu-
lation with the parameters above, the simulation results 
are shown from Figure 2 to Figure 7. 

The trajectory to tracking a circle in plane is shown in 
Figure 2. 

The posture tracking errors of robot are shown in Fig-
ure 3. 

The estimate of d which is the distance from the mass 
center to the geometrical center of robot is shown in 
Figure 4. 

The velocity tracking errors of robot are shown in the 
following Figure 5. 
 

 

Figure 2. Tracking a circle. 
 

 

Figure 3. The posture tracking errors with respect to time. 

 

Figure 4. The estimate of d. 
 

 

Figure 5. The velocity tracking errors with respect to time. 
 

 

Figure 6. The torque acted on the wheels with respect to 
time. 
 

The torque acted on the wheels of robot is shown in 
Figure 6. 

The estimated dynamics parameters φ1、φ2、φ3 are 
shown in Figure 7. 
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Figure 7. The estimated parameters φ1, φ2, φ3. 
 
We can see from Figure 2 that the robot can well track 

a circle. From Figures 3, 5 and 6, we can see that the 
posture tracking errors e1, e2, e3, and velocity tracking 
errors η1, η2, and the torque τ1, τ2 acted on the wheels of 
robot all asymptotically converge zero. It is seen that 
from Figures 4 and 7 that the estimates of unknown pa-
rameters d, φ1, φ2, φ3 of robot are all bounded. So the 
simulation results demonstrate the feasibility and effi-
ciency of the proposed method in this article. 

In reference [18], an adaptive tracking controller was 
proposed for the trajectory tracking problem when both 
dynamic and kinematic model of the mobile robot have 
unknown parameters, and the external disturbance was 
considered. But reference [18] assumed that the distance 
between the mass center and the geometrical center of 
the model of the mobile robot was known. However, the 
distance is usually unknown in actual situation. So by 
using the controller designed in reference [18], it can 
hardly track a object with the shortest time. 

The controller designed in this paper consider the dis-
tance is unknown to shorten the tracking time. To show 
the superiority of the method in this article, the compari-
son with the previous methods in reference [18] is made 
below. The posture tracking errors in reference cite [18] 
is shown in the Figure 8. 

The velocity tracking errors in reference [18] is shown 
in Figure 9. 

The comparison figure of Figures 8 and 3 is shown in 
the Figure 10. 

The comparison figure of Figures 9 and 5 is shown in 
Figure 11. 

We can see from Figure 10 that by using the contro- 
ller designed in reference [18], the time needed from 
original posture tracking error to the accuracy 0.01 of 
posture tracking error is 10s. While by using the contro- 
ller designed in this article, it is just needed 5 s to 
achieve the same accuracy. The time has been shortened  

 

Figure 8. The posture tracking errors with respect to time 
in reference [18]. 
 

 
Figure 9. The velocity tracing errors with respect to time in 
reference [18]. 
 
by nearly one time. We can see from Figure 11 that by 
using the controller designed in reference [18], the time 
needed from original velocity tracking error to the accu-
racy 0.01 of velocity tracking error is 12 s. While by us-
ing the controller designed in this article, it is just needed 
5 s to achieve the same accuracy, the time has been 
shortened by more than one time. So by using the con-
troller designed in this article, the robot can track the 
object more quickly. What’s more, in reference [18], the 
distance from the mass center to the geometrical center 
of robot is known, while the distance in this article is 
unknown. 
 
5. Conclusions 
 
Based on backstepping method and adaptive control 
technique, a new dynamic controller for trajectory track- 
ing problem of mobile robots with nonholonomic con-
straints is proposed in this article. And an adaptive feed-
back controller is also proposed with unknown kinematic 
and dynamic parameters. Using Lyapunov theory, the 
controller is demonstrated to be asymptoticallystable. 
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Figure 10. The comparison of Figure 8 and Figure 3. 
 

 

 

Figure 11. The comparison of Figure 9 and Figure 5. 

The simulation results show the effectiveness of the 
proposed controller. The comparison with the previous 
methods is made to show the superiority of the method in 
this article. 
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