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Abstract 
In this paper, a computational approach is proposed for solving the dis-
crete-time nonlinear optimal control problem, which is disturbed by a se-
quence of random noises. Because of the exact solution of such optimal con-
trol problem is impossible to be obtained, estimating the state dynamics is 
currently required. Here, it is assumed that the output can be measured from 
the real plant process. In our approach, the state mean propagation is applied 
in order to construct a linear model-based optimal control problem, where the 
model output is measureable. On this basis, an output error, which takes into 
account the differences between the real output and the model output, is de-
fined. Then, this output error is minimized by applying the stochastic ap-
proximation approach. During the computation procedure, the stochastic 
gradient is established, so as the optimal solution of the model used can be 
updated iteratively. Once the convergence is achieved, the iterative solution 
approximates to the true optimal solution of the original optimal control 
problem, in spite of model-reality differences. For illustration, an example on 
a continuous stirred-tank reactor problem is studied, and the result obtained 
shows the applicability of the approach proposed. Hence, the efficiency of the 
approach proposed is highly recommended. 
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1. Introduction 

Nonlinear optimal control problem, which is disturbed by random noises, is an 
interesting research topic. In presence of the random noises, the entire state tra-
jectory could not be measured exactly. Due to the nonlinear structure and the 
fluctuation behavior of the dynamical system, an efficient computational ap-
proach is, therefore, necessarily required to estimate the state dynamics. Further 
from this, the state estimate shall be used to optimize and control the dynamical 
system, where the optimal control policy is drawn apparently [1] [2] [3] [4] [5]. 
From literatures, the applications of the nonlinear stochastic optimal control are 
widely studied, see for examples, vehicle trajectory planning [6], portfolio selec-
tion problem [7], building structural system [8], investment in insurance [9], 
switching system [10], machine maintenance problem [11], nonlinear differen-
tial game problem [12], and viscoelastic systems [13]. 

In recent years, using the linear optimal control model with model-reality dif-
ferences in solving the nonlinear optimal control problem, especially for dis-
crete-time nonlinear stochastic optimal control problem, is proposed [14] [15] 
[16] [17]. Such method is known as the integrated optimal control and parame-
ter estimation (IOCPE) algorithm. In this approach, the adjusted parameters are 
introduced into the model used, so as the differences between the real plant and 
the model used can be calculated repeatedly. This algorithm is an iterative pro-
cedure, where system optimization and parameter estimation are integrated in-
teractively. During the computation procedure, the optimal solution of the mod-
el used is updated iteratively. Once the convergence is achieved, the iterative so-
lution of the model used approximates to the true optimal solution of the origi-
nal optimal control problem, in spite of model-reality differences.  

Besides, the applications of the IOCPE algorithm in providing the expectation 
solution as well as the filtering solution of the discrete-time nonlinear stochastic 
optimal control problem have been well-demonstrated [14] [15]. In addition, the 
optimal output solution obtained from the IOCPE algorithm has been improved 
by using the weighted output residual [16], which is introduced into the model 
cost function, and the output matching scheme [17], where the adjusted para-
meter is introduced into the model output. Moreover, the application of the ap-
proaches on the least-square and the Gauss-Newton with the principle of mod-
el-reality differences, which omits from using the adjusted parameters, enhance 
the practical usage of the IOCPE algorithm for delivering the optimal solution of 
the original optimal control problem [18] [19].  

By virtue of the improvement done, it is simply seen that the efficiency of the 
IOCPE algorithm for solving the discrete-time nonlinear stochastic optimal 
control problem is shown. However, we find that the output residual from the 
Kalman filtering theory could be further reduced, in turn, having an efficient 
output solution for representing the original output. Hence, in this paper, we 
aim to improve the accuracy of the output solution of the model used. In our 
approach, the stochastic approximation approach, which is an iterative stochas-
tic optimization algorithm [20] [21] [22] [23], is applied. The advantage of the 
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stochastic approximation algorithm is to find the optimum of a function, which 
cannot be computed directly, but only be estimated from noisy observations [24] 
[25] [26] [27], and its applications to control systems have been well-defined [28] 
[29] [30] [31] [32]. This advantage motivates us on applying the stochastic ap-
proximation algorithm into the IOCPE algorithm can significantly reduce the 
output residual compared to those output residual from the Kalman filtering 
theory. Here, the optimal control law, which is based on the state mean propaga-
tion, is constructed. At the end of iteration, the trajectories of state and control, 
which are in expectation manner, are obtained, while the output trajectory could 
track the real output closely. Hence, the efficiency of the approach proposed is 
highly recommended.   

The rest of the paper is organized as follows. In Section 2, a general dis-
crete-time nonlinear stochastic optimal control problem is described. In Section 
3, the stochastic approximation scheme, which is combined with the principle of 
model-reality differences, is discussed. The calculation procedure is then formu-
lated as an iterative algorithm. In Section 4, an illustrative example on a conti-
nuous stirred-tank reactor problem is studied and the applicability of the ap-
proach proposed is presented. Finally, some concluding remarks are made. 

2. Problem Statement 

Consider a general discrete-time nonlinear stochastic optimal control problem 
given by  

( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1

0
0

min , , ,

subject to 1 , ,

,

k

u k k
J u E x N N L x k u k k

x k f x k u k k G k

y k h x k k k

ϕ

ω

η

−

=

 = +  
+ = +

= +

∑

            (1) 

where ( ) , 0,1, , 1mu k k N∈ℜ = − , ( ) , 0,1, ,nx k k N∈ℜ =   and ( ) ,py k ∈ℜ  
0,1, ,k N=   are, respectively, control sequence, state sequence and output 

sequence. The process noise sequence ( ) , 0,1, , 1qk k Nω ∈ℜ = −  and the 
measurement noise sequence ( ) , 0,1, ,pk k Nη ∈ℜ =   are the stationary 
Gaussian white noise sequences with zero mean and their covariance matrices 
are, respectively, given by q qQω

×∈ℜ  and p pRη
×∈ℜ , which both are positive 

definite matrices. While, n qG ×∈ℜ  is a process noise coefficient matrix, 
: n m nf ℜ ×ℜ ×ℜ→ℜ  represents the real plant, and : n ph ℜ ×ℜ→ℜ  is the 

output measurement, whereas : nϕ ℜ ×ℜ→ℜ  is the terminal cost and 
: n mL ℜ ×ℜ ×ℜ→ℜ  is the cost under summation. Here, 0J  is the scalar cost 

function and [ ]E ⋅  is the expectation operator. It is assumed that all functions 
in (1) are continuously differentiable with respect to their respective arguments.  

The initial state  

( ) 00x x= , 

where 0
nx ∈ℜ  is a random vector with mean and covariance are, respectively, 

given by  
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[ ] ( )( )T
0 0 0 0 0 0 0 and .E x x E x x x x M = − − =   

Here, 0
n nM ×∈ℜ  is a positive definite matrix. It is assumed that initial state, 

process noise and measurement noise are statistically independent.  
This problem, which is regarded as the discrete-time stochastic optimal con-

trol problem, is referred to as Problem (P). Notice that the exact solution of 
Problem (P) is, in general, unable to be obtained. Moreover, applying the nonli-
near filtering theory to estimate the state of the real plant is computationally 
demanding. Nevertheless, the output can be measured from the real plant 
process.  

In view of these weaknesses, a linear model-based optimal control problem, 
which is referred to as Problem (M), is constructed, given by   

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )
( )

1T T T
1

0

0

1 1min
2 2

subject to 1

0

N

u k k
J u x N S N x N x k Qx k u k Ru k

x k Ax k Bu k

y k Cx k

x x

−

=

= + +

+ = +

=

=

∑

 (2) 

where ( ) , 0,1, ,nx k k N∈ℜ =   and ( ) , 0,1, ,py k k N∈ℜ =   are, respectively, 
the expected state sequence and the expected output sequence; n nA ×∈ℜ  is a 
state transition matrix, n mB ×∈ℜ  is a control coefficient matrix, and p nC ×∈ℜ  
is an output coefficient matrix, while ( ) n nS N ×∈ℜ  and n nQ ×∈ℜ  are positive 
semi-definite matrices and m mR ×∈ℜ  is a positive definite matrix. Here, 1J  is 
the scalar cost function.   

It is emphasized that only solving Problem (M) would not give the optimal 
solution of Problem (P). However, by establishing an efficient matching scheme 
based on the output error, which is the differences between the real output and 
the model output, to Problem (M), it is possible to obtain the optimal solution of 
Problem (P) as solving Problem (M) iteratively. In this point of view, we are mo-
tivated to look into the possibility of constructing an expanded optimal control 
model with the output error. This model formulation is for obtaining the true 
optimal solution of Problem (P) despite model-reality differences.  

3. Optimal Control with Stochastic Approximation 

Now, let us define the expanded optimal control problem, which is referred to as 
Problem (E), is formulated by  

( )
( )

( )
( ) ( ) ( )T

2 1
0

1min min
2

N

k u k k
J J u k k

α
α α α

=

= + ∑  

( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )
( ) ( )

0

subject to 1

0
ˆ

ˆ

x k Ax k Bu k

y k Cx k k

x x

y k k y k

y k y k

α

α

+ = +

= +

=

+ =

=

                 (3) 
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where ( )ˆ , 0,1, ,py k k N∈ℜ =   is introduced to separate the output sequence 
from the respective signals in the output error problem. It is important to note 
that the algorithm is to be designed such that the constraint ( ) ( )ŷ k y k=  will 
be satisfied at the end of the iterations. In this situation, the output ( )ŷ k  will 
be used for the output error problem and the establishment of the matching 
scheme, whereas the corresponding output ( )y k  will be reserved for the mod-
el output after optimizing the model-based optimal control problem. Here, the 
output error is defined as  

( ) ( ) ( )ˆ , 0,1, , .k y k y k k Nα = − =                   (4) 

3.1. Necessary Optimality Conditions  

Define the Hamiltonian function as follows  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

T T T

T T

T

1 1
2 2

1

eH k x k Qx k u k Ru k k k

p k Ax k Bu k r k y k

q k Cx k k y k

α α

α

= + +

+ + + −

+ + −

        (5) 

then, the augmented cost function becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

T T T
2

1T T T

0
T

1 1 0 0
2 2

ˆ

ˆ

N

e
k

J x N S N x N N N p x

p N x N H k p k x k r k y k

s k y k y k k

α α α

α

−

=

′ = + +

− + − +

+ − −

∑        (6) 

where ( ) ( ) ( ), ,p k q k r k  and ( )s k  are the appropriate multipliers to be de-
termined later.  

Applying the calculus of variation [2] [14] [33] to the augmented cost func-
tion (6), the following necessary optimality conditions are obtained:  

1) Stationary condition:  

( ) ( )T 1 0Ru k B p k+ + =                       (7a) 

2) Co-state equation: 

( ) ( ) ( )T 1p k Qx k A p k= + +                     (7b) 

3) State equation:  

( ) ( ) ( )1x k Ax k Bu k+ = +                      (7c) 

with the boundary conditions ( ) 00x x=  and ( ) 0p N = .  
4) Output equation: 

( ) ( ) ( )y k Cx k kα= +                          (7d) 

5) Separable variables:  

( ) ( ) ( ) ( )ˆ ˆ,y k y k p k p k= =                       (7e) 

with the multipliers ( ) ( )r k q k= − , ( ) ( )s k q k=  and ( ) 0q k = . 
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In view of these necessary optimality conditions, the conditions (7a), (7b) and 
(7c) are the necessary conditions for Problem (M), while the necessary condition 
(7d) is an adjustable output measurement. Notice that with this adjustable out-
put, the real output could be tracked by the model output as closely as possible 
once the output residual is significantly minimized.  

3.2. Feedback Optimal Control Law  

From (7a), the feedback optimal control law can be calculated from  

( ) ( ) ( ) , 0,1, , 1u k K k x k k N= − = −                   (8) 

where  

( ) ( )( ) ( )
1T T1 1K k R B S k B B S k A
−

= + + + ,               (9a) 

( ) ( ) ( )( )T 1S k Q A S k A BK k= + + − .                  (9b) 

For more detail, see [14] [18] [19] [33] for the proof of the derivation on this 
feedback optimal control law.  

Applying (8), the state equation is written as 

( ) ( )( ) ( )1 , 0,1, , 1x k A BK k x k k N+ = − = −
           (10) 

and the co-state equation is given by 

( ) ( ) ( ) , 0,1, , .p k S k x k k N= =                  (11) 

3.3. Stochastic Approximation Scheme  

In general, the recursive equation for the stochastic approximation (SA) algo-
rithm [28] [30] [31] [32] is defined by 

( ) ( ) ( ) ( )( )1 ,k k a k g k kθ θ θ+ = −                  (12) 

where ( )kθ  is the set of the parameters to be estimated, ( )( ),g k kθ  is the 
stochastic gradient, and ( )a k  is the gain sequence. On this basis, refer to 
Problem (E), let us define ( ) ( ) ( ) ( )( )Tˆ, ,k u k x k y kθ =  and the stochastic gra-
dient, which is assumed to be measurable for the objective function given in (3), 
is introduced as  

( )( ) ( )
( )

( )
( )

( )
( )

T

2 2 2, , ,
ˆ

J k J k J k
g k k

u k x k y k
θ

 ∂ ∂ ∂
=   ∂ ∂ ∂ 

. 

Refer to the SA algorithm (12), it leads to the following iterative equations:   

( ) ( ) ( ) ( )
( )

1 2i i
i

J
u k u k a k

u k

α+ ∂
= −

∂
                   (13a) 

( ) ( ) ( ) ( )
( )

1 2i i
i

J
x k x k a k

x k

α+ ∂
= −

∂
                   (13b) 

( ) ( ) ( ) ( )
( )

1 2ˆ ˆ
ˆ

i i
i

J
y k y k a k

y k

α+ ∂
= −

∂
.                   (13c) 
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These equations would be used to update the optimal solution of Problem (E), 
in turn, to approximate the optimal solution of Problem (P), in spite of mod-
el-reality differences.  

Consequently, to evaluate the stochastic gradient, rewrite the output error de-
fined in (4), for k = k +1, as  

( ) ( ) ( ) ( ) ( )ˆ1 1 1 1 1k y k y k y k y kα + = + − + = + − +             (14) 

where the separable variable in (7e) is satisfied. After that, taking the expected 
output measured (7d) for k = k +1, and substituting ( )1x k +  by the state equa-
tion (10), we have 

( ) ( ) ( ) ( )( )( )11 1
2

k y k C Ax k Bu kα + = + − + .           (15) 

Hence, from the objective function (3) in Problem (E), the stochastic gradient, 
which the chain rule differentiation is applied, is calculated from 

( )
( )

( )
( ) ( ) ( )

T
T22 d( )

( ) d
k J kJ CB k

u k u k k
αα

α
α

   ∂∂
= = −   

∂ ∂      
            (16a) 

( )
( )

( )
( )

( )
( ) ( ) ( )

T
T2 2d

d
J k J k

CA k
x k x k k

α α
α

α
   ∂ ∂

= = −   
∂ ∂      

            (16b) 

( )
( )

( )
( )

( )
( ) ( )

T

2 2d
ˆ ˆ d

J k J k
k

y k y k k
α α

α
α

   ∂ ∂
= = −   

∂ ∂      
              (16c) 

On the other hand, the gain sequence ( )a k , which is given in (12), has the 
asymptotic normality and its convergence property has been well-defined [20] 
[24] [26] [30] [31]. In particular, the formulation form of the gain sequence 
( )a k  is given from  

( )
( )1 b

aa k
k A

=
+ +

                      (17) 

where a and b are strictly positive and the stability constant A ≥ 0. The practical 
value of b is 0.602, which provides the generally more desirable slowly decaying 
gain (17).  

3.4. Computational Algorithm  

From the discussion above, the resulting algorithm provides the optimal solution 
of the linear model-based optimal control problem. This optimal solution is then 
updated based on the stochastic approximation algorithm to approximate the 
true optimal solution of the original optimal control problem. As a result, the 
computation procedure of the iterative algorithm is summarized as follows.  

Iterative algorithm with SA scheme   
Data: Given ( ) 0 0, , , , , , , , , , , , , , ,A B C G Q R Q R S N M x N f L hω η ϕ . 
Step 0: Compute a nominal solution. Calculate ( )K k  and ( )S k  from (9a) 

and (9b), respectively, Then, solve Problem (M) defined by (2) to obtain 

https://doi.org/10.4236/apm.2018.83012


S. L. Kek et al. 
 

 

DOI: 10.4236/apm.2018.83012 239 Advances in Pure Mathematics 
 

( ) , 0,1, , 1u k k N= − , ( ) , 0,1, ,x k k N=   and ( ) , 0,1, ,y k k N=  . Set 0i = , 

( ) ( )0u k u k= , ( ) ( )0x k x k=  and ( ) ( )0y k y k= .  

Step 1: Compute the output error ( ) , 0,1, ,ik k Nα = 
 from (4). 

Step 2: With the determined ( )ikα , solve Problem (E) defined by (3) to ob-

tain the new ( ) , 0,1, , 1iu k k N= −
, the new ( ) , 0,1, ,ix k k N= 

, and the 

new ( ) , 0,1, ,iy k k N= 
, respectively, from (8), (10) and (7d).  

Step 3: Update the optimal solution given, respectively, by (13a), (13b) and 
(13c). If ( ) ( )1 , 0,1, , 1i iu k u k k N+ = = −

, ( ) ( )1 , 0,1, ,i ix k x k k N+ = = 
 and 

( ) ( )1 , 0,1, ,i iy k y k k N+ = = 
, within a given tolerance, stop; else set 1i i= +  

and repeat from Step 1. 
Remarks 
1) The off-line computation is done, as stated in Step 0, to calculate 
( ) , 0,1, , 1K k k N= −  and ( ) , 0,1, ,S k k N=  , for the control law design. 

Then, these parameters are used for solving Problem (M) in Step 0 and for solv-
ing Problem (E) in Step 2, respectively.  

2) The variable ( )ikα  is zero in Step 0 and the calculated value of ( )ikα  
changes from iteration to iteration.  

3) Problem (P) is not necessary to be linear or to have a quadratic cost func-
tion.  

4) The conditions ( ) ( )1i iu k u k+ =  and ( ) ( )1i ix k x k+ =  are required to be 
satisfied for the converged optimal control sequence and the converged state es-
timate sequence. The following averaged 2-norms are computed and then they 
are compared with a given tolerance to verify the convergence of ( )u k  and 
( )x k :  

( ) ( )
1 21 11

2 0

1
1

N i ii i

k
u u u k u k

N

−
++

=

 − = − − 
∑              (18a) 

( ) ( )
1 2

11

2 0

1 N i ii i

k
x x x k x k

N
++

=

 − = − 
 

∑               (18b) 

5) The gain sequence ( )a k , which is considered in the algorithm proposed, is 

( )
( )0.602

2
1

a k
k

=
+

                       (19) 

where A = 0 from (17).  

4. Illustrative Example  

Consider the optimal control of a continuous stirred-tank reactor problem [34]: 

( )
( ) ( )( ) ( )( ) ( )( )

76 2 2 2
0 1 2

0
min 0.01 0.1
u k k

J u E x k x k u k
=

 = + +  ∑  

subject to 
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( ) ( ) ( )( ) ( )( ) ( )
( )

( )( ) ( ) ( )

1
1 1 1 2

1

1 1

25
1 0.02 0.25 0.01 0.5 exp

2

0.01 0.25

x k
x k x k x k x k

x k

x k u k kω

 
+ = − + + +  

+  
− + +

 

( ) ( ) ( )( ) ( )
( ) ( )1

2 2 2 2
1

25
1 0.99 0.005 0.01 0.5 exp

2
x k

x k x k x k k
x k

ω
 

+ = − − + + 
+  

 

( ) ( ) ( )1y k x k kη= +  

with the initial condition  

( ) ( )1 20 0.05, 0 0.x x= =  

Here, ( ) ( ) ( ) T
1 2k k kω ω ω=     and ( )kη  are Gaussian white noise se-

quences with their respective covariance given by 3
210Q Iω

−=  and 310Rη
−= .  

This problem is referred to as Problem (P).  
The linear model-based optimal control problem, which is simplified from 

Problem (P) and is referred to as Problem (M), is defined by  

( )
( ) ( )( ) ( )( ) ( )( )

76 2 2 2
1 1 2

0

1min 0.1
2u k k

J u x k x k u k
=

 = + +  ∑  

subject to  

( )
( )

( )
( ) ( )1 1

2 2

1 1.0895 0.0184 0.003
1 0.1095 0.9716 0.000

x k x k
u k

x k x k
 +    −   

= +      + −      
 

( ) ( ) ( )1y k x k kα= +  

with the initial condition  

( ) ( )1 20 0.05, 0 0x x= =  

and the adjusted parameter ( )kα  is added into the output measurement 
channel. 

By running the approach proposed, the simulation result is shown in Table 1, 
where it is compared to the result of the filtering solution [15]. It can be seen 
that the iteration number of the approach proposed is more than the iteration 
number of filtering model, and the final cost of the approach proposed is greater 
than the final cost of filtering model. But, it is found that the output residual of 
the approach proposed is dramatically reduced to 0.000216 unit, which is a 99 
percent reduction. This percentage shows that the model output solution ob-
tained by the approach proposed is significantly closely to the real output trajec-
tory. Hence, this indicates that the approach proposed is practically useful in 
obtaining the real output solution. 

The trajectories of control, state, and output are, respectively, shown in Fig-
ures 1-3. It is noticed that the trajectories of control and state are smoothly 
freely from the disturbance of random noise sequences. This is because of they 
are an ideal deterministic optimal solution to the nonlinear model-based optimal 
control problem. However, the real output that is disturbed by the random noise 
sequences is really fluctuated. By applying the approach proposed, the model  
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Table 1. Simulation result. 

Model 
Iteration 
Number 

Elapsed 
Time 

Initial 
Cost 

Final  
Cost 

Output  
Residual 

Filtering 6 0.811 3.7910 0.0215 0.034731 

Proposed 19 0.079 2.0973 2.0849 0.000216 

 

 
Figure 1. Control trajectory. 

 

 
Figure 2. State trajectories. 

 

 
Figure 3. Output trajectories. 
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Figure 4. Output error. 

 
output trajectory could follow the real output trajectory as closely as possible. 
Additionally, the output error, which is presenting the differences between the 
real output and the model output, is shown in Figure 4. As a result of this, it is 
concluded that the approach proposed is efficient and its applicability is demon-
strated. 

5. Concluding Remarks  

Applying the stochastic approximation scheme into the IOCPE algorithm was 
discussed in this paper. The aim is to improve the output solution of the model 
used. From previous studies, the IOCPE algorithm is for solving the dis-
crete-time nonlinear stochastic optimal control problem, while the stochastic 
approximation is for the stochastic optimization. In combining these two ap-
proaches, the state mean propagation is constructed, where the adjusted para-
meter is added into the model output used. During the calculation procedure, 
the differences between the real plant and the model used are taken into account 
for updating the iterative solution repeatedly. On the other hand, the least square 
output error is established such that the stochastic gradient is derived. Conse-
quently, the iterative solution approximates to the optimal solution of the origi-
nal optimal control problem, in spite of model-reality differences. For illustra-
tion, an example on a continuous stirred-tank reactor problem was studied to 
show the applicability of the approach proposed. In conclusion, the efficiency of 
the approach proposed is highly recommended. 

For the future research direction, it is suggested to apply the SA algorithm to 
solve the linear model-based optimal control problem, without calculating the 
adjusted parameter, in order to obtain the true optimal solution of the nonlinear 
optimal control problem. The result would be compared to the result which is 
obtained by using the Gauss-Newton method [18] [19]. Hence, the calculation 
procedure in the IOCPE could be simplified. 

References 
[1] Kalman, R.E. (1960) Contributions to the Theory of Optimal Control. Boletín de la 

time

0 10 20 30 40 50 60 70 80
O

ut
pu

t e
rro

r

10 -3

-6

-4

-2

0

2

4

6

8

https://doi.org/10.4236/apm.2018.83012


S. L. Kek et al. 
 

 

DOI: 10.4236/apm.2018.83012 243 Advances in Pure Mathematics 
 

Sociedad Matemática Mexicana, 5, 102-119. 

[2] Bryson, A.E. and Ho, Y.C. (1975) Applied Optimal Control. Hemisphere, Wash-
ington, DC. 

[3] Bagchi, A. (1993) Optimal Control of Stochastic Systems. Prentice-Hall, New York. 

[4] Ahmed, N.U. (1999) Linear and Nonlinear Filtering for Scientists and Engineers. 
World Scientific Publishers, Singapore. https://doi.org/10.1142/3911 

[5] Simon, D. (2006) Optimal State Estimation: Kalman, H-Infinity and Nonlinear Ap-
proaches. John Wiley & Sons, Hoboken, NJ. https://doi.org/10.1002/0470045345 

[6] Liu, H.F., Zhang, Y., Chen, S.F. and Chen, J. (2012) Autonomous Vehicle Trajectory 
Planning under Uncertainty Using Stochastic Collocation. Advanced Materials Re-
search, 580, 175-179. https://doi.org/10.4028/www.scientific.net/AMR.580.175 

[7] Zhou, Y. and Wu, Z. (2013) Mean-Variance Portfolio Selection with Margin Re-
quirements. Journal of Mathematics, 2013, Article ID 726297. 

[8] Li, X.P., Yu, C., Zhang, J.Y., Zhou, J.J. and Zhang, L.M. (2013) Instantaneous Sto-
chastic Optimal Control of Seismically Excited Structures Based on Time Domain 
Explicit Method. Advanced Materials Research, 790, 215-218.  
https://doi.org/10.4028/www.scientific.net/AMR.790.215 

[9] Liu, J., Yiu, K.F.C., Loxton, R. and Teo, K.L. (2013) Optimal Investment and Pro-
portional Reinsurance with Risk Constraint. Journal of Mathematical Finance, 3, 
437-447. https://doi.org/10.4236/jmf.2013.34046 

[10] Abushov, Q. and Aghayeva, C. (2014) Stochastic Maximum Principle for Nonlinear 
Optimal Control Problem of Switching Systems. Journal of Computational and Ap-
plied Mathematics Part B, 259, 371-376. https://doi.org/10.1016/j.cam.2013.06.010 

[11] Sun, Y., Aw, G., Loxton, R. and Teo, K.L. (2014) An Optimal Machine Maintenance 
Problem with Probabilistic State Constraints. Information Sciences, 281, 386-398.  
https://doi.org/10.1016/j.ins.2014.05.051 

[12] Basimanebotlhe, O. and Xue, X. (2014) Stochastic Optimal Control to a Nonlinear 
Differential Game. Advances in Difference Equations, 2014, 1-14.  
https://doi.org/10.1186/1687-1847-2014-266 

[13] Xiong, H. and Zhu, W. (2015) Nonlinear Stochastic Optimal Control of Viscoelastic 
Systems. Journal of Vibration and Control, 21, 1029-1040.  
https://doi.org/10.1177/1077546313489589 

[14] Kek, S.L., Teo, K.L. and Ismail, A.A.M. (2010) An Integrated Optimal Control Al-
gorithm for Discrete-Time Nonlinear Stochastic System. International Journal of 
Control, 83, 2536-2545. https://doi.org/10.1080/00207179.2010.531766 

[15] Kek, S.L., Teo, K.L. and Ismail, A.A.M. (2012) Filtering Solution of Nonlinear Sto-
chastic Optimal Control Problem in Discrete-Time with Model-Reality Differences. 
Numerical Algebra, Control and Optimization, 2, 207-222.  
https://doi.org/10.3934/naco.2012.2.207 

[16] Kek, S.L., Ismail, A.A.M., Teo, K.L. and Rohanin, A. (2013) An Iterative Algorithm 
Based on Model-Reality Differences for Discrete-Time Nonlinear Stochastic Op-
timal Control Problems. Numerical Algebra, Control and Optimization, 3, 109-125.  
https://doi.org/10.3934/naco.2013.3.109 

[17] Kek, S.L., Teo, K.L. and Ismail, A.A.M. (2014) Efficient Output Solution for Nonli-
near Stochastic Optimal Control Problem with Model-Reality Differences. Mathe-
matical Problems in Engineering, 2014, Article ID 659506. 

[18] Kek, S.L., Li, J. and Teo, K.L. (2017) Least Squares Solution for Discrete Time Non-
linear Stochastic Optimal Control Problem with Model-Reality Differences. Applied 

https://doi.org/10.4236/apm.2018.83012
https://doi.org/10.1142/3911
https://doi.org/10.1002/0470045345
https://doi.org/10.4028/www.scientific.net/AMR.580.175
https://doi.org/10.4028/www.scientific.net/AMR.790.215
https://doi.org/10.4236/jmf.2013.34046
https://doi.org/10.1016/j.cam.2013.06.010
https://doi.org/10.1016/j.ins.2014.05.051
https://doi.org/10.1186/1687-1847-2014-266
https://doi.org/10.1177/1077546313489589
https://doi.org/10.1080/00207179.2010.531766
https://doi.org/10.3934/naco.2012.2.207
https://doi.org/10.3934/naco.2013.3.109


S. L. Kek et al. 
 

 

DOI: 10.4236/apm.2018.83012 244 Advances in Pure Mathematics 
 

Mathematics, 8, 1-14. https://doi.org/10.4236/am.2017.81001 

[19] Kek, S.L., Li, J., Leong, W.J. and Ismail, A.A.M. (2017), A Gauss-Newton Approach 
for Nonlinear Optimal Control Problem with Model-Reality Differences. Open 
Journal of Optimization (OJOp), 6, 85-100. https://doi.org/10.4236/ojop.2017.63007 

[20] Robbins, H. and Monro, S. (1951) A Stochastic Approximation Method. The Annals 
of Mathematical Statistics, 22, 400-407. https://doi.org/10.1214/aoms/1177729586 

[21] Kiefer, J. and Wolfowitz, J. (1952) Stochastic Estimation of the Maximum of a Re-
gression Function. The Annals of Mathematical Statistics, 23, 462-466.  
https://doi.org/10.1214/aoms/1177729392 

[22] Sacks, J. (1958) Asymptotic Distribution of Stochastic Approximation Procedures. 
The Annals of Mathematical Statistics, 29, 373-405.  
https://doi.org/10.1214/aoms/1177706619 

[23] Martin, R. and Masreliez, C. (1975) Robust Estimation via Stochastic Approxima-
tion. IEEE Transactions on Information Theory, 21, 263-271.  
https://doi.org/10.1109/TIT.1975.1055386 

[24] Nemirovski, A. and Yudin, D. (1983) Problem Complexity and Method Efficiency 
in Optimization. John Wiley, New York. 

[25] Polyak, B.T. and Juditsky, A.B. (1992) Acceleration of Stochastic Approximation by 
Averaging. SIAM Journal on Control and Optimization, 30, 838-855.  
https://doi.org/10.1137/0330046 

[26] Kushner, H.J. and Yin, G.G. (1997) Stochastic Approximation Algorithms and Ap-
plications. Springer, New York. https://doi.org/10.1007/978-1-4899-2696-8 

[27] Nemirovski, A., Juditsky, A., Lan, G. and Shapiro, A. (2009) Robust Stochastic Ap-
proximation Approach to Stochastic Programming. SIAM Journal on Optimization, 
19, 1574-1609. https://doi.org/10.1137/070704277 

[28] Sin, K.S. and Goodwin, G.C. (1982) Stochastic Adaptive Control Using a Modified 
Least Squares Algorithm. Automatica, 18, 315-321.  
https://doi.org/10.1016/0005-1098(82)90091-7 

[29] Spall, J.C. and Cristion, J.A. (1998) Model-Free Control of Nonlinear Stochastic 
Systems with Discrete-Time Measurements. IEEE Transactions on Automatic Con-
trol, 43, 1198-1210. https://doi.org/10.1109/9.718605 

[30] Spall, J.C. (2000) Adaptive Stochastic Approximation by the Simultaneous Pertur-
bation Method. IEEE Transactions on Automatic Control, 45, 1839-1853.  
https://doi.org/10.1109/TAC.2000.880982 

[31] Spall, J.C. (2003) Introduction to Stochastic Search and Optimization: Estimation, 
Simulation and Control. John Wiley & Sons, Inc, New York.  
https://doi.org/10.1002/0471722138 

[32] Aksakalli, V. and Ursu, D. (2006) Control of Nonlinear Stochastic Systems: Mod-
el-Free Controllers versus Linear Quadratic Regulators. Proceedings of the 45th 
IEEE Conference on Decision and Control (CDC ’06), San Diego, CA, December 
2006, 4145-4150. https://doi.org/10.1109/CDC.2006.377721 

[33] Lewis, F.L., Vrabie, V. and Symos, V.L. (20012) Optimal Control. 3rd Edition, John 
Wiley & Sons, Inc, New York.    

[34] Kirk, D.E. (2004) Optimal Control Theory: An Introduction. Dover Publications, 
Mineola, NY. 

 

https://doi.org/10.4236/apm.2018.83012
https://doi.org/10.4236/am.2017.81001
https://doi.org/10.4236/ojop.2017.63007
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177706619
https://doi.org/10.1109/TIT.1975.1055386
https://doi.org/10.1137/0330046
https://doi.org/10.1007/978-1-4899-2696-8
https://doi.org/10.1137/070704277
https://doi.org/10.1016/0005-1098(82)90091-7
https://doi.org/10.1109/9.718605
https://doi.org/10.1109/TAC.2000.880982
https://doi.org/10.1002/0471722138
https://doi.org/10.1109/CDC.2006.377721

	Discrete-Time Nonlinear Stochastic Optimal Control Problem Based on Stochastic Approximation Approach
	Abstract
	Keywords
	1. Introduction
	2. Problem Statement
	3. Optimal Control with Stochastic Approximation
	3.1. Necessary Optimality Conditions 
	3.2. Feedback Optimal Control Law 
	3.3. Stochastic Approximation Scheme 
	3.4. Computational Algorithm 

	4. Illustrative Example 
	5. Concluding Remarks 
	References

