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Abstract 
 
Taking advantage of the knowledge of top and bottom compositions of a distillation column, a dynamic neu-
ral network (DNN) is designed to identify the input-output relationship of the column. The weight-training 
algorithm is derived from a Lyapunov function. Based on this empirical model, a nonlinear H controller is 
synthesized. The effectiveness of the control strategy is demonstrated using simulation results. 
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1. Introduction 

A distillation column is a strongly nonlinear process with 
multivariate interactions among outputs and some uncer- 
tainty often exists in the system, which renders the 
analysis and control of a distillation column very difficult 
[1,2]. In practice, the single-point control is commonly 
used which is sample and easy to tune. However, the con- 
sumption of energy in single-point control is large and the 
product of the other end is not guaranteed. For high purity 
distillation column, the two-point control or other strate- 
gies have been investigated [1,2]. Considering the intrinsic 
nonlinearity of a distillation column, nonlinear controller 
has been designed based on the rigorous mathematical 
model [3,4]. Although a nonlinear controller may be 
effective in simulation, its implementation in practical 
plants is complex because of the lack of measurement of 
some key variables. Furthermore, a controller based on the 
accurate mathematical model may lead to poor perfor- 
mance in case of large perturbation. For this reason, most 
controllers for distillation columns are synthesized based 
on the input-output relations such as transfer function or a 
model obtained by system identification [1,5-8]. 

Because of its capability to approximate arbitrary non- 
linear mapping, neural network has been actively used in 
nonlinear system identification and control [9-12]. The 
multilayer feed-forward neural network (MFNN) is one 
of the most widely used neural networks as a system 
model in the design of a model-based controller. A dy- 

namic neural network (DNN) is more suitable to ap-
proximate a nonlinear dynamic process. Therefore, dy-
namic recurrent neural network has been used to learn the 
input-output relationship of a column and a local optimal 
controller based on the neural network model was given in 
[8]. Non-linear adaptive controllers based on MFNN and 
RBFNN have also been studied [13,14]. A recent review 
[15] for the past 28 years showed that most of the 
implementations of advanced control like internal model 
control were based on linear models. Many recently 
published papers [16,17] on neural control for distillation 
columns are some extensions of previous research and 
supported by simulations. Although a neural network can 
be trained in simulation to approximate any nonlinear 
process, the control law must be designed to be robust for 
the modeling error. H control has been a very popular for 
robust control of nonlinear system [18-20]. The applica- 
tion of H control to distillation columns has not been 
widely discussed. 

In this paper, a dynamic neural network is designed to 
identify the input-output relation of a distillation column 
online. The training algorithm of the network is derived 
from a Lyapunov function so that the convergence of 
weights and the finite bound of the identification error are 
guaranteed. To cope with model error, a nonlinear H 
controller based on the trained network model is em-
ployed to enhance the robustness of the control system. 
Simulation results demonstrate the effectiveness of the 
online identifier and the control algorithm. 
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2. DNN Based On-Line Identifier of a Binary 
Distillation Column 

Assume the distillation column is with (L, V) control 
structure where L and V are reflux flow in condenser and 
boil up flow in reboiler (kmol/min) respectively. Then, let 
u1, u2 be L, V respectively. The outputs are the light 
compositions of the top and bottom products of a distilla-
tion column.  

In some set points, assume the nonlinear input-output 
relationship of the distillation column can be expressed 
approximately as below: 
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Assume the outputs 1Y , 2 are known, a dynamic neu- 
ral network based identifier is designed to approximate 
(1) as below: 
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where A is any stable matrix. Y and are the output 
vectors of the column and the identifier respectively. 
f and ˆig  ( i  = 1,2) are all MFNN, which are the 

estimates of f and ig  in (1) respectively. The active 
function of the output-layer of MFNN f̂  is linear. The 
active function of 1ĝ  is a sigmoid function  

(1 exp(k  ))x ˆ, and the active function of 2g  is  
(1 x k


exp(k 
k

)) , where  is a tunable parameter sat-
isfying . 0 fW  and 

igW  are the weight matrixes. 
From [9], for 0   and any continuous function 
( )F x  there exist a three-layer feedforward network sat-

isfing: 
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where  denotes the optimal weight matrix and 
F̂ x W   denotes the outputs of the network. 

Let fW   and 
igW   be the corresponding optimal 

weight matrix, system (1) can be rewritten as： 
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where (Y  is the modeling error of the optimal identi-
fer satisfing: 
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which can be made as small as possible by adjusting the 
neural network structure. 

Let 

 

  be an extended column vector of all the ele-

ments of a weight matrix W.  denotes the corre- 
sponding extended vector of the optimal weight matrix. 
Then the extended column vector of fW

i
and gW are f  

and 
ig . Define identification error as  
Ŷe Y   and parameter estimation error as  
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0,  , where j i , and P is the positive defined 
solution of the following Lyapunov equation: 
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Q is a positive defined matrix and the minimal eigenvalue 
of Q is 0 . 

Theorem 1: If  is bounded and the weight updat-
ing alogrithm is (7), then the identification error  and 
parameter estimation error 
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Substituting (10) into the above equation leads to 
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3. Nonlinear H Control of the Binary 

Distillation Column 
 
3.1. Nonlinear H Control 
 
Consider an affine nonlinear controller system 

1 2( ) ( ) ( )x f x g x g x u  

( ) ( )y h x k x u 
n

 

                 (8)  

where x R mu R, , sR , py R ; ( )f x , 1( )g x , 
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control is to make the following conditions guaranteed 
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3.2. Nonlinear H Control of the Binary 

Distillation Column 
 
Considering the existence of the modeling error, system 
(3) can be rewritten as: 
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For the binary distillation column, 2  is inver- 
tible. If the penalty variables are chosen to be 
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where P is the positive defined solution of the following 
Riccati inequality: 
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where [A,C] is observable. 
 
4. Simulation 
 
After The binary distillation model used in the simula-
tion is the same as the one developed by [2]. The nomi-
nal values of outputs are 10 0.98(mol%)Y

 (mol%)
 and  

20 . The nominal values of reflux flow 
and boil-up flow are L = 2.28625 (kmol/min) and  
V = 2.78625 (kmol/min). The feed flow and feed compo-
sition are F = 1 (kmol/min) and Zf = 0.5 (mol%).  
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The distillation column is controlled using the control 
strategy (13) developed in this paper. The tacking prop-
erty and the disturbance attenuation property of the con-
trol system are demonstrated through simulation. To 
make the transient response be more elegant, the dy-
namic neural network based identifier is trained for some 
time offline. 

In the simulation, we choose 

,  

and the positive definite P we obtained is 

. 

1) Servo properties 
Let the setpoint of the top light component change 

from nominal value 0.98 to 0.995 and the bottom com-
position remain nominal value 0.02. The augmentations 
of system output are demonstrated in Figure 1. The 
curves of the control inputs are in Figure 2. 

2) Robustness 
The responses of the closed-loop system are illus- 

 
Figure 1. The augmentations of outputs. 

 

 
Figure 2. The curves of control inputs. 

 

 
Figure 3. The augmentations of outputs (Feed increases 
10%). 

 
Figure 4. The augmentations of outputs (Feed composition 
increases 10%). 
 
trated in Figures 3 and 4 when feed flow F and feed 
composition Zf increase 10% respectively. 
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5. Conclusions 
 
A dynamic neural network based online nonlinear identi-
fier for a binary distillation column is designed. The 
learning algorithm of the network weights is established 
in detail, which can guarantee the boundedness of the 
identification error. To deal with the modeling error, a 
nonlinear H∞ controller based on the identifier is given 
by choosing the penalty variables for the column. The 
effectiveness of the proposed strategy is demonstrated in 
simulation results. The algorithm developed in this paper 
can be applied to other chemical processes as well. 
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