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Abstract 
Time-spectral solution of ordinary and partial differential equations is often 
regarded as an inefficient approach. The associated extension of the time do-
main, as compared to finite difference methods, is believed to result in un-
comfortably many numerical operations and high memory requirements. It is 
shown in this work that performance is substantially enhanced by the intro-
duction of algorithms for temporal and spatial subdomains in combination 
with sparse matrix methods. The accuracy and efficiency of the recently de-
veloped time spectral, generalized weighted residual method (GWRM) are 
compared to that of the explicit Lax-Wendroff and implicit Crank-Nicolson 
methods. Three initial-value PDEs are employed as model problems; the 1D 
Burger equation, a forced 1D wave equation and a coupled system of 14 linea-
rized ideal magnetohydrodynamic (MHD) equations. It is found that the 
GWRM is more efficient than the time-stepping methods at high accuracies. 
The advantageous scalings 1.0 1.43

t sN N  and 0.0 1.08
t sN N  were obtained for CPU 

time and memory requirements, respectively, with Nt and Ns denoting the 
number of temporal and spatial subdomains. For time-averaged solution of 
the two-time-scales forced wave equation, GWRM performance exceeds that 
of the finite difference methods by an order of magnitude both in terms of 
CPU time and memory requirement. Favorable subdomain scaling is dem-
onstrated for the MHD equations, indicating a potential for efficient solution 
of advanced initial-value problems in, for example, fluid mechanics and 
MHD. 
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1. Introduction and Background 

In time-spectral methods for time-dependent ordinary partial differential equa-
tions, a spectral representation is employed for the temporal domain. As an al-
ternative to standard finite time differencing, this approach has been studied by 
several authors [1]-[23]. It is sometimes held, however, that computing the solu-
tion simultaneously over all space-time is inefficient [12] [17]. In this work, we 
will show that high efficiency can indeed be obtained through the use of opti-
mizing methods, including spatial and temporal subdomains. 

The focus is here on the recently developed Generalized Weighted Residual 
Method (GWRM), where truncated Chebyshev expansions are employed [24] 
[25]. Similarly as for other time-spectral approaches, the CFL condition and 
other grid causality conditions associated with time marching algorithms are 
eliminated. Although the problems to be solved typically are causal, the method 
is acausal in the sense that the time dependence is calculated by a global mini-
mization procedure (the weighted residual formalism) acting on the time inte-
grated problem, recalling that, in standard WRM, initial value problems are 
transformed into a set of coupled linear or nonlinear ordinary differential equa-
tions for the time-dependent expansion coefficients [26]. These are solved using 
finite differencing techniques. 

In the GWRM, not only temporal and spatial but also physical parameter do-
mains may be treated spectrally using Chebyshev polynomials, being of interest 
for carrying out parameter scaling dependence in a single computation. How 
this works becomes clear as the method is briefly described in the next section. 

Various suggestions related to spectral methods in time have been put forth in 
the literature. As early as 1979, a pseudo-spectral method, based on iterative 
calculation and an approximate factorization of the given equations, was sug-
gested [1]. Also, some early ideas, not developed further, are due to Peyret and 
Taylor [2]. 

In 1986 and 1989, Tal-Ezer [3] [4], proposed time-spectral methods for linear, 
periodic hyperbolic and parabolic equations, respectively, using polynomial ap-
proximation of the evolution operator in a Chebyshev least square sense. Peri-
odicity was assumed for the spatial domain by using Fourier spectral approxi-
mation. The method extends the traditional ( )21t O N∆ =  stability criterion 
for explicit algorithms, where the space resolution parameter ( )1N O x= ∆ , to 
higher efficiency, yields a stability condition ( )1t O N∆ = . This approach to 
extend the time step in explicit methods was further studied in [8]. The method 
is not widely used; a reason for this may be its complexity and its restriction to 
certain classes of problems. Later, Luo extended the method to more general 
boundary conditions and multiple spatial dimensions [11]. 

In 1987, a “double spectral method”, with polynomial spectral functions in 
both space and time variables was suggested for nonlinear diffusion equations 
[5]. The method, using a somewhat different convergence scheme than the 
GWRM, was found to be more efficient than a related scheme where only the 
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spatial domain was spectrally decomposed. 
Ierley et al. [7] used a Fourier representation in space and a Chebyshev repre-

sentation in time for solving a class of nonlinear parabolic partial differential 
equations with periodic boundary conditions. Similarly as for the GWRM, the 
Burger equation and other problems were solved with high resolution. Tang and 
Ma [13] also used a Fourier representation for solution of parabolic equations, 
but introduced Legendre Petrov-Galerkin methods for the temporal domain. 

In 1994, Bar-Yoseph et al. [9] [10] used space-time spectral element methods 
for solving one-dimensional nonlinear advection-diffusion problems and second 
order hyperbolic equations. Chebyshev polynomials were later employed in 
space-time least-squares spectral element methods [15]. 

A theoretical analysis of Chebyshev solution expansion in time and one-dimen- 
sional space, for equal spectral orders, was given in [6]. The minimized residuals 
employed were however different from those of the GWRM. More recently 
Dehghan and Taleei [19] found solutions to the non-linear Schrödinger equa-
tion, using a time-space pseudo-spectral method. 

Time-spectral methods feature high order accuracy in time. For primarily im-
plicit finite difference methods, deferred correction methods may provide high 
order temporal accuracy [21] [27] [28] [29] [30] [31]. High-order collocation 
solutions are found by performing a series of correction sweeps with a low-order 
time-stepping method. Both classical and spectral deferred correction methods, 
however, employ relatively short time intervals for iterated correction of the so-
lution, whereas the GWRM time spectral functions are supported in long time 
intervals; for ODEs about two orders of magnitudes times typical Runge-Kutta 
step lengths. 

A relatively recent approach to increase the temporal efficiency of finite dif-
ference methods is time-parallelization via the parareal algorithm [14]. This 
method, however, features rather low parallel efficiency and improvements have 
been suggested, for example the use of spectral deferred corrections [21]. An in-
teresting Jacobian-free Newton-Krylov method for implicit time-spectral solu-
tion of the compressible Navier-Stokes equations has recently been put forth by 
Attar [23]. 

A time-spectral method for periodic unsteady computations, using a Fourier 
representation in time, was suggested in [16] and further developed in [18] and 
[22]. A generalization to quasi-periodic problems was developed in [20]. In 
summary, although time-spectral methods have been explored in various forms 
by several authors during the last few decades, and were found to be highly ac-
curate, the GWRM as described in [25] has not been pursued extensively. 

Returning to the issue of efficiency, most of the GWRM computational effort 
is spent in solving the system of linear or nonlinear (depending on the type of 
problem) algebraic equations for the Chebyshev series coefficients. Iterative root 
solvers require either the computation of an inverse matrix or the solution of an 
equivalent matrix equation. As a simple example consider GWRM solution of a 
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1D initial-value PDE, employing Chebyshev polynomials of order K and L in 
time and space, respectively. Then ( )( ) 3

1 1K L Ω = + +   numerical operations 
are typically required for matrix inversion and 3Ω  operations using LU de-
composition for solving the corresponding matrix equation [32]. Should large 
modal number K and L be necessary for sufficient resolution of the full compu-
tational domain, the corresponding large number of operations may indeed pro-
hibit any positive comparison with finite difference methods. Furthermore the 
memory requirements can be shown to scale as ( )( ) 2

1 1K L + +  . It is clear that 
measures need to be taken to reduce these numbers. 

The paper is arranged as follows. In the next section, a short introduction to 
the GWRM is provided. In Section 3 several methods for improved GWRM effi-
ciency will be presented. These will, in turn, be implemented as we compare the 
efficiency of the GWRM versus explicit and implicit finite differencing methods 
in section 4. The paper ends with discussion and conclusion. 

2. The Generalized Weighted Residual Method (GWRM) 

We may write a system of parabolic or hyperbolic initial-value partial differential 
equations symbolically as 

f
t

∂
= +

∂
u Du                             (1) 

where ( ), ;t=u u x p  is the solution vector, D is a linear or nonlinear matrix 
operator and ( ), ;f f t= x p  is an explicitly given source (or forcing) term. 
Note that D may depend on both physical variables (t, x  and u ) and physical 
parameters (denoted p ) and that f is assumed arbitrary but non-dependent on
u . Initial ( )0 , ;tu x p  as well as (Dirichlet, Neumann or Robin) boundary 
( ), ;Btu x p  conditions are assumed known. 
Our aim is to determine a spectral solution of Equation (1), using Chebyshev 

polynomials [33] in all dimensions. For simplicity, we restrict the discussion to a 
single equation with one spatial dimension x and one physical parameter p. Thus 
the solution is approximated by (prime denotes that each zero index renders a 
multiplication by ½) 

( ) ( ) ( ) ( )
0 0 0

, ; .
K L M

klm k l m
k l m

u t x p ' ' ' a T t T x T p
= = =

= ∑ ∑ ∑             (2) 

The Chebyshev polynomials of the first kind (henceforth simply referred to as 
Chebyshev polynomials) are defined by ( ) ( )( )cos arccosnT x n x= . These are real 
ordinary polynomials of degree n, orthogonal in the interval [ ]1,1−  over a 
weight ( )2 1 2

1xw x
−

= − . Thus ( )0 1T x = , ( )1T x x= , ( ) 2
2 2 1T x x= −  and so 

forth. Extension to arbitrary computational intervals for t, x and p is described in 
[24]. 

As in standard WRM a residual R is defined as, here using the Picard integral 
formulation of Equation (1): 

( ) ( ) { }
0

0, ; , ; d
t

t
R u t x p u t x p Du f t ′≡ − + +  ∫             (3) 
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The coefficients klma  of the Chebyshev series are subsequently determined 
from the set of algebraic equations being generated by R from the requirement 
that the residual should satisfy the Galerkin WRM defined over the full compu-
tational domain: 

( )( ) ( )( ) ( )( )1 1 1

0 0 0
d d d 0.

t x p
q r s t x pt x p

RT t T x T P p w w w t x pτ ξ =∫ ∫ ∫        (4) 

Interval variables ,τ ξ  and P are defined in [24]. The right hand terms of 
Equation (1) have all been expanded in Chebyshev polynomials. The resulting 
algebraic equations are solved using the iterative solver SIR [34], which features 
improved convergence characteristics as compared to Newton’s method with 
line-search. Further details of the GWRM procedure, including handling of 
boundary conditions, can be found in [24] [25]. 

All computations are performed using the computer mathematics program 
Maple. The GWRM is easily coded in languages like Matlab or Fortran, but ab-
solute computational speed is not important for the comparisons with finite dif-
ference methods made here; rather it is important that all comparisons are car-
ried out within the same computational environment. 

3. Improving Efficiency 

An early implementation of the GWRM was compared with finite difference 
methods for solving two elementary initial-value problems in [24]. Studies of 
accuracy and efficiency were made for the nonlinear 1D Burger equation and a 
linear, forced 1D wave equation, respectively. 

The 1D Burger equation, being related to problems in fluid mechanics and 
magnetohydrodynamics (MHD), is 

2

2

u u uu
t x x

υ∂ ∂ ∂
= − +

∂ ∂ ∂
                     (5) 

where υ can be interpreted as a (kinematic) viscosity. For comparisons, we use 
an exact solution of this equation [24]. It was found that, for specified accuracy, 
the Burger equation was solved about two times faster for 0.01υ =  by the Lax- 
Wendroff method than by the GWRM and about four times faster with a semi- 
implicit method, advancing the linear diffusive term with the Crank-Nicolson 
scheme and the nonlinear convective term explicitly. 

The 1D forced wave equation being solved is 

( )
2 2

2 2 ,u u f t x
t x

υ∂ ∂
= +

∂ ∂
                      (6) 

( ) ( ),0 ,1 0u t u t= =  

( ) ( )0, sin πu x n x=  

( ) ( )0, sinu x A x
t

α β∂
=

∂
 

where the forcing function is ( ) ( ) ( ) ( )2 2, sin sinf t x A t xυβ α α β= − . The exact 
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solution is ( ) ( ) ( ) ( ) ( )0.5, cos π sin π sin sinu t x n t n x A t xν α β= + , featuring two 
time scales where we choose the driving term time scale to be much longer than 
the intrinsic time scale; the respective ratio is ( )πR nα υ= . The primary aim 
was here to average out the fast time scale behavior in order to generate ap-
proximate solutions following the slower time scale. For similar accuracy, the 
GWRM was here about 10 times faster than Lax-Wendroff and 30 times faster 
than Crank-Nicolson. 

In the following, we will present algorithm improvements that substantially 
enhance the performance of the GWRM for the 1D Burger and the 1D forced 
wave equations described above. Comparisons will be made with the explicit 
Lax-Wendroff and implicit Crank-Nicolson methods. Although more efficient 
time stepping methods for the model problems have been developed, these are 
chosen as well known reference methods. 

Furthermore, GWRM performance improvements for a third, advanced 
problem will be studied; the set of 14 (actually 7 complex), linearized ideal MHD 
equations modelling the stability of a magnetically confined plasma. 

How then, is the GWRM made more efficient? The measures that are taken 
fall into two categories: a) optimal adaption of the root solver SIR to the GWRM 
and b) streamlining of the GWRM itself. Below we present the ideas and algo-
rithms that have been developed for these categories; performance results will be 
given in the next section. 

3.1. SIR Optimization 

ODEs and PDEs can be solved globally by the GWRM scheme given in section 2 
using single spatial and temporal domains. High resolution then requires high 
modal numbers K and L (we let M = 0 in this paper) which in turn results in a 
large set of ( )( )1 1N K L= + +  nonlinear or linear algebraic equations to be 
solved simultaneously by SIR. A natural step to avoid the corresponding cubic 
and quadratic dependencies on N for the number of operations and memory 
storage, respectively, would be to divide the physical domain into coupled sub-
domains in space and time. 

Substantial CPU time would be saved if the subdomain equations could be 
computed independently to some extent. Attempts to update the spatial domains 
independently at each iteration, using previous iterates for boundary conditions 
only, was however found to be only partially successful [35]. Convergence re-
quires for this approach that the initial iterates are chosen very close to the solu-
tion. In fact it has been shown both theoretically and computationally that itera-
tion convergence, in terms of a limited maximum norm, usually requires a for-
mulation that, by some procedure, couples all equations in each iteration [34] 
[35]. In the following this latter, “dependent” subdomain approach is thus em-
ployed. 

The root solver SIR [34] is at the core of the GWRM. We will now discuss the 
measures that have been taken to optimize SIR for GWRM use. 
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S1. Matrix and vector numerical package. It is important that the computa-
tional environment includes efficient packages for standard operations on 
vectors and matrices. In Maple, the transition from the linalg to the Linear 
Algebra package resulted in faster handling of the matrix equations. Certain 
packages, like Vector Calculus, should not be called globally since they slow 
down computations. 

S2. Solution of matrix equations. In SIR, the matrix equation  
( )= − +x A x ϕ ϕ  is solved iteratively, where the vector x contains the Che-

byshev coefficients of the solution u, φ is a vector with components that are 
functions of the coefficients, and A is a linear matrix operator being com-
puted to provide optimal convergence at each iteration. To determine A, a 
linear matrix equation involving the system Jacobian ( )≡ ∂ − ∂J x xϕ  
needs to be solved. A large fraction of the GWRM CPU time lies here. Using 
LU decomposition solution of this system, instead of inversion of J, a depen-
dence 3Ω  rather than Ω  for the number of operations is obtained for 
large matrices. For small matrices, however, inversion turns out to be faster, 
thus there is an option to choose either method. 

S3. Choice of equation solver mode. For many problems, SIR can be run as 
Newton’s method since sufficient convergence is achieved and less iterations 
are needed. For improved convergence, SIR default settings [34] are prefera-
bly used. 

S4. Effect of A matrix on convergence. When solving linear algebraic equa-
tions, the matrix A needs to be computed only for the first domain, provided 
that the domains are equidistant in time, and can then be re-used for the fol-
lowing time domains. This fact is extremely useful when dividing the tem-
poral domain of the problem into subdomains. Nonlinear PDEs usually re-
quire at least 5 - 10 iterations. For the last few iterations, however, the A ma-
trix is nearly constant. Thus substantial CPU time is saved by computing A 
in the first few iterations only; even beautiful houses can be built with ugly 
scaffolds. 

S5. Band matrix methods. Sparse, band-shaped Jacobian matrices J occur in 
problems where many spatial subdomains are employed because only neigh-
boring domains are analytically coupled. The Maple Linear Algebra package 
has built-in algorithms that automatically handle sparse matrix equations ef-
ficiently. 

S6. J matrix differentiation. The Jacobian J is obtained exactly by analytical dif-
ferentiation of φ. This is a tedious procedure that, without optimization, may 
require more than 50% of the total GWRM CPU time for matrices of dimen-
sion about 3000 or higher. By implementing algorithms that differentiate the 
non-zero band matrix elements only, favorable scaling with the number of 
spatial subdomains is obtained for very large matrices. 

S7. Spatial and temporal subdomain influence on φ. In particular for nonli-
near problems, the components of φ may be lengthy and complex, thus being 
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time-consuming to differentiate analytically. Significant speed is gained by 
the use of spatial and temporal subdomains, since then the same global accu-
racy may be obtained using lower order Chebyshev polynomial expansions in 
each subdomain, resulting in more manageable φ vectors for differentiation. 

S8. Choice of initial vector x = x0. As for all iterative methods, SIR convergence 
strongly depends on the choice of initial vector x0. The closer to the solution, 
the faster the convergence. In GWRM computations, x0 is typically taken to 
be the initial condition or, when multiple time domains are used, the solution 
for the end of the previous time interval. Thus, if the temporal length is re-
duced, the solution vector x will arbitrarily approach the initial guess x = x0. 
Hence, GWRM convergence is always guaranteed. In some computations 
particularly well-conditioned choices of x0 can be made. For example in nu-
merical weather prediction, several scenarios are computed with slightly dif-
ferent initial conditions in order to provide ensemble results. Rapid GWRM 
convergence can then be reached by using solutions x from previous compu-
tations as x0 [36]. 

3.2. GWRM Optimization 

Next follows a discussion on the measures taken to optimize the GWRM. 
S9. Spatial and temporal subdomains. The use of spatial and temporal subdo-

mains implies that the same accuracy can be retained with lower order Che-
byshev polynomials in each domain. Optimistically, if this order could be 
reduced to half by halving the interval, a speed gain of about a factor 4 would 
be obtained because of the cubic dependence on the number of modes and 
that the number of intervals is doubled. In reality, the story is more compli-
cated and there is usually an optimum subinterval length [36]. For the time 
domain this means that GWRM time intervals may be a factor of 100 longer 
than the time steps of, for example, Runge-Kutta methods. For the spatial 
domain the optimum Chebyshev order is typically much higher than those of 
finite element methods. As mentioned regarding SIR optimization, a large 
number of spatial subdomains is favorable for efficiency since the corres-
ponding global Jacobian will become a very sparse band matrix due to that only 
immediately neighboring domains will contribute to non-zero near-diagonal 
matrix elements. 

S10. Overlapping spatial subdomains. It is preferable to use overlapping spatial 
subdomains in Chebyshev spectral methods as compared to a procedure 
where function and functional derivative values are matched at the borders. 
A standard is two-point overlap (“hand-shake”). The reason is that the Che-
byshev spectral space representation of derivatives is sensitive to the values of 
higher order coefficients, which values are quite approximative both during 
early iterations and for solutions that do not need to be precisely calculated. 
The amount of overlap can be chosen arbitrarily; very small values (order 
10−6 of the spatial domain) are usually favorable for high accuracy. The 
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number of overlap points required to preserve boundary condition informa-
tion across the spatial domain is a function of the number of first order PDEs 
that are solved [35]. 

S11. Adaptive temporal subdomains. Time overlap is only used for the tem-
poral domains when it enhances convergence, since accuracy generally is ne-
gatively affected. Adaptive time interval length, however, greatly enhances ef-
ficiency. Best results have been obtained by starting with a relatively long 
time interval; if convergence is not reached, the time interval is automatically 
reduced and a new computation is performed. The algorithm regularly 
strives to increase the time interval length, which procedure is very forceful 
in smooth computational terrain. It may be mentioned that this algorithm is 
very robust since Chebyshev polynomials are limited to values in the interval 
[−1, 1]; thus the numerical values of higher order Chebyshev coefficients di-
rectly measure convergence. 

S12. Time parallelization. The use of spatial subdomains opens up the possibil-
ity for performing strongly parallel computations in each time interval. In an 
approach termed “the Common Boundary Condition method” (CBC) we 
solve the local physical equations of each subdomain in parallel for each ite-
ration, whereas the global computation only involves the boundary equations 
that connect the domains. This promising procedure is relatively complex 
and will be reported elsewhere. 

S13. Clenshaw’s algorithm. Nearly all GWRM computations take place in spec-
tral space. The computation of a Chebyshev series however, which may be 
needed for example when handling overlapping temporal domains, suffers 
from truncation errors at higher modal numbers. Clenshaw’s algorithm [32] 
allows accurate high order representations and should be used instead. 

S14. End conditions. Since the GWRM is an acausal algorithm, initial condi-
tions can be traded for end conditions for possible improvement of numeri-
cal stability. This potential avenue is, so far, only explored for some simple 
cases with neutral result. 

Finally we would like to mention our present development of an adaptive spa-
tial subdomain method that automatically widens the spatial domains in smooth 
regions and narrows them near sharp spatial gradients. The idea is to narrow the 
domains with the highest amplitudes of the highest order Chebyshev coeffi-
cients, since these indicate limited resolution. Substantially extended accuracy, 
with only marginally increased computing time, has been found for the Burger 
equation. Results will be reported elsewhere. 

4. Results 

Early implementations of the GWRM were compared with finite difference me-
thods with respect to convergence, accuracy and efficiency for the two model 
problems discussed above [24] [25]. Efficiency enhancement of the GWRM, em-
ploying the ideas of Section 3, will now be demonstrated for these cases. An ad-
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vanced problem, formulated as 14 coupled MHD PDEs, will subsequently be 
addressed. 

4.1. Accuracy—The Burger Equation 

In [24] Burger’s equation was solved by the GWRM for 0.01v =  with the pa-
rameters T = 10, Nt = 1, K = 9, Ns = 2, L = 7 using a relatively fast algorithm 
where the spatial subdomains were solved independently at each iteration, and 
coupled thereafter. We here and henceforth use the notation T = t1 − t0, with t0 = 
0. The number of time intervals is denoted by Nt and Ns is the number of spatial 
subdomains. Obtained run parameters were CPU time 2.48 s and memory use 
182 MB. This algorithm is, however, often numerically unstable [35] and is 
therefore not reported elsewhere in this paper. The alternative unoptimized code 
in [24], with the spatial subdomains simultaneously (‘dependently’) solved at 
each iteration, required 5 iterations for an accuracy of 1.0 × 10−3, using 14.1 s 
CPU time and 192 Mb. The new, optimized code (employing the measures of 
section 3) is substantially more efficient, using 1.27 s and 37.1 MB. 

Comparing with finite difference methods, the same accuracy is obtained with 
the second order Lax-Wendroff method [32] in 2.37 s, using 234 MB of memory. 
The spatial grid needs 70 points for accuracy whereas 1000 time steps are needed 
to satisfy the dominating CFL criterion ( ) ( )2 2t x υ∆ ≤ ∆  for this problem [24] 
[25]. A semi-implicit method, advancing the linear diffusive term using the 
Crank-Nicolson scheme and the nonlinear convective term explicitly was also 
implemented. Again employing 1 70x∆ = , only 500 time steps, 0.47 CPU s and 
37.1 MB of memory were required for an accuracy of 1.0 × 10−3. 

In summary, for an accuracy of 1.0 × 10−3 the optimized GWRM solution of 
the Burger equation for 0.01v =  required about half the CPU time of the expli-
cit Lax-Wendroff method and only 15% of the memory. The semi-implicit 
Crank-Nicolson method needed the same amount of memory as the GWRM but 
was about two times faster. In this section accuracy is studied, so we now turn to 
comparisons for higher accuracy. 

Using the optimized GWRM, again for 0.01v = , an increased accuracy of 1.0 
× 10−4 was obtainable for T = 10, Nt = 5, K = 6, Ns = 5, L = 7, requiring 4 itera-
tions for each time interval, 6.72 CPU s and 88.3 MB. The Lax-Wendroff method 
needed 57.4 CPU s and 1430 MB, using 1 200x∆ =  and 8100 time steps. Cor-
responding parameters for the semi-implicit method was 28.6 CPU s, 456 MB, 

1 400x∆ =  and 4500 time steps. Increasing accuracy to 1.0 × 10−5, the GWRM 
provides a solution for T = 10, Nt = 12, K = 6, Ns = 8, L = 7, with 3 iterations for 
each time interval, in 32.3 CPU s using 195 MB of memory. This accuracy could 
neither be achieved with the Lax-Wendroff nor the Crank-Nicolson method 
within 180 CPU s or below 3000 MB of memory. As an example, 2.0 × 10−5 ac-
curacy was found for the latter method using 1 900x∆ =  and 22,000 time steps 
in 472 CPU s for 3390 MB memory use. 

In summary, for 0.01v =  and an accuracy of 1.0 × 10−4, the optimized 

https://doi.org/10.4236/ajcm.2018.81002


J. Scheffel, K. Lindvall 
 

 

DOI: 10.4236/ajcm.2018.81002 17 American Journal of Computational Mathematics 
 

GWRM solution required 12% of the CPU time and 6% of the memory of the 
Lax-Wendroff method. When compared to the Crank-Nicolson method, the 
numbers become 23% and 19% for CPU and memory requirements, respective-
ly. The GWRM consequently strongly outperforms both finite difference me-
thods for higher accuracies. For lower accuracies the finite difference methods 
become more competitive. 

It is well known that spectral methods often are less efficient for problems 
where shocks or steep gradients must be resolved. This is confirmed for the stif-
fer 1D Burger case with 0.003v = . A steep gradient towards 1x =  develops 
due to convection, as can be seen in Figure 1. The GWRM provides a 7.0 × 10−4 

accurate solution for T = 10, Nt = 5, K = 6, Ns = 9, L = 7, with maximum 4 itera-
tions for each time interval, in 17.4 CPU s using 181 MB of memory. The Lax- 
Wendroff method requires, for the same accuracy, 2.75 CPU s and 180 MB, with

x∆  = 1/80 and 1000 time steps. Corresponding parameters for the semi-impli- 
cit method are 4.62 CPU s and 187 MB, using x∆  = 1/80 and 4000 time steps. 
For an accuracy of 1.0·10−4 the GWRM needs T = 10, Nt = 10, K = 6, Ns = 20, L = 
7, with maximum 4 iterations for each time interval, in 153 CPU s using 306 MB 
of memory. The Lax-Wendroff method uses 73.2 CPU s and 1420 MB for the 
parameters 1 200x∆ =  and 10,000 time steps, whereas the semi-implicit me-
thod uses 106 CPU s and 2040 MB for the parameters 1 300x∆ =  and 20000 
time steps. Thus it is again seen that for high accuracy the GWRM becomes 
comparatively more efficient and much less memory demanding than the finite 
difference methods. 

Of particular interest is GWRM CPU time and memory scaling with Nt and 
Ns. Using the case mentioned at the beginning of this section we have performed 
scans where [ ]1,15tN ∈  and [ ]1,15sN ∈ . It was found that CPU time scales as 

1.0 1.43
t sN N  and memory usage as 0.0 1.08

t sN N  (for 2tN > ). These scalings 
represent a substantial improvement as compared to the cubic and quadratic 
 

 
Figure 1. GWRM solution of Burger’s equation for  

0.003ν = . For parameters see text. 
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scalings with t sN N  for CPU time and memory, respectively, that hold for un-
optimized code without subdomains (assuming KNt and LNs global modes 
would be used instead). 

Finally we consider which of the measures S1-S8, G1-G6 that contribute most 
to the improved GWRM performance. Clearly simultaneous use of temporal and 
spatial subdomains (G1, G2) is important through the avoidance of high order 
global temporal and spatial modes. The CPU time linear dependence (and 
memory independence) on Nt is expected, whereas band matrix methods (S5), 
and also measures S1-S4, S6-S7, contribute to the weak Ns dependence. The 
present Burger problem is easily solved by SIR, which converges also in Newton 
mode, being quite insensitive to the choice of initial vector x0 (S8). Measures 
G3-G6 were unimportant here. We may mention, however, that measure G3, 
automatic time interval adaption, may improve efficiency substantially in certain 
problems; for example in a solution of three coupled, time-dependent and chao-
tic ODEs it leads to GWRM efficiency beyond that of fourth order Runge-Kutta 
methods [36]. 

4.2. Efficiency–A Forced Wave Equation 

The forced 1D wave equation studied in [24] features two distinct time scales; a 
slow time scale associated with the driving function and a fast system time scale. 
A major reason for developing the GWRM was its potential to average out small 
scale oscillations, thus enhancing efficiency by using a reduced number of spec-
tral modes to follow slow time scales only. Explicit finite difference methods are 
here hampered by the limiting CFL conditions associated with signals travelling 
at the fast time scale. Indeed it was found in [24] that, for the problem studied, 
the GWRM is substantially faster than the Lax-Wendroff and Crank-Nicolson’s 
methods. The latter method is slowed down by the need to solve matrix equa-
tions at each time step since multiple equations are solved. 

Focusing on efficiency in finding smooth, time-averaged solutions, accuracy is 
here determined by comparison with the slow time scale part of the exact solu-
tion, that is the second term of  
( ) ( ) ( ) ( ) ( )0.5, cos π sin π sin sinu t x n t n x A t xν α β= + . The optimized GWRM code 

solves the case in [24] (T = 30, Nt = 1, K = 6, Ns = 1, L = 8 for A = 10, α = 2π/T, β 
= 3π, n = 3) to an accuracy of 0.08 in 0.212 CPU s using 36.1 MB of memory. 
The Lax-Wendroff method solution of [24] (with 1 30x∆ =  and 900 time 
steps) needs 0.828 s and 69.1 MB for an accuracy of 0.30. 

Being a hyperbolic equation, the wave equation is not well suited for the use of 
implicit finite difference methods because of the problem of resolving phase at 
time steps larger than the maximum time step stipulated by the CFL condition. 
Here, however, the emphasis is rather on time-averaged accuracy and efficiency, 
thus it is of interest to see how an implicit method like Crank-Nicolson’s per-
forms. This method has now been optimized in relation to [24]. For the case 

1 30x∆ =  using 100 time steps, a limited time-averaged accuracy of 0.87 was  
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Figure 2. GWRM time-averaged solution versus time t of the wave equation at 0.2x = , 

compared to exact, oscillatory solution. For parameters, see text. 
 

achieved employing 1.16 s and 64.1 MB. The Lax-Wendroff method is thus pre-
ferable of the two finite difference methods, in spite of being explicit. The 
GWRM, however, is more accurate and much faster than both the finite differ-
ence methods. 

The case above features a single wavelength of the slow time scale. In practical 
situations, many period and slow time scale solutions often are of interest. In 
Figure 2 we show a GWRM solution of the same problem above for 10 periods 
(with T = 200, Nt = 10, K = 6, Ns = 2, L = 8 for A = 10, α = 20π/T, β = 3π, n = 3). 
A global accuracy of 0.22 was obtained using 2.66 CPU s and 83.2 MB of memo-
ry. Using Ns = 1 (a single spatial domain) nearly the same accuracy was obtained 
in 1.08 s, using 66.7 MB. 

Comparing with the finite difference methods, Lax-Wendroff obtains the 
same accuracy with 1 50x∆ =  and 10,000 time steps (CFL limit) using as much 
as 15.8 CPU s and 442 MB. The Crank-Nicolson method features low accuracy 
because of phase drift and is thus outperformed by the Lax-Wendroff method. 

4.3. GWRM Solution of the Linearized, Perturbed Ideal MHD  
Equation 

Magnetohydrodynamic (MHD) stability usually is a necessary condition for 
magnetically confined fusion plasmas. Theoretically, the stability of a specified 
plasma equilibrium may be tested by linearizing the so-called ideal MHD equa-
tions 

( ) 0
t
ρ ρ∂
+∇⋅ =

∂
u                        (7) 

d
d

p
t

ρ = × −∇
u j B

 
+ × =E u B 0  

( )d 0
d

p
t

ρ−Γ =
 

t
∂

∇× = −
∂
BE

 

0µ∇× =B j  
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Standard notation has been used; mass density, scalar kinetic pressure, fluid 
flow, magnetic field, current density and electric field are denoted by 

, , , , ,pρ u B j E , respectively. The notation ( )d dt t≡ ∂ ∂ + ⋅∇u  for the total de-
rivative has been used. Having specified a plasma equilibrium and the boundary 
conditions (in this case in circular cylindrical geometry), a perturbation is ap-
plied and the plasma time dynamics is investigated for possible exponential 
growth, in which case the equilibrium is unstable. Details are given in [24], 
where it is shown that 14 coupled scalar (7 complex) PDEs need to be solved si-
multaneously. Notable is that the evolution, in the unstable case, will be given by 
the competition of a number of unstable modes with different number of radial 
nodes. As the fastest growing mode (with zero radial nodes) starts to dominate, 
memory of the initial perturbation is gone. 

The stability of two equilibria will be studied here, applying the GWRM. The 
first is that of [25]; a) a screw-pinch equilibrium with radially constant current 
density profile and axial magnetic field B0z = 0.05 (normalized units, erroneously 
given as 0.2 in [25]); the second case b) is a pure z-pinch equilibrium so that B0z 

= 0. The azimuthally perturbation has Fourier mode number m = 1 and the axial 
mode number is k = 10. Both equilibria are strongly unstable to this perturba-
tion, featuring exponential growth rates of order unity (normalized to the Alfvén 
time). A difficulty for the GWRM is thus to polynomially resolve the exponential 
growth in time. In order for the dominant mode to develop, the equations typi-
cally needs to be solved for times T = 10 or more. For benchmarking, GWRM 
results are compared with an eigenvalue shooting code [37]. All computations 
are run in Maple on the same platform. 

First we note that the CPU time and memory requirement for case A, earlier 
discussed in [24], was 26.0 s and 444 MB respectively. In total 5 time intervals 
were used for a single spatial domain (Ns = 1); furthermore temporal K and spa-
tial L maximum mode numbers were both 5. Employing the improvements de-
scribed in Sections 3.1 and 3.2, the CPU time becomes reduced to 4.44 s and 
memory to 89.8 MB. Both cases gave the same result; growth rates = 0.83 within 
1% error and eigenfunctions within approximately 2% error. 

Of particular interest is dependence on number of time intervals Nt and 
number of spatial domains Ns. Since a linear equation is solved, the A matrix 
needs to be solved only for the first time interval (see S4). For the case above, the 
first time interval needs 1.49 s for full solution, whereas succeeding time inter-
vals on average require only 0.68 s, thus a 54% reduction. The CPU time scaling 
with Nt for these time intervals is linear. Memory requirements are essentially 
independent of Nt. 

For case B) the parameters T = 20, Nt = 3, K = 5, Ns = 1, L = 5 were here used 
for a run that took 11.1 s, using 105 MB memory, with 15% maximum error in 
eigenfunction ur. Using Ns = 2 (with 1.0 × 10−6 overlap), the CPU time increased 
to 26.2 s and memory to 336 MB, whereas eigenfunction error decreased to 5%; 
see Figure 3. The correct growth rate 1.04 was achieved within 1% error.  
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Figure 3. GWRM solution showing exponential time evolu-
tion (a.u.) of perturbed radial velocity u1r versus time t and 
radial coordinate r, for unstable equilibrium B. 

 
Increasing the number of spatial domains, the CPU time scaling 1.49

sN  was ob-
tained, in stark contrast to the unoptimized scaling 3

sN . The memory scaling 
was found to be 1.69

sN  (rather than 2
sN ) as a result of memory use unrelated to 

SIR. 

5. Discussion 

The ambition of this work has been to evaluate the performance of optimized 
implementations of the time-spectral method GWRM as compared to finite dif-
ference methods in time. In early work [24] [25] some example PDEs were 
solved. It was found that the explicit Lax-Wendroff and implicit Crank-Nicolson 
methods were both somewhat more efficient in finding accurate solutions to the 
1D Burger equation, whereas the GWRM outperformed the finite difference 
methods in tracing the longer time scale behavior of a PDE representing a forced 
wave equation. An advanced problem in MHD, including 14 simultaneous 
PDEs, was accurately solved but it was, in this early work, realized that the cubic 
CPU time and quadratic memory dependence on the total number of Chebyshev 
modes limits the performance of the method. Subdomains in time and space 
should be used for advanced problems. Subsequently, in [35], it was found that 
the spatial domains could be decoupled during the iterations for some problems, 
which dramatically increases performance, but the method is not universally 
stable and usually requires good initial guesses (by, for example, using short time 
intervals) for the root solver SIR. 

In the present work we report on results using fully coupled spatial subdo-
mains. As described in Section 3, a number of measures to enhance efficiency 
both for the GWRM itself, but also for the root solver SIR, have been developed. 
Returning to the earlier model problems, using the new algorithms, we now find 
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strongly enhanced performance. Of primary importance are the improved CPU 
time and memory scalings, where the uses of sparse matrix methods play central 
roles. 

Let us estimate the requirements for solution of an advanced 2D initial- 
boundary value problem. Primarily, GWRM efficiency depends on the solution 
of a matrix equation in SIR for determining the matrix A, used by SIR. In the 
absence of subdomains in time and space, the dimension N of this matrix is de-
termined by the number of simultaneous equations to be solved eN , and the 
number of Chebyshev modes ( , ,x yK L L ); thus e x yN N KL L= , assuming K + 1 ≈ 
K etc. With 5eN = , 100K = , 50xL = , 50yL = , we obtain 61.3 10N = × . 
Standard Gauss elimination requires ( )3O NΨ =  operations for each SIR ite-
ration. Thus, for this case, 182 10Ψ ≈ ×  operations, which would call for high 
performance computers. 

A substantial improvement in efficiency comes from the introduction of sub-
domains in time and space. We let x x sxL N L= , y y syL N L=  and t sK N K= . 
Here xN  and yN  denote the number of spatial subdomains in the x- and y- 
directions, respectively and tN  is the number of temporal subdomains. sxL , 

syL , and sK  denote the number of Chebyshev modes used for each domain. In 
the unoptimized case we have approximately e s x y sx syN N K N N L L=  and 

( )3
tO N NΨ = . Letting 10tN = , 5eN = , 10sK = , 10xN = , 10yN = , 

5sxL = , 5syL =  we find 51.3 10N = ×  and 162 10Ψ = × , Clearly, spatial opti-
mization is of the essence. The scalings found from the optimizations presented 
in this paper substantially improves the situation. Using the optimized depen-
dency ( )( )1.45

x yO N N  obtained in this work, rather than ( )( )3
x yO N N , we find 

131.6 10Ψ = × , a substantial reduction. A gigahertz table top computer could 
thus solve the problem within a few hours. 

The scalings discussed above are indeed validated for the 1D problems consi-
dered in this paper; taking into account the eN  dependence good agreement is 
obtained with the CPU times used. 

Turning to 3D problems, we may assume a further scaling of the number of 
operations with 1.45 3

z szN L . Thus for a problem with 10zN =  and 5szL = , using 
the above parameters, we have 66.5 10N = ×  and 165.6 10Ψ = × , which is not 
prohibitive for high performance computers. 

Further novel ideas for improving GWRM efficiency can, however, be em-
ployed. In recent work, to be published elsewhere, the number of simultaneous 
global spatial equations to be solved by SIR is reduced to the boundary equations 
(external plus internal) only. The physics equations of each spatial subdomain 
are solved locally at each iteration, and strong time parallelization is possible. 
The resulting improved scalings are particularly important for problems with 
multiple spatial dimensions. 

In this paper we have not employed automatic adaption of the time intervals 
(G4). This method has been proven to be very efficient when the GWRM was 
used for solving a set of chaotic differential equations in time, typical for nu-

https://doi.org/10.4236/ajcm.2018.81002


J. Scheffel, K. Lindvall 
 

 

DOI: 10.4236/ajcm.2018.81002 23 American Journal of Computational Mathematics 
 

merical weather prediction [31]. Time adaption lead to accurate GWRM solu-
tion of this problem at least as efficient as fourth order Runge-Kutta methods. 
As mentioned, automatic spatial subdomain adaption is presently investigated 
with promising initial results. Thus automatic temporal and spatial interval 
adaption, global solution of boundary equations only and parallelization will be 
interesting further paths of development of the GWRM for applications on ad-
vanced problems. 

6. Conclusions 

The time-spectral generalized weighted residual method (GWRM) employs a 
Chebyshev polynomial representation in time instead of the time differencing 
procedures that are typical for standard methods for solving differential equa-
tions. Unoptimized use of the method is, however, hampered in efficiency by the 
cubic dependence of the number of operations on the total number of Cheby-
shev modes. Several measures for enhancing efficiency, primarily sparse matrix 
methods, have here been studied, employing multiple temporal and spatial do-
mains. 

It was found that Burger’s 1D equation, with viscosity parameter 0.01υ = , 
was solved significantly faster and more accurate by the GWRM than by the ex-
plicit Lax-Wendroff and the implicit Crank-Nicolson finite difference methods 
for accuracies of order 1.0 × 10−4 or higher. Furthermore, it was found that 
GWRM CPU time scales as 1.0 1.43

t sN N  and memory usage as 0.0 1.08
t sN N , where 

Nt and Ns are the number of time intervals and spatial subdomains, respectively. 
This is a significant improvement of the 3

sN  and 2
sN  scalings, respectively, 

characteristic of the unoptimized case. 
The slower time scale of a forced wave equation problem, solved by all three 

methods, is found and followed by the GWRM much faster and using less 
memory than the finite difference methods. 

For an ideal MHD stability problem, it was found that the performance en-
hancement measures S1-S8, G1-G5 of section 3 yielded a more than five-fold in-
crease in efficiency. Being a linear problem, for which information from the first 
time interval can be reused, the CPU time for further time intervals becomes 
halved. A CPU time scaling with spatial subdomains 1.49

sN  was obtained; a sub-
stantial reduction of the unoptimized scaling 3

sN . The memory scaling was 
somewhat improved to 1.69

sN  (as compared to 2
sN ). The scalings enable solu-

tion of advanced 2D and 3D problems using the GWRM. 
In closing, it may be mentioned that all obtained GWRM solutions are analyt-

ical piece-wise polynomial expressions in time and space, thus immediately 
tractable for analysis. By using Chebyshev expansions also in parameter space, 
scaling behavior can be determined in a single GWRM run, as demonstrated in 
[38]. 
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