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Abstract 
The regularities of the motion of a one-dimensional Frenkel-Kontorova dis-
location in pure aluminum at helium temperatures are studied. Computer si-
mulation was carried out using the sine Gordon equation, written in dimen-
sionless variables. It is proven that when the transition to dimensionless va-
riables the discreteness of the model is preserved. The dependence of the true 
values of stresses on deformation in the Euler variables, as well as the velocity 
distribution of the dislocation fragments along the coordinate for successive 
instants of time, are obtained. It is shown that under these conditions disloca-
tion motion is realized by quantum tunneling of the dislocation bends. The 
quantum-mechanical estimate confirms the possibility of quantum tunneling 
of the kink of dislocations in aluminum at low temperatures. 
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1. Introduction 

Many elements of modern technology operate under conditions of moderate (up 
to 200 K) and deep (up to 4 K) cooling. These are elements of liquefaction and 
separation plants, spacecraft systems, etc. It was found that with decreasing 
temperature most of the metals become more durable. At 77 K (the boiling point 
of liquid nitrogen), the strength of copper is doubled, and the strength of alu-
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minum is six times larger than at room temperature. At low temperatures, espe-
cially under load, internal structural transformations occur, which increases the 
risk of sudden destruction of products. The transition of metals into a fragile 
state at low temperatures is associated with a change in the plasticity characteris-
tics. Investigations of the physical nature of the problem show that the transition 
to the fragile state of pure single crystal samples depends on temperature, rate of 
deformation, dislocation density, etc. 

Although a large number of studies are being carried out in this direction, for 
example [1] [2], the developed physical models do not allow to quantify the in-
fluence of numerous factors. A number of questions remain unclear, in particu-
lar, the problem of an abnormal decrease in the plastic flow stress in aluminum 
at low temperatures. 

Therefore, a study of the nature of the change in the strength and plasticity 
parameters of metals as a function of temperature and deformation rate at tem-
peratures from 293 K to the boiling point of liquid helium (4.2 K) is of great 
scientific interest. 

2. Theoretical Background 

In the plastic region, unlike the elastic region, qualitatively new physical pheno-
mena are realized. If a volume change occurs in the elastic region with a change 
in the stress state, then the physics of the phenomenon changes radically in the 
region of plasticity. Dislocations move under the condition that the volume is 
constant, and the dependence of the yield stress on the accumulated deformation 
has a nonlinear character. For most deformable metals, the transition from elas-
ticity to the plasticity region is of a smooth nature, so a 0.2% residual deforma-
tion is considered as the conditional boundary of such a transition, and the cor-
responding stress is called the conditional yield point. Therefore, in the region of 
plasticity, conditions for the constancy of volume are used to obtain the 
stress-strain relation [3]. For sufficiently large plastic deformations, to compare 
the results of the theory with experiment, the conditional values of stresses and 
deformations go to their real values. 

In [4] the nonlinear dependence of the yield stress on the accumulated defor-
mation, strain rate and temperature is 

31 2
0 exp aa aa θσ ε ζ −=                        (1) 

where 6
0 1 2 33.6 10 MPa, 0.255, 0.05, 0.01a a a a= × = = = − , 0 1 2 3, , ,a a a a -constants 

of material, ζ -rate of deformation, θ -temperature on Celsius scale. 
In the case of a dislocation description of the plasticity of single crystals, the 

kinks on dislocations are the carriers of the mass, they start to slide at a force 
much less than that required for dislocation motion as a whole. In this case, a li-
near dislocation can be represented as an elastic string lying initially in one of 
the local minima of the potential. The smallness of the effective mass and the 
large inflection mobility at low temperatures (T < 50 K) [5] suggest the possibil-
ity of tunneling such a quasiparticle through the Peierls barriers and then pulling 
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the remaining part of the dislocation there. 
It follows from the deformation diagram [3] that, beginning with the strength 

limit of the material, when the deformation increases, its localization takes place, 
the active stress increases intensively and the sample breaks down. However, if a 
sharp decrease in the true stress occurs at stresses below the true value of the 
tensile strength, the interpretation of this result requires additional assumptions. 

The simulation was carried out using sine Gordon equation for the 
one-dimensional Frenkel-Kontorova dislocation model. In the Frenkel-Kontorova 
model, the atoms above the glide plane are material points connected by springs 
of rigidity «k», and the atoms under the glide plane (substrate) are described by a 
sinusoidal potential. The Frenkel-Kontorova model is discrete and this is its ad-
vantage over other models. Within the framework of the chosen model, the mo-
tion of dislocations is described by the sine Gordon equation. 

( ) ( )0 1 1sin 2π 2n n n n nmy f y a k y y y+ −= − + + −              (2) 

where ny  is deviation of the n-th atom from the equilibrium position, a -lattice 
constant, ( )0 sin 2π nf y a -periodic sinusoidal force on the substrate side, m-mass 
of the atom, k-stiffness coefficient. 

In dimensionless units, the sine Gordon equation takes the form: 

sin 0n n nϕ ϕ ϕ′′+ − =                        (3) 

where nϕ  is displacement n-th atom from the equilibrium position. 
When changing to dimensionless variables, finite differences are replaced by 

spatial derivatives. However, the discreteness of the model is preserved. We will 
carry out the corresponding analysis. The dislocation size is determined as fol-
lows [6]:  

2
0 0 02πl a mv f a=  

0v a k m= -speed of sound, 0l -size of dislocation, a-inter-atomic distance. 
The denominator is the product of the force at a distance, which is obviously 
proportional to the work that must be spent on overcoming the Peierls barrier 
separating one valley from the other. Thus, it increases with increasing spring 
stiffness and decreasing forces on the substrate side. Assuming that the elastic 
energy greatly exceeds the work, we obtain that 0l a . It follows from the 
condition obtained that we are considering the case of the long-wave approxi-
mation. Using the sine Gordon Equation (3), we model the displacement field, 
the deformation field, and the stress field near the dislocation. 

As can be seen from the numerical experiment, the strain field is discrete, it 
decreases to the right and to the left of the dislocation line and, oscillating, tends 
to zero away from the dislocation line. The oscillations are obviously due to the 
barriers of Peierls, since in pure metals at low temperatures they are the main 
obstacle to the motion of dislocations. As can be seen from Figure 1(b), there 
are no finite solutions in the region of the dislocation core, which is in agree-
ment with [6]. 
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(a) 

 
(b) 

Figure 1. The displacement field of the dislocation (a) and the stress field around the dis-
location (b). 
 

In particular cases, the sine Gordon equation admits the solution in an ana-
lytical form. In more complex cases, approximate solutions of the inhomogene-
ous sine Gordon equation are obtained using perturbation theory (e.g. [7]). We 
investigate solutions of the inhomogeneous sine Gordon equation in numerical 
form. 

The initial conditions were taken by us, using a known analytical solution of 
the homogeneous sine Gordon equation at the initial instant of time. The sim-
plest boundary conditions, which have a physical meaning, consist in the fact 
that the sample through which the dislocation propagates is considered open at 
both ends, 

0 0x x lx xϕ ϕ
= =

∂ ∂ = ∂ ∂ =  

where l-dimensionless sample length. 
There are two equivalent approaches when considering the motion of a de-

formable material: the Euler approach and the Lagrange approach. When atten-
tion is concentrated on a given point in space into which different particles of a 
deformed medium come, this is the Eulerian approach. Movement from the Eu-
lerian point of view is known if speed, acceleration, temperature, etc. are given as 
functions of coordinates of a given point of space and time-these are Euler va-
riables. When attention is concentrated on a particular particle of the medium 
and the history of its deformation and motion is studied, this is the Lagrange 
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approach. The choice of the kind of variables is made on the basis of the nature 
of the problem to be solved. We solve the problem using Euler’s approach. 

The problem was solved by us in the Eulerian analysis for the following rea-
sons. Under the Eulerian approach, we study the characteristics of the change in 
the field of a moving dislocation at a given point in space over time. In the La-
grange case, the evolution of the motion in the space of a given point of the dis-
location field is investigated. 

The nonlinear differential sine Gordon equation, with which we describe the 
motion of dislocations, is also used in the description of weak superconductiv-
ity in the Josephson tunnel junction between two closely located supercon-
ductors. In addition, for certain values of the parameters it goes over into the 
Klein-Gordon equation, which is a quantum equation. Therefore, we assumed 
that the phenomenon of tunneling of inflections can be described by a sine 
Gordon’s equation. 

3. Results. Discussion 

By numerically solving the sine Gordon Equation (3), using the initial and 
boundary conditions given above, we get the dependence ( ),n x tϕ . Next, from 
the displacement function, we go to deformations, then using the experimentally 
obtained (describing the true stresses and deformations) dependence of me-
chanical stress on deformation, deformation rate and temperature (1), we find 
the dependence of the true stresses on deformation in aluminum at helium tem-
peratures in Euler variables Figure 3(a). 

As is known, the conditional tensile strength for aluminum is 8 × 108 

dyne/cm2. 
Using a known relationship between true and conditional stresses 

( )1tru conσ σ ε= +  [3], for the true value of the tensile strength, we obtain the 
value ( )88 10 1 ε× +  dyne/cm2, where ε -the coordinate of the abscissa at the 
beginning of the descent. If the values of nσ , at which the curve starts to go 
down ( )88 10 1nσ ε< × + , then the tunneling effect occurs, if at any of these 
points the value nσ  is greater than the true value of the tensile strength, then 
deformation is localized and the sample is destroyed. 

From the data of the numerical experiment (Figure 3(a)) we calculated the 
true values of stresses and deformations at which a sharp softening occurs (the 
descents on the curve), and compared the obtained values of the stresses at these 
points with the true value of the aluminum tensile strength (Table 1). 

As a result, we can conclude that in our numerical experiment at points of 
sharp softening (points (1-6) in Figure 3(a)), the crystal fracture cannot happen, 
the stress values at these points are less than the true value of the tensile 
strength. It follows from the numerical experiment (Figure 3(b)) that the veloc-
ity of dislocation movement relative to the medium is periodic. 

In the interval of decrease in the dislocation velocity, hardening takes place, 
the decrease in the dislocation velocity is due to an increase in the resistance of  
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Table 1. True values of stresses and deformations at which a sharp softening occurs and 
the true value of the tensile strength. 

 ε σ 8 × 108 (1 + ε) 

1 0.185 2.73 × 106 9.48 × 108 

2 0.254 2.94 × 106 10.032 × 108 

3 0.267 3.06 × 106 10.136 × 108 

4 0.288 3.1 × 106 10.304 × 108 

5 0.358 3.26 × 106 10.864 × 108 

6 0.465 3.42 × 106 11.72 × 108 

 
the medium from the side of the Peierls barrier. The consequence of this is an 
increase in stress. When the dislocation falls into the valley of the potential 
Peierls relief, the resistance to movement of the dislocation decreases sharply, as 
a result of which the stress is relaxed (softening) and the sign of the dislocation 
velocity reverses. Thus, when the Peierls barrier is overcome, the dislocation 
moves, slowing down before the barrier and accelerating after overcoming the 
barrier (3b), i.e. processes of micro-hardening and micro-softening occur pe-
riodically. Consequently, the nature of the stress variation in the vicinity of the 
investigated region (near the dislocation) reflects the above-mentioned character 
of the dislocation motion (Figure 3(c)), caused by the discrete nature of the me-
dium: the softening has an almost periodic character. 

We assume that a sharp decrease in the stress with an almost constant defor-
mation, which is periodic in nature, can be explained by tunneling of kinks 
through the Peierls potentials. 

From this point of view, the result presented in Figure 3(a) can be explained 
as follows. When a dislocation moves, a stress field is created around it, that re-
flects the nature of the evolution of the medium properties. When the Peierls 
barrier is overcome, the dislocation moves jump wise, slowing down before the 
Peierls barrier and accelerating after overcoming the barrier (Figure 4). Because 
of this, the nature of the stress variation in the vicinity of the investigated region 
(near the dislocation) reflects the above-mentioned dislocation movement pat-
tern, caused by the discreteness of the medium: softening (tunneling) has a pe-
riodic character, which correlates with the oscillating dependence of the defor-
mation on the coordinate (Figure 2(b) and Figure 2(c)), the growth of the curve 
( )σ ε  is nonlinear. 
As can be seen from Figure 3 and Figure 4, the tunneling process, as ex-

pected, is non stationary. 
It is seen from Figure 4 that the velocity of individual fragments of dislocation 

(kinks) during tunneling is different and changes sign during the slip, the dislo-
cation moves waveringly, oscillates in the direction of sliding. The result ob-
tained agrees with the results of [8], where it is shown that at low temperatures 
in copper and aluminum deformation acquires an abrupt nature. The experi-
mentally observed low-temperature jump-like deformation in aluminum is also 
described in the review [9]. 
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(a) 

 
(b) 

 
(c) 

Figure 2. The dislocation displacement field (a), the deformation field to the right of the 
dislocation (b), the deformation field to the left of the dislocation (c). 
 

It is known that in aluminum at low temperatures an abnormally high creep 
rate is observed, which in the literature [10] [11] is interpreted on the basis of 
quantum-mechanical models. In metals at low temperatures dislocation motion 
is ensured by moving relatively small distances of a large number of small-scale 
fragments. In aluminum samples, only the kinks of dislocations can be noticea-
ble mobility, which can be regarded as point defects (quasiparticles) on disloca-
tions. It is known from quantum mechanics that the tunneling condition for a  

quasiparticle through a potential barrier has the form ( )2 2 1s p ksm W E l− ≈

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(a) 

 
(b) 

 
(c) 

Figure 3. (a) The stress-strain dependencein the Euler variables; (b) Dependence of dis-
location velocity on time for the same time intervals; (c) The dependence of the stress on 
time in the vicinity of the dislocation for the same time intervals. 
 
(  -Planck’s constant, sm -effective kink mass). Calculations give that for kinks 

in aluminum ( )2 2 0.73s p ksm W E l− ≈


, which confirms the possibility of 

tunneling of kinks. 
Quantum effects in crystals are observed when the wave functions of atoms in 

neighboring sites overlap. The probability of quantum tunneling of an atom into 
an adjacent lattice site is characterized by the dimensionless de Boer parameter 
[12]: 
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t1 

 
t2 

 
t3 

 
t4 

Figure 4. The displacement field of a dislocation moving by way of kinks tunneling, and 
the coordinate distribution of velocities of the same dislocation (a bold line) for succes-
sive instants of time. 
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( )1 2h mu
a

∆   

where a  is the inter atomic distance, m is the mass of atoms, and u is the ener-
gy of interaction of neighboring atoms. For most crystals the parameter Δ is very 
small. In quantum crystals ~ 1∆  and the delocalization effect of particles is 
significant. Because of the smallness of the mass of the kinks and their weak in-
teraction with the matrix atoms, the kink can be delocalized in the crystal, while 
the atoms of the matrix themselves behave in a classical way. 

Calculations show that in aluminum, 1410 ergu −


 and Δ ≈ 0.4 (for compar-
ison, in quantum crystals for He3, Δ ≈ 0.49, for neon Δ ≈ 0.07. In all pure metals 
the parameter Δ is negligibly small [12]).  

The result obtained speaks in favor of the fact that tunneling is possible. 

4. Conclusion 

Thus, numerical modeling, theoretical estimation and comparison with experi-
ment allow us to conclude that in pure aluminum (99.9998%) at low tempera-
tures (4.2 K) the anomalously high creep rate can be explained by quantum 
tunneling of the dislocation kinks. 
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