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Abstract 
In this paper, we consider simulated minimum Hellinger distance (SMHD) 
inferences for count data. We consider grouped and ungrouped data and 
emphasize SMHD methods. The approaches extend the methods based on the 
deterministic version of Hellinger distance for count data. The methods are 
general, it only requires that random samples from the discrete parametric 
family can be drawn and can be used as alternative methods to estimation us-
ing probability generating function (pgf) or methods based matching mo-
ments. Whereas this paper focuses on count data, goodness of fit tests based 
on simulated Hellinger distance can also be applied for testing goodness of fit 
for continuous distributions when continuous observations are grouped into 
intervals like in the case of the traditional Pearson’s statistics. Asymptotic 
properties of the SMHD methods are studied and the methods appear to pre-
serve the properties of having good efficiency and robustness of the determi-
nistic version.  
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1. Introduction 
1.1. New Distribution Created Using Probability Generating  

Functions  

Nonnegative discrete parametric families of distributions are useful for modeling 
count data. Many of these families do not have closed form probability mass 
functions nor closed form formulas to express the probability mass function 
(pmf) recursively. Their pmfs can only be expressed using an infinite series re-
presentation but their corresponding Laplace transforms have a closed form and, 
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in many situations, they are relatively simple. Probability generating functions 
are often used for discrete distributions but Laplace transforms are equivalent 
and can also be used. In this paper, we use Laplace transforms but they will be 
converted to probability generating functions (pgfs) whenever the need arises to 
link with results which already appear in the literature. We begin with a few 
examples to illustrate the situation often encountered when new distributions 
are created. 

Example 1 (Discrete stable distributions) The random variable 0X ≥  fol-
lows a positive stable law if the probability generating function and Laplace 
transform are given respectively as 

( ) ( ) ( ) ( )1e , 0 1, 0, , , 1sXP s E s s
αλ α λ λ α− − ′= = < ≤ > = ≤β β  

and 

( ) ( ) ( ) ( )1 e
e e , 0 1, 0, , , 0

s
sXs E s

α
λ

ϕ α λ λ α
−− −− ′= = < ≤ > = ≥β β . 

The distribution was introduced by Christoph and Schreiber [1]. 
It is easy to see that ( ) ( )e ss Pϕ −=β β . 
The Poisson distribution can be obtained by fixing 1α = . The distribution is 

infinitely divisible and displays long tail behavior. The recursive formula for its 
mass function has been obtained; see expression (8) given by Christoph and 
Schreiber [1]. 

Now if we allow λ  to be a random variable with an inverse Gaussian distri-

bution whose Laplace transform is given by ( )
21 1

e ,
2

s

h s s
µ

µ µ
 
− +  

 = ≥ − , a mixed  

nonnegative discrete stable distribution can be created with Laplace transform 
given by 

( ) ( )( ) ( )
0

ds g s H
λ

ϕ λ
∞

= ∫β , 

where ( ) ( )1e sg s
α− −=  and ( )H λ  is the distribution with Laplace transform 

( )h s . The resulting Laplace transform, 

( ) ( )2exp 1 1 1 e ss
α

ϕ µ
µ

−
  

= − + −      
β , 

is the Laplace transform of a nonnegative infinitely divisible (ID) distribution. 
We can see that it is not always straightforward to find the recursive formula 

for the pmf for a nonnegative count distribution. Even if it is available, it might 
still complicated to be used numerically for inferences meanwhile the Laplace 
transform or pgf can have a relatively simple representation. 

We can observe that the new distribution is obtained by using the inverse 
Gaussian distribution as a mixing distribution. This is also an example of the use 
of a power mixture (PM) operator to obtain a new distribution. The PM opera-
tor will be further discussed in Section 1.2. 

From a statistical point of view, when neither a closed form pmf nor a recur-
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sive formula for the pmf exists, maximum likelihood estimation can be difficult 
to implement. 

The power mixture operator was introduced by Abate and Whitt [2] (1996) as 
a way to create new distributions from an infinitely divisible (ID) distribution 
together with a mixing distribution using Laplace transforms (LT). We shall re-
view it here in the next section, after a definition of an ID distribution. 

Definition 1.1.3. A nonnegative random variable X is infinitely divisible if its 
Laplace transform can be written as 

( ) ( )( ) , 1, 2,
n

ns k s nψ = = 
, 

where ( )nk s  also is the Laplace transform of a random variable. In many situa-
tions, ( )nk s  and ( )sψ  belong to the same parametric family. See Panjer and 
Willmott [3] (1992, p42) for this definition. 

Abate and Whitt [2] (1996) introduced the power mixture (PM) operator for 
ID distributions and also some other operators. To the operators already devel-
oped by them, we add the Esscher transform operator and the shift operator. All 
operators considered are discussed below. 

1.2. Operational Calculus on Laplace Transforms 
1.2.1. Power Mixture (PM) Operator 
Suppose that tX  is an infinitely divisible nonnegative discrete random variable 
such that the Laplace transform can be expressed as ( )( ) , 0

t
s tκ ≥ , where ( )sκ  

is the Laplace transform of X, which is nonnegative and infinitely divisible as 
well. The power mixture (PM) with mixing distribution function ( )H y  and 
Laplace transform ( )H sκ  of a nonnegative random variable Y is defined as the 
Laplace transform 

( ) ( ) ( )( ) ( ) ( )( )( )0
PM , d log

t
Hs H s H t sη κ κ κ κ

∞
= = = −∫ . 

Furthermore, if ( )H y  is infinitely divisible, then the distribution with Lap-
lace transform ( )sη  is also infinitely divisible. The random variable 0Y ≥  
with distribution ( )H y  can be discrete or continuous but needs to be ID. This 
is the PM method for creating new parametric families, i.e., using the PM oper-
ator. The PM method can be viewed as a form of continuous compounding me-
thod. The ID property can be dropped but as a result the new distribution 
created using the PM operator needs not be ID. For the traditional compound-
ing methods, see Klugman et al. [4] (p141-148). Abate and Whitt [2] also men-
tioned other methods. 

Example 2 (Generalized negative binomial) The generalized negative binomi-
al (GNB) distribution introduced by Gerber [5] can be viewed as a power va-
riance function distribution mixture of a Poisson distribution. The power va-
riance function distribution introduced by Hougaard [6] is obtained by tilting 
the positive stable distribution using a parameter θ . It is a three-parameter 
continuous nonnegative distribution with Laplace transform given by 
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( ) ( ){ }exp , , 0, 0 1H s s α ακ λ θ θ λ θ α= − + − > < < . 

Gerber [5] used a different parameterization and named this distribution gene-
ralized gamma. It is also called positive tempered stable distribution in finance. 

Let ( ) ( )e 1
e

s

sκ
− −

=  be the Laplace transform of a Poisson distribution with 
rate 1µ = . The Laplace transform of the GNB distribution can be represented 
as 

( ) ( )( )exp e 1ss
α αη λ θ θ−= − − + − . 

The corresponding pgf can be expressed as 

( ) ( )( )exp 1P s s α αλ θ θ= − − + − . 

The pgf is given by expression (21) in the paper by Gerber [5]. The GNB dis-
tribution is infinitely divisible. If stochastic processes are used instead of distri-
butions, the distribution can also be derived from a stochastic process point of 
view by considering a Poisson process subordinated to a generalized gamma 
process and obtain the new distribution as the distribution of increments of the 
new process created. See section 6 of Abate and Whitt [2] (p92-93). See Zhu and 
Joe [7] for other distributions which are related to the GNB distribution. 

Note that, if ( )H y  is discrete, ( )sη  is the Laplace transform of a random 
variable expressible as a random sum. A random sum is also called stopped sum 
in the literature, see chapter 9 by Johnson et al. [8] (p343-403). The Ney-
mann-Type A distribution given below is an example of a distribution of a ran-
dom sum.  

Example 3 Let 1
Y

iiX U
=

= ∑ ,the iU ’s conditioning on Y are independent and 
identically distributed and follows a Poisson distribution with rate ф  and Y is 
distributed with a Poisson distribution with rate λ . Using the Power mixture 
operator we conclude that the LT for X is  

( ) ( )e 1
exp e 1

sф
sη λ

− −  = −  
  

,  

and the pgf is 

( ) ( )( )( )1exp e 1ф sP s λ −= − . 

Properties and applications of the Neymann type A distribution have been 
studied by Johnson et al. [8] (p368-378). The mean and variance of X are given 
respectively by ( )E X фλ=  and ( ) ( )1V X ф фλ= + . From these expressions, 
moment estimators (MM) have closed form expressions, see section (4.1) for 
comparisons between MM estimators and SMHD estimators in a numerical 
study. For applications often the parameter λ  is smaller than the parameter 
ф .  

1.2.2. Esscher Transform Operator 
By tilting the density function using the Esscher transform, the Esscher trans-
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form operator can be defined and, provided the tilting parameter τ  introduced 
is identifiable, new distributions can be created from existing ones. 

Let X be the original random variable with Laplace transform ( )sκ . The 
Esscher transform operator which can be viewed as a tilting operator is defined 
as 

( ) ( ) ( )
( )

Esscher ,
s

s
κ τ

η κ τ
κ τ

+
= = . 

1.2.3. Shift Operator 
Let ( )sκ  be the Laplace transform of a positive continuous random variable X. 
The Laplace transform of , 0Y X Yτ τ= − ≥ ≥  is given by ( )e sτκ . So, we can 
define the shift operator as 

( ) ( ) ( )Shift , es sτη κ τ κ= = . 

In some cases, even the pmf of Y has a closed form but the maximum likelih-
ood (ML) estimators might be attained at the boundaries, the ML estimators 
might not have the regular optimum properties. 

Note that parallel to the closed form pgf expressions for these new discrete 
distributions, it is often simple to simulate from the new distributions if we can 
simulate from the original distribution before the operators are applied. For 
example, let us consider the new distribution obtained by using the Esscher op-
erator. It suffices to simulate from the distribution before applying the operator 
and apply the acceptance-rejection method to obtain a sample from the Esscher 
transformed distribution. The situation is similar for new distributions created 
by the PM operator. If we can simulate one observation from the mixing distri-
bution of Y which gives a realized value t and if it is not difficult to draw one 
observation from the distribution with LT ( )tsκ  then combining these two 
steps, we would be able to obtain one observation from the new distribution 
created by the PM operator. Consequently, simulated methods of inferences of-
fer alternative methods to inferences methods based on matching selected points 
of the empirical pgf with its model counterpart or other related methods, see 
Doray et al. [9] for regression methods using selected points of the pgfs. For 
these methods there is some arbitrariness on the choice of points which make it 
difficult to apply. The techniques of using a continuum number of points to 
match are more involved numerically, see Carrasco and Florens [10]. The new 
methods also avoid the arbitrariness of the choice of points which is needed for 
the regression methods and the k-L procedures as proposed by Feurverger and 
McDunnough [11] if characteristic functions are used instead of probability ge-
nerating functions and they are more robust than methods based on matching 
moments (MM) in general. We can reach the same conclusions for another class 
of distributions namely mixture distributions created by other mixing mechan-
isms, see Klugman et al. [4], Nadarajah and Kotz [12], Nadarajah and Kotz [13]. 
These distributions might not display closed form pmf or the pmf are only ex-
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pressible only using special functions such as the confluent hypergeometric 
functions. For these models, likelihood methods might also be difficult to im-
plement.  

This leads us to look for alternative methods such as the simulated minimum 
Hellinger distance (SMHD) methods for count data. We shall consider grouped 
count data and ungrouped count data. With grouped data, it leads to simulated 
chi-square type statistics which can be used for model testing for discrete or 
continuous models. These statistics are similar to the traditional Pearson statis-
tics. For model testing with continuous distributions, continuous observations 
when grouped into intervals are reduced to count data and we do not need to 
integrate the model density functions on intervals using SMHD methods, it suf-
fices to simulate from the continuous model and construct sample distribution 
functions to obtain estimate interval probabilities. Therefore, the scopes of ap-
plications of simulated methods are widened due to these features.  

We briefly describe the classical minimum Hellinger distance methods intro-
duced by Simpson [14], Simpson [15] for estimation for count data in the next 
section and we shall develop inference methods based on a simulated version of 
this HD distance following Pakes and Pollard [16] (1989), who have developed 
an elegant asymptotic theory for estimators obtained by minimizing a simulated 
objective function expressible as the Euclidean norm of a random vector of 
functions. As an example, they have shown that the simulated minimum 
chi-square estimators without weight satisfy the regularity conditions for being 
consistent and have an asymptotic normal distribution, see Pakes and Pollard 
[16] (p1048). They work with properties of some special classes of sets to check 
the regularity conditions of their Theorem 3.3. Meanwhile, Newey and McFad-
den [17] (p2187) work with properties of random functions and introduce a 
stochastic version of the classical equicontinuity property of real analysis. In this 
paper, we shall also extend the notion of continuity of real analysis to a version 
which only holds in probability for random functions which we call continuity 
in probability for a sequence of random functions which is similar to the notion 
of continuity with probability one as discussed by Newey and McFadden [17] 
(p2132) in their Theorem 2.6. We also use the property of the compact domains 
under considerations shrink as the sample size n →∞  to verify conditions of 
Theorem 3.3 given by Pakes and Pollard [16] (1989) for SMHD methods using 
grouped data and conditions of Theorem 7.1 of Newey and McFadden [17] 
(p2185) for ungrouped data. This approach appears to be new and simpler that 
other approaches which have been used in the literature to establish asymptotic 
normality for estimators using simulations; previous approaches are very general 
but they are also more complicated to apply. A similar notion of continuity in 
probability has been introduced in the literature of stochastic processes.  

It is worth to mention that simulated methods of inferences are relatively re-
cent. In advanced econometrics textbook such as the book by Davidson and 
McKinnon [18], only section 9.6 is devoted to simulated methods of inferences 
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where the authors mention simulated methods of moments (MSM). The simu-
lated version for HD methods will be referred to as version S and the original 
version which is deterministic will be referred to as version D in this paper. We 
briefly review the Hellinger distance and chi-square distance below and subse-
quently develop simulated inference methods for grouped and ungrouped count 
data using HD distance. 

1.3. Hellinger and Chi-Square Distance Estimation 

Assume that we have a random sample of n independent and identically distri-
buted  

(iid) nonnegative observations 1, , nX X  from a pmf ( )p xθ  with 
0,1,x =   and  

( )1, , mθ θ ′= θ  

is the vector of parameters of interest, 0θ  is the vector of the true parameters. If 
the data are grouped into 1r k= +  disjoint intervals , 0,1, ,jI j k=   so that 
they form a partition of the nonnegative real line, the unweighted chi-square 
distance is defined to be 

( ) ( ) ( )( )2

0
k

n n j jjCS p I p I
=

= −∑ θθ ,  

where ( )n jp I  is the proportion of the sample which fall into the interval jI  

and ( )jp Iθ  is the probability of an observation which fall into jI  under the 

pmf ( )p xθ . If ( )p xθ  has no closed form expression but we can draw a sam-

ple of size U nτ=  from this distribution then clearly ( )jp Iθ  can be estimated  

by ( )S
jp Iθ  using the simulated sample of size U which is the proportion of ob-

servations of the simulated sample which has taken a value in jI . To illustrate 
their theory Pake and Pollard [16] (p1047-1048) considered simulated estima-
tors obtained by minimizing with respect to θ  the objective function 

( ) ( ) ( )( )2

0
k S

n n j jjQ p I p I
=

= −∑ θθ  

and show that the estimators satisfy the regularity conditions of their Theorem 
3.1 and 3.3 which lead to conclude that the simulated estimators are consistent 
and have an asymptotic normal distribution. As we already know, a weighted 
version can be more efficient, if we attempt a version S for the Pearson’s chi 
square distance, 

( )
( ) ( )( )

( )

2

0

n j jk
j

j

p I p I
P

p I=

−
=∑

θ

θ

θ , 

and since the denominator of the summand involves ( )jp Iθ , it is numerically 

not easy to introduce a version S. Clearly, if ( ) 0S
jp I =θ , the version S of this  

distance will run into numerical difficulties. The traditional and deterministic 
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version of the Hellinger distance as given by 

( ) ( ) ( )
21 1

2 2
0

k
n n j jjQ p I p I

=

 
   = −     
 

∑ θθ                (1) 

is more appropriate for a version S and it is already known that it generates 
minimum HD estimators which are as efficient as the minimum chi-square es-
timators or maximum likelihood (ML) estimators for grouped data, see  

Cressie-Read divergence measure with 1
2

λ = −  given by Cressie and Read [19] 

(p457) for version D. 

Note that ( ) ( ) ( )
1 1
2 2

0HD 2 2 k
n j jj p I p I

=
   = −    ∑ θθ  and by using Cauchy- 

Schwartz inequality, we have 

( ) ( )
1 1
2 2

00 1k
n j jj p I p I

=
   ≤ ≤   ∑ θ , 

so that ( )0 2nQ≤ ≤θ  and ( )nQ θ  remains always bounded. Therefore the 
objective function for version S can be defined as 

( ) ( ) ( )
21 1

2 2
0

k S
n n j jjQ p I p I

=

 
   = −     
 

∑ θθ .              (2) 

Since the objective function remains bounded and this property continues to 
hold for the ungrouped data case, this suggests that SMHD methods could pre-
serve some of the nice robustness properties of version D. 

For ungrouped data, it is equivalent to have grouped data but using intervals 
with unit length [ ), 1 , 0,1,jI j j j= + =   and the number of classes is infinite, 
we shall develop SMHD estimation which is based on the objective function 

( ) ( ) ( ) ( ) ( )
21 11 1

2 22 2
0 02 2S S

n n nj iQ p j p j p j p j∞ ∞

= =

 
   = − = −          

 
∑ ∑θ θθ . (3) 

Note that for a data set the sum given by the RHS of the above expression only 
has a finite number of terms as ( ) 0np j =  when j is large. 

The version D with 

( ) ( ) ( ) ( ) ( )
21 1 1 1

2 2 2 2
0 02 2n n nj iQ p j p j p j p jθ ∞ ∞

= =

 
= − = −               

 
∑ ∑θ θ  (4) 

has been investigated by Simpson [14], Simpson [15] who also shows that the 
MHD estimators have a high breakdown point of at least 50% and first order as 
efficient as the ML estimators. For the Poisson case, the ML estimator is the 
sample mean which has a zero breakdown point and consequently far less robust 
than the HD estimators, yet the HD estimators are first order as efficient as the 
ML estimators. This feature makes HD estimators attractive. For the notion of 
finite sample break down point as a measure of robustness, see Hogg et al. [20] 
(p594-595), Kloke and McKean [21] (p29) and for the notion of asymptotic 
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breakdown point for large samples, see Maronna et al. [22] (p58). 
Simpson [14], Simpson [15] extended the works of Beran [23] for continuous 

distributions to discrete distributions. Beran [23] appears to be the first to in-
troduce a weaker form of robustness not based on bounded influence function 
and shows that efficiency can be achieved for robust estimators not based on in-
fluence functions. Also, see Lindsay [24] for discussions on robustness of Hel-
linger distance estimators. Simulated versions extending some of the seminal 
works of Simpson will be introduced in this paper.  

SMHD methods appear to be useful for actuarial studies when there is a need 
for fitting discrete risk models, see chapter 9 of Panjer and Willmott [3] 
(p292-238) for fitting discrete risk models using ML methods. The SMHD me-
thods appear to be useful for other fields as well especially when there is a need 
to analyze count data with efficiency and robustness but the pmfs of the models 
do not have closed form expressions. For minimizing the objective functions to 
obtain SMHD estimators, simplex derivative free algorithm can be used and the 
R package already has built in functions to implement these minimization pro-
cedures. 

1.4. Outlines of the Paper 

In this paper, we develop unified simulated methods of inferences for grouped 
and ungrouped count data using HD distances and it is organized as follows. 
Asymptotic properties for SMHD methods are developed in Section 2 where 
consistency and asymptotic normality are shown in Section 2.2. Based on 
asymptotic properties, consistency of the SMHD estimators hold in general but 
high efficiencies of SMHD estimators can only be guaranteed if the Fisher in-
formation matrix of the parametric exists, a situation which is similar to likelih-
ood estimation. One can also viewed the estimators are fully efficient within the 
class of simulated estimators obtained with the model pmf being replaced by a 
simulated version. Chi-square goodness of fit test statistics are constructed in 
Section 2.3. For the ungrouped case, it can be seen as having grouped data but 
the number of intervals with unit length and the number of intervals is infinite, 
it is given in Section 3 where the ungrouped SMHD estimators are shown to 
have good efficiencies. The breakdown point for the SMHD estimators remains  

at least 1
2

 just as for the deterministic version. A limited simulation study is  

included in Section 4. First, we consider the Neymann type A distribution and 
compare the efficiencies of the SMHD estimators versus moment (MM) estima-
tors, simulations results appear to confirm the theoretical results showing that 
the SMHD estimators are more efficient than the MM estimators based on 
matching the first two empirical moments with their model counterparts for a 
selected range of parameters. The Poisson distribution is considered next and 
the study shows that despite being less efficient than the ML estimator, the effi-
ciency of the SMHD estimators remain high and the estimators are far more ro-
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bust than the ML estimator in the presence of outliers just as in the deterministic 
case as shown by Simpson [14] (p805). More works are needed in this direction 
in general and for assessing the performance SMHD estimators and comparisons 
with the performances of other traditional estimators in various parametric 
models in finite samples. 

2. SMHD Methods for Grouped Data 
2.1. Introduction 

Pakes and Pollard [16] have developed a very elegant and general theory for es-
tablishing consistency and asymptotic normality of estimators obtained by mi-
nimizing the length of a random function taking values in an Euclidean space, 
i.e., by minimizing 

( )nG θ                                 (5) 

or 

( )( )2

nG θ                                (6) 

where ( ) ( ) ( )( ),0 ,, ,n n n kG G ′=G θ θ θ  is a vector of random functions with 
values in a Euclidean space and ⋅  is the Euclidean norm and if  

( ) , 1, , , 1, ,ija i a j b= = =A    is a matrix of finite dimension then  

( )
1
2

1 1
a b

iji j a
= =

= ∑ ∑A . Their theory is summarized by their Theorem 3.1 and  

Theorem 3.3 given in Pakes and Pollard [16] (p1038-1043). It is very general and 
it is clearly applicable for both versions D and S for Hellinger distance with 
grouped data. Let 

( ) ( )( ) ( ) ( )( )2 2
,n nQ Q= =G Gθ θ θ θ                  (7) 

and for HD distance, version D, let 

( ) ( ) ( ) ( ) ( )
1 1 1 1
2 2 2 2

0 0 , ,n n n k kp I p I p I p I
′ 

       = − −        
 

G θ θθ ,      (8) 

and for version S, let 

( ) ( ) ( ) ( ) ( )
1 11 1
2 22 2

0 0 , ,S S
n n n k kp I p I p I p I

′ 
      = − −       

 
G θ θθ        (9) 

which can be reexpressed as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 1
22 2 2

0 0 0 0

11 1 1
22 2 2

, ,S
n n

S
n k k k k

p I p I p I p I

p I p I p I p I

θ θ θ

   
      = − − −            

′         − − −             

G 

θ θ θ

θ

.   (10) 

In general, the intervals iI ’s form a partition of the nonnegative real line 0R+   
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with 0 0

k
ii

R I+
=

=


. Only in section (2.3) where we want to test goodness of fit  

for continuous distribution with support of the entire real line used in financial 
study, we might let 

0

k
ii

R I
=

=


, R  is the real line. 

Let ( ) ( ) ( ) ( ) ( )
0 0

1 11 1
2 22 2

0 0 , , k kp I p I p I p I
′ 

      = − −       
 

G θ θ θ θθ , the vector  

of the true parameters is denoted by 0 Ω∈θ , the parameter space Ω  is as-
sumed to be compact. Clearly, we have point wise convergence in probability 
with ( ) ( )p

nG G→θ θ  for each θ  for both versions, ( )G θ  is nonrandom. 
Clearly the set up fits into the scopes of their Theorem 3.1 and 3.3 which we shall 
rearrange the results of these two theorems before applying to version D and 
version S of Hellinger distance inferences and verify that we can satisfy the re-
gularity conditions of these two Theorems.  

2.2. Asymptotic Properties 
2.2.1. Consistency 
We define MHD estimators as given by the vector Gθ  for version D and S

Gθ  
for version S but emphasize version S as version D has been studied by Simpson 
[14]. Both versions can be treated in a unified way using the following Theorem 
1 for consistency which is essentially Theorem 3.1 of Pakes and Pollard [16] 
(p1038) and the proof has been given by the authors. 

Theorem 1 (Consistency) 
Under the following conditions θ  converges in probability to 0θ : 
a) ( ) ( ) ( )( )1 infn p no ∈Ω≤ +G G

θθ θ , the parameter space Ω is compact 

b) ( ) ( )0 1n po=G θ , 

c) 
( )

( )
0

1sup 1p
n

Oδ− >

 
=  

 Gθ θ θ
 for each 0δ > . 

Theorem 3.1 states condition b) as ( ) ( )0 1n po=G θ  but in the proof the au-
thors just use ( ) ( )0 1n po=G θ  so we state condition b) as ( ) ( )0 1n po=G θ  as 
it is easier to use this condition when there is a need to extend to the infinite di-
mensional case with the space 2l .  

An expression is ( )1po  if it converges to 0 in probability and ( )1pO  if it is 
bounded in probability. In version D and version S for Hellinger distance we 
have ( )( )inf n∈Ω Gθ θ  occurs at the values of the vector values of the HD es-
timators, so the conditions a) and b) are satisfied for both versions and com-
pactness of the parameter space Ω is assumed. Also, for both versions 

( ) 0p
n →G θ  only at 0=θ θ  and ( )0 2nQ< ≤θ  otherwise, this implies 

that there exist real numbers u and v with 0 u v< < < ∞  such that 

( )0

1sup 1 as .
n

P u v nδ− >

  
 ≤ ≤ → →∞     Gθ θ θ

 

Therefore, for both versions of ( )nQ θ  whether deterministic or simulated, 
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the minimum Hellinger distance estimators (MHD) are consistent. Theorem 3.1 
of Pakes and Pollard [16] is an elegant theorem, its proof is also concise using 
the norm concept of functional analysis and it allows many results to be unified. 
Essentially, the same theorem remains valid with the use of the Hilbert space 2l  
and its norm instead of the Euclidean space mR  and the Euclidean norm. By 
using 2l  and its norm the consistency for the ungrouped SMHD estimators can 
also be established but further asymptotic results for the ungrouped SMHD es-
timators will be postponed and given in Section 3.  

Asymptotic normality is more complicated in general. For the grouped case, 
Theorem 3.3 given by Pakes and Pollard [16] (p1040) can be used to establish 
asymptotic normality for both versions of Hellinger distance estimators. We 
shall rearrange results of Theorem 3.3 under Theorem 2 and Corollary 1 given in 
the next section to make it easier to apply for HD estimation using both ver-
sions. 

Since the proofs have been given by the authors, we only discuss here the ideas 
of their proofs to make it easier to follow the results of Theorem 2 and Corollary 
1 in Section (2.2.2).  

For both versions, ( ) ( )( ) ( )( ) ( )( )2

n n n nQ ′= =G G Gθ θ θ θ  but ( )nG θ  is  

not differentiable for version S, the traditional Taylor expansion argument can-
not be used to establish asymptotic normality of estimators obtained by mini-
mizing ( )( )2

nG θ . If we assume ( )G θ  is differentiable with derivative matrix 
( )θΓ , then we can define the random function ( )a

nQ θ  to approximate ( )nQ θ  
with 

( ) ( )( ) ( ) ( ) ( )( )
2

0 0 0,a
n n n nQ = = +L L Gθ θ θ θ θ θ − θΓ .      (11) 

( )0nG θ  is based on expression (8) for version D and it is based on expres-
sions (9-10) for version S. Note that ( )a

nQ θ  is differentiable for both ver-
sions. 

Let θ  and ∗θ  be the vectors which minimize ( )nQ θ  and ( )a
nQ θ  respec-

tively. If the approximation is of the right order then θ  and ∗θ  are asymp-
totically equivalent. This set up will allow a unified approach for establishing 
asymptotic for MHD estimation for both versions. For version D, it suffices to 
let 

G=θ θ  and for version S, let S
G=θ θ . 

Under these circumstances, it suffices to work with ∗θ  and ( )a
nQ ∗θ  for 

asymptotic properties of θ  and ( )a
nQ ∗θ . A regularity condition for the ap-

proximation is of the right order which implies the condition (iii) given by their 
Theorem 3.3, which is the most difficult to check is given as 

( ) ( ) ( ) ( )
0 0sup 1

n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ .          (12) 

This condition is used to formulate Theorem 2 below and is slightly more 
stringent than the condition iii) of their Theorem 3.3 but it is less technical and 
sufifcient for SMHD estimation. Clearly, for SMHD estimation ( )nG θ  is as 
given by expression (9) or expression (10). For simulated unweighted simulated 
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minimum chi-square estimation for this condition to hold, independent samples 
for each θ  cannot be used, see Pakes and Pollard [16] (p1048). Otherwise, only 
consistency can be guaranteed for estimators using version S. For version S, the 
simulated samples are assumed to have size U nτ=  and the same seed is used 
across different values of θ  to draw samples of size U. We implicitly make 
these assumptions for SMHD methods. These two assumption are standard for 
simulated methods of inferences, see section 9.6 for method of simulated mo-
ments(MSM) given by Davidson and McKinnon [19] (p383-394). For numerical 
optimization to find the minimum of the objective function ( )nQ θ , we rely on 
direct search simplex methods which are derivative free and the R package al-
ready has prewritten functions to implement direct search methods.  

2.2.2. Asymptotic Normality 
In this section, we shall state a Theorem namely Theorem 2 which is essentially 
Theorem 3.3 by Pakes and Pollard [16] (p1040-1043) with the condition (4) of 
Theorem 2 given by expression (9) replacing their condition (iii) in their Theo-
rem 3.3, the condition (4) implies the condition (iii) by being more stringent. 
We also comment on the conditions needed to verify asymptotic normality for 
the HD estimators based on Theorem 2. 

Theorem 2 
Let θ  be a vector of consistent estimators for 0θ , the unique vector which 

satisfies ( )0 =G 0θ . 
Under the following conditions: 
1) The parameter space Ω is compact, θ  is an interior point of Ω. 

2) ( ) ( )
1
2 infn p no n

−

∈Ω

 
≤ + 

 
G Gθθ θ . 

3) ( ).G  is differentiable at 0θ  with a derivative matrix ( )0= θΓ Γ  of full 
rank. 
4) ( ) ( ) ( ) ( )

0 0sup 1
n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ  for every sequence { }nδ  

of positive numbers which converge to zero. 
5) ( ) ( )0 1n po=G θ . 

6) 0θ  is an interior point of the parameter space Ω. 
Then, we have the following representation which will give the asymptotic 

distribution of θ  in Corollary 1, i.e., 

( ) ( ) ( ) ( )1
0 0 1n pn n o−′ ′− = − +Gθ θ θΓ Γ Γ ,             (13) 

or equivalently, using equality in distribution, 

( ) ( ) ( )1
0 0

d
nn n−′ ′− = − Gθ θ θΓ Γ Γ .                (14) 

The proofs of these results follow from the results used to prove Theorem 3.3 
given by Pakes and Pollard [16] (p1040-1043). For expression (13) or expression 
(14) to hold, in general only condition 5) of Theorem 2 is needed and there is no 
need to assume that ( )0nG θ  has an asymptotic distribution. From the results of 
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Theorem 2, it is easy to see that we can obtain the main result of the following 
Corollary 1 which gives the asymptotic covariance matrix for the HD estimators 
for both versions. 

Corollary 1. 
Let ( )0n nn ′=Y G θΓ , if ( ),L

n N→Y V0  then ( ) ( )0 ,Ln N− → T 0θ θ  

with 

( ) ( )1 1− −′ ′=T VΓ Γ Γ Γ , 

The matrices T  and V  depend on 0θ we also adopt the notations 
( )0=T T θ , ( )0=V V θ . 

We observe that condition 4) of Theorem 2 when applies to Hellinger distance 
or in general involve technicalities. The condition 4) holds for version D, we on-
ly need to verify for version S. Note that to verify the condition 4, it is equivalent 
to verify  

( ) ( ) ( )( ) ( )
0

2

0sup 1
n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ  

and for version S of Hellinger distance estimation, let 

( ) ( ) ( ) ( )( )2

0n n ng n= − −G G Gθ θ θ θ  

and for the grouped case, it is given by 

( ) ( ) ( ) ( ) ( )0 0

21 1 1 1
2 2 2 2

0
k S S

n j j j jig n p I p I p I p I
=

    
       = − − −                   

∑ θ θ θ θθ . (15) 

We need to verify that we have the sequence of functions ( ){ }ng θ  converge 

uniformly to 0 in probability as n →∞  and 0→θ θ  or equivalently,  

( )
0

sup 0
n

p
ngδ− ≤ →θ θ θ  as n →∞  and 0→θ θ . 

Note that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

0 0

2 21 1 1 1
2 2 2 2

0

1 1 1 1
2 2 2 22 , 0.

k S S
n j j j ji

S S
j j j j n

g n p I p I p I p I

p I p I p I p I g

=

   
        = − + −                

  
       − − − ≥             

∑ θ θ θ θ

θ θ θ θ

θ

θ

 

We shall outline the approach by first defining the notion of continuity in 
probability and let ( ) { }0 0, n nS δ δ= − ≤θ θ θ θ  which is a compact set. The 
compactness of this set simplifies proofs and does not appear to be used in pre-
vious approaches in the literature. Observe that ( )0 0ng =θ , it is easy to see that  

( ) ( )0 0p
n ng g→ =θ θ  as 0→θ θ . Subsequently we establish ( )ng θ  being 

continuous in probability for θ  and using the property that ( ){ }ng θ  is con-

tinuous in probability ( )
0

sup
n ngδ− ≤θ θ θ  is attained at a point 0=θ θ  which 

belongs to the compact set ( )0 , nS δθ  in probability. This is similar to the 
property of nonrandom continuous function in real analysis. 
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Now as , 0nn δ→∞ →  which implies 0
0→θ θ  and by continuity in proba-

bility ( ) ( )0
0 0p

n n ng g→ =θ θ . Therefore, ( )
0

sup 0
n

p
ngδ− ≤ →θ θ θ  which 

means that ( ){ }ng θ  converges uniformly in probability as n →∞ . The technical  

details of these arguments are given in technical appendices TA1.1 and TA1.2 at 
the end of the paper, in the section of Appendices. 

The notion of continuity in probability has been used in a similar context in 
the literature of stochastic processes, see Gusalk et al. [25] and will be introduced 
in the next paragraph and we also make a few assumptions which are summa-
rized by Assumption 1 and Assumption 2 given below along with the notion of 
continuity in probability. A related continuity notion namely the notion of con-
tinuity with probability one has been mentioned by Newey and McFadden [18] 
in their Theorem 2.6 as mentioned earlier. They also commented that this no-
tion can be used for establishing asymptotic properties of simulated estimators 
introduced by Pakes [26]. Pakes [26] also has used pseudo random numbers to 
estimate probability frequencies for some models. For SMHD estimation, we 
extend a standard result of analysis which states that a continuous function at-
tains its supremum on a compact set to a version which holds in probability. 
This approach seems to be new and simpler than the use of the more general 
stochastic equicontinuity condition given by section 2.2 in Newey and 
McFadden [18] (p2136-2138) to establish uniform convergence of a sequence 
of random functions in probability. Our approach uses the fact that as n →∞  
the set ( )0 , nS δθ  shrinks to 0θ , a property which did not seem to have been  
used previously by other approaches to establish ( )

0
sup 0

n

p
ngδ− ≤ →θ θ θ  as  

n →∞  and 0→θ θ . Subsequently, we define the notion of continuity in 
probability which is similar to the one used in stochastic processes, see Gusak et 
al. [25] (p33) for a related notion of continuity in probability for stochastic 
processes. 

Definition 1 (Continuity in probability) 
A sequence of random functions ( ){ }ng θ  is continuous in probability at ′θ  

if ( ) ( )p
n ng g ′→θ θ  whenever ′→θ θ . Equivalently, for any 10, 0δ> > , 

there exists a 0δ ≥  and 0n  such that ( ) ( )( ) 11n nP g g δ′− ≤ ≥ −θ θ  for 

0n n≥ , whenever δ′ ≤θ − θ . This can be viewed as an extension of the classical  

result of continuity in real analysis. It is also well known that the supremum of a 
continuous function on a compact domain is attained at a point of the compact 
domain, see Davidson and Donsig [27] (p81) or Rudin [28] (p89) for this clas-
sical result. The equivalent property for a random function which is only conti-
nuous in probability is the supremum of the random function is attained at a 
point of the compact domain in probability. The compact domain we study here  
is given by ( ) { }0 0, n nS δ δ= − ≤θ θ θ θ  and as n →∞ , ( )0 0, nS δ →θ θ . It  

might be more precise to use the term sequence of random functions rather than 
just random function here for the notion of continuity in probability as the ran-
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dom function will depend on n. 
Below are the assumptions we need to make to establish asymptotic normality 

for SMHD estimators and they appear to be reasonable. 
Assumption 1 

1) The pmf of the parametric model has the continuity property with 

( ) ( )
1 1
2 2p i p i′→θ θ  whenever ′→θ θ . 
2) The simulated counterpart has the continuity in probability property 

with 
1 1
2 2pS Sp p ′   →   θ θ  whenever ′→θ θ . Convergence in probability is 

denote by p→ . 

3) ( )
1
2p iθ  is differentiable with respect to θ . 

In general, the condition 2) will be satisfied if the condition 1) holds and 
implicitly we assume the same seed is used for obtaining the simulated sam-
ples across different values of θ . For ungrouped data, we also need the no-
tion of differentiability in probability to facilitate the application of Theorem 
7.1 given by Newey and McFadden (1994, p2185-2186). Before stating their 
Theorem 7.1, Newey and McFadden has mentioned the notion of approx-
imate derivative for the use of their Theorem, the definition given below will 
make it clearer. 

Definition 2 (Differentiability in probability) 
The sequence of random functions ( ){ }nfθ  is differentiable with respect to θ  

at 0θ  in probability if 
( ) ( )

( )0 0
0 0lim j

n n
e p

j

f f
v

ε
+

→

−
=




θ θ
θ , 1, ,j m=   exists and 

( )0,0, ,1,0, ,0ie ′=  
 with 1 occurring at the ith entry. Furthermore, the vector 

( ) ( ) ( )( )1 , , mv v vθ ′= θ θ  is continuous and bounded in probability for all 

( )0 0,S δ∈θ θ  for some 0 0δ > . This concept is similar to the notion of  

differentiability in real analysis for nonrandom function. 
A similar notion of differentiability in probability has been used in stochastic 

processes literature, see Gusak et al. [25] (p33-34), a more stringent differentia-
bility notion namely differentiability in quadratic mean has also been used to 
study local asymptotic normality (LAN) property for a parametric family, see 
Keener [29] (p326). The notion of differentiability in probability will be used in 
section 3 with Theorem 7.1 of Newey and McFadden [17] to establish asymptot-
ic normality for the SMHD estimators for the ungrouped case. We make the  

following assumption for 
1
2Sp  θ  where Spθ  can be viewed as a proxy model 

for pθ , 

Assumption 2  

( )
1
2Sp i  θ  with the same seed being used across different values of θ  is dif-

ferentiable in probability with the same derivative vector as ( )
1
2p iθ  where the 
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derivative vector for ( )
1
2p iθ  is 

( ) ( ) ( )
1 1
2 2

1

, ,
m

p i p i
s iθ θ θ

 
∂ ∂ =  ∂ ∂ 

 



θ θ . 

This assumption appears to be reasonable, this can be checked by using limit 

operations as in real analysis with ( ) ( )
11
22 pSp i p i  → θ θ  and ( )

1
2Sp i  θ  is 

continuous in probability. 
Since regularity conditions for Theorem 2 and its corollary can be met and 

they are justified in TA1.1 and TA1.2 in the Appendices, we proceed here to 
find the asymptotic covariance matrix T .  

Since ( )0nG θ  for version D is based on expression (8) and for version S is 

based on expressions (9-10), the asymptotic covariance matrix of ( )0nnG θ  

version S is just the asymptotic covariance matrix of ( )0nnG θ  of version D 

multiplied by 
11
τ

 + 
 

 as the simulated sample from ( )p xθ  is independent  

from the sample given by the data, so we can focus on version D and make the 
adjustment for version S. We need the asymptotic covariance matrix Σ  of the  

vector ( ) ( )( )0 , ,n n n kn n p I p I ′=u   first then we can find the matrix T  

and we let D=T T  for version D and for version S, we shall let S=T T . 
Recall that form properties of the multinomial distribution, the covariances of 

( )n in p I  and ( )n jn p I  are  

( ) ( )( ) ( )( ) ( )( )0 0
 for , 1 ,n i n j i inCov p I p I p I p I i j= − =θ θ  

and 

( ) ( )( ) ( )( ) ( )( )0 0
, , . for n i n j i jnCov p I p I p I p I i j= − ≠θ θ  

The covariance matrix of ( ) ( )( )0 , ,n n n kn n p I p I ′=u   using matrix nota-

tions can be expressed as 

( )
1 1
2 2

− −
′= −Q I qq QΣ ,                      (16) 

1
2

−
Q  is a diagonal matrix with diagonal elements  

( ) ( )
0 0

1 1
2 2

0 , , kp I p I
′ 

       
 

θ θ  and the vector ( ) ( )
0 0

1 1
2 2

0 , , kp I p I
 
   ′ =     
 

q θ θ  

is the transpose of q  and I  is the identity matrix of dimension r r×  with 

1r k= + . Using the delta method the asymptotic covariance matrix of ( )0nnG θ  

of version D is simply the asymptotic covariance matrix of 
1
21

2 nnQ u  which is 

given by 
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( )1
4D ′= −W I qq ,                       (17) 

and the asymptotic covariance matrix of ( )0nnG θ , version S is  

( )1 11
4S
  ′= + − 
 

W I qq
τ

.                     (18) 

We then have the vector of HD estimators version D and S given respectively 
by Gθ  and ˆS

Gθ  with asymptotic distributions given by 

( ) ( )0 , ,L
DGn N− → T0θ θ  

( ) ( ) ( ) ( ) ( ) 11 1 1
0

1 1 ,
4 4D G

−− − −′ ′ ′ ′ ′= − = =T I qq I θΓ Γ Γ Γ Γ Γ Γ Γ    (19) 

( )

( )

( )

( )

( )

( )

( )

( )

00

0 0

00

0 0

00

1
1 1
2 2

0 0

1
1 1
2 2

1
2

m

kk

m

k k

p Ip I

p I p I

p Ip I

p I p I

θθ

θθ

 ∂∂
 

∂∂ …
 
       
 

= −  
 ∂∂ 
 ∂∂

… 
        

  

θθ

θ θ

θθ

θ θ

Γ , 

( )0GI θ  is the model Fisher information matrix using grouped data as 

′ =q 0Γ  due to 
( )

0 0k i
i

p I
=

∂
=

∂∑ θ

θ
 using ( )0 1k

ii p I
=

=∑ θ . Let 2= −B Γ , 

( )

( )

( )

( )

( )

( )

( )

( )

00

0 0

00

0 0

00

1
1 1
2 2

0 0

1
1 1
2 2

m

kk

m

k k

p Ip I

p I p I

p Ip I

p I p I

θθ

θθ

 ∂∂
 

∂∂ …
 
       
 

=  
 ∂∂ 
 ∂∂

… 
        

B   

θθ

θ θ

θθ

θ θ

, 

so 

( ) 1
D

−′=T B B  

with 

( )

( )
( )

( )
0

0
0

0

1
2

1
2

log
, 0,1, , , 1, ,

i

ij
i

j
i

p I
p I

p I i k j m
p I

θ
θ

∂
∂∂

 = = =  ∂  

 

θ

θ
θ

θ

. 

Therefore for version S, 

( ) ( ) ( ) 1
0

1ˆ 0, , 1LS
G S Sn N

τ
−  ′− → = + 

 
T T B Bθ θ        (20) 
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the simulated sample size is U nτ= .  
Note that for version D, the HD estimators are as efficient as the minimum 

chi-square estimators or ML estimators based on grouped data. The overall 
asymptotic relative efficiency (ARE) between version D and S for HD estimation is  

simply ARE = 
1

τ
τ +

 and we recommend to set 10τ ≥  to minimize the loss of 

efficiency due to simulations. 
An estimate for the covariance matrix 

The asymptotic covariance matrix of S
Gθ  can be estimated if we can estimate 

( )0= θΓ Γ . Using a result given by Pakes and Pollard (1989, p1043), an estimate 
for Γ  is the matrix 

( ) ( ) ( ) ( )1ˆ , ,
S S S S

n G n n G n G n m n G

n
n n

G e G G e G + − + − =  
  



 

 

θ θ θ θ
Γ ,   (21) 

( )0,0, ,1,0, ,0ie ′=  
 with 1 occurring at the ith entry of the vector 

, 1, ,ie i m=   and n n δ−= , 1
2

δ ≤  and in general we can let 1
2

δ = . Note that 

the columns of ˆ
nΓ  estimate the corresponding partial derivatives given by the 

columns of Γ. 
For ungrouped data and for version D, it is equivalent to choose [ ), 1jI j j= +  

with unit length and let k = ∞ . If we choose [ ), 1jI j j= +  and let k →∞  and 

note that ( ) ( )0′ →B B I θ  and ( )0I θ  the is Fisher information matrix for un-
grouped data with elements given by 

( ) ( ) ( )
, 0

log log
, 1, , , 1, ,h l i

h l

p i p i
I p i l m h m

θ θ
∞

=

∂ ∂ 
= = = 

∂ ∂ 
∑  

θ θ
θ    (22) 

and ( ) ( ) [ ) 0, , 1 ,i ip i p I I i i= = + =θ θ θ θ . We can foresee that the HD estimators 
are as efficient as ML estimators for version D, a result which is already obtained 
by Simpson [14]. We postpone till section (3) for a more rigorous approach to 
justify the related result for version S using Theorem 7.1 given by Newey and 
McFadden [17]. The SMHD estimators given by Sθ  for ungrouped data will be 
shown to have the property 

( ) ( )( ) 1
0 0

10, 1LSn N
τ

−  − → +  
  

Iθ θ θ . 

Section 3 may be skipped for practitioners if their main interests are only on 
applications of the results.  

2.3. Chi-Square Goodness of Fit Test Statistics 
2.3.1. Simple Hypothesis 
In this section, the Hellinger distance ( )nQ θ  is used to construct goodness of 
fit test statistics for the simple hypothesis  

H0: data comes from a specified distribution with distribution 
0

Fθ , 
0

Fθ  can 
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be the distribution of a discrete or continuous distribution. The chi-square test 
statistics and their asymptotic distributions are given below with 

( ) ( )( )2
04 1 1 for  version  andL

nnQ r k Dχ→ = + −θ       (23) 

( ) ( )( )2
0 for v4 1 1  

1
ersion .L

nn Q r Skτ χ
τ
  → = + − + 

θ     (24) 

The version S is of interest since it allows testing goodness of fit for discrete or 
continuous distribution without closed form pmfs or density functions, all we 
need is to be able to simulate from the specified distribution. We shall justify the 
asymptotic chi-square distributions given by expression (23) and expression (24) 
below. 

Note that 

( ) ( ) ( )0 0 04 nn nnQ n n′= G Gθ θ θ  

and  

( ) ( )0
10,
4

L
nn N  ′→ − 

 
G I qqθ  

for version D. For version S, 

( ) ( )0
1 10, 1
4

L
nn N

τ
   ′→ + −  

  
G I qqθ . 

Using standard results for distribution of quadratic forms and the property of 
the operator trace of a matrix with  

( ) ( ) ( ) ( )1 1trace trace trace k k′ ′− = − = + − =I qq I qq , see Luong and Thompson 
[30] (p247); we have the asymptotic chi-square distributions as given by expres-
sion (23) and expression (24). On how to choose the intervals, the problem is 
rather complex as it depends on the type of alternatives we would like to detect. 
We can also follow the recommendations of the Pearson’s statistics, see Green-
wood and Nikulin [31]; also see Lehmann [32] (p341) for more discussions and 
references on this issue. 

2.3.2. Composite Hypothesis 
Just as the chi-square distance, the Hellinger distance ( )nQ θ  can also be used 
for construction of the test statistics for the composite hypothesis, 

H0: data comes from a parametric model { }Fθ , { }Fθ  can be a discrete or 
continuous parametric model. The chi-square test statistics are given by 

( ) ( )24 L
n GnQ r k mχ→ = −θ ,                (25) 

for version D and for version S, 

( ) ( )24
1

LS
n Gn Q r k mτ

χ
τ
  → = − + 

θ                (26) 

where Gθ  and S
Gθ  are the vector of HD estimators which minimize ( )nQ θ  

version D and version S respectively and assuming k m> . To justify these 
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asymptotic chi-square distributions, note that we have for version D, 
( ) ( ) ( )4 4 1a

n n pG GnQ nQ o= +θ θ . It suffices to consider the asymptotic distribu-

tion of ( )4 a
GnnQ θ  as we have the following equalities in distribution, 

( ) ( ) ( ) 2
4 4d a

G Gn Gn nnQ nQ n L= =θ θ θ , ( )nL θ  as given by expression (11). 

Also, using expression (11) and expression (13), 

( ) ( ) ( )0 0Gn G
d

nn n n= + −L Gθ θ θ θΓ  

which can be reexpressed as 

( ) ( ) ( ) ( )1
0 0n nG

d
nn n n −′ ′= −L G Gθ θ θΓ Γ Γ Γ  

or  

( ) ( )( ) ( )1
0

d
n nGn n−′ ′= −L I Gθ θΓ Γ Γ Γ  

With 

( ) ( )0
10,
4

L
nn N  ′→ − 

 
G I qqθ , 

( )0nG θ  is based on expression (8) for version D. Consequently, 

( ) ( )( )110,
4

L
Gnn N − ′ ′ ′→ − − 

 
L I qqθ Γ Γ Γ Γ  

by noting 

( )( )( ) ( )( ) ( )( )1 1 11 1
4 4

− − −′ ′ ′ ′ ′ ′ ′ ′− − − = − −I I qq I I qqΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ , 

using 0′ =q Γ  and the matrix ( )( )1−′ ′ ′= − −B I qqΓ Γ Γ Γ  is of rank  
1 1k m k m+ − − = −  with the rank of the matrix B  is also equal to its trace. 

The argument used is very similar to the one used for the Pearson’s statistics, see 
Luong and Thompson [30] (p249). 

For version S,  

( ) ( ) ( ) 2

4 4 4S d a S S
n G n G n GnQ nQ n= = Lθ θ θ  

and  

( ) ( )( ) ( )1
0

S d
n G nn nG−′ ′= −L Iθ θΓ Γ Γ Γ  

with 

( ) ( )0
1 10, 1
4

L
nn N

τ
   ′→ + −  

  
G I qqθ , 

( )0nG θ  is based on expressions (9-10) for version S. This justifies the 
asymptotic chi-square distribution for version S as given by expression (25) 
and expression (26). This version is useful for model testing for nonnegative 
continuous models without closed form expression densities, see Luong [33] 
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for some positive infinitely divisible distributions without closed form densi-
ties used in actuarial sciences. It is also suitable for testing models with sup-
port on the real line used in finance such as the jump diffusion model as given 
by Tsay [34] (p311-319), for example. All we need is to be able to simulate 
from the model.  

3. SMHD Methods for Ungrouped Data 

For the classical version D with ungrouped data, Simpson [14] (p806) in the 
proof of his Theorem 2 has shown that we have equality in probability of the 
following expression by letting 

( )
( )

( )2

p i

s i
p i

θ

∂
∂=

θ

θ

θ  

be the vector of partial derivatives with respect to θ  of ( )
1
2 , 0,1,p i i = θ  and 

we have 

( ) ( )
( )

( )( )0
0 0 0

1 1
2 2

0 0

log1
4

p
n ni i

p i
n s i p i p n p i p

θ
∞ ∞

= =

∂ 
− = −   ∂ 

∑ ∑

θ
θ θ θ    (27) 

with 
( ) ( )

( )
0 0

log1
4 2

p i s i

p iθ

∂
=

∂

θ θ

θ
 and 

( )
0

log
, 1,

p i
i

θ
∂

=
∂



θ  is the vector of the  

score functions with covariance matrix ( )0I θ  which is the Fisher information 
matrix.  

For version D, we then have 

( ) ( )( ) ( )
( )( )0

0

1
0 0 0

logˆ d
ni

p i
n n p i p

θ
− ∞

=

∂
− = −

∂∑I θ
θθ θ θ  

or equivalently 

( ) ( )( ) ( )( )1
0 0 0

ˆ  with ~ 0,dn N
−

− = I Y Y Iθ θ θ θ . 

Therefore, we can conclude that ( ) ( )( )( )1
0 0

ˆ 0,Ln N
−

− → Iθ θ θ  which is  

the result of Theorem 2 given by Simpson [14] (p804) which shows that the 
MHDE estimators are as effcient as the maximum likelihood (ML) estimators. 

For version S with ungrouped data, it is more natural to use Theorem 7.1 of 
Newey and McFadden [17] (p2185-2186) to establish asymptotic normality for 
SMHD estimators. The ideas behind Theorem 7.1 can be summarized as follows. 
In case of the objective function ( )nQ θ  is non smooth and the estimators is the 
vector θ  which is obtained by minimizing ( )nQ θ , we can consider the vector 

∗θ  which is obtained by minimizing a smooth function ( )a
nQ θ  which ap-

proximates ( )nQ θ  if ( )nQ θ  is differentiable in probability at 0θ  with the 
derivative vector given by ( )0nD θ . For SMHD estimation, 

( ) ( ) ( )
1

11 2
22

0
S

n niQ p i p i∞

=

 
 = −     

 
∑ θθ               (28) 
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with its equivalent expression given by expression (3). 
Also, if ( ) ( )p

nQ Q→θ θ  and assume that ( )Q θ  is non random and twice 

differentiable with second derivative matrix H  with ( ) ( )2
0

0

Q∂
= =

′∂ ∂
H H

θ
θ

θ θ
, 

( )Q θ  attains its minimum at 0=θ θ  then we can define  

( ) ( ) ( ) ( ) ( )0 0 0 0
1
2

a
n n nQ Q H′= + + − −Dθ θ θ θ θ θ θ . 

The vector ∗θ  which minimizes ( )a
nQ θ  can be obtained explicitly as 

( )a
nQ θ  is a quadratic function of θ , it is given by ( )1

0 0n
∗ −− = −H Dθ θ θ  and 

using equality in distribution 

( ) ( )1
0 0

d
nn n∗ −− = = −H Dθ θ θ . 

If the remainder of the approximation is small, we also have 

( ) ( ) ( )1
0 0 0

d
nn n n∗ −− = − = −H Dθ θ θ θ θ . 

Before defining the remainder term ( )nR θ , note that the following approxi-
mation ( )b

nQ θ  can be viewed as equivalent with  

( ) ( ) ( )( ) ( ) ( )0 0 0 0
b
n n nQ Q Q Q= + − + −Dθ θ θ θ θ θ θ  

as ( ) ( ) ( ) ( )0 0 0
1
2

Q Q ′− ≈ − −Hθ θ θ θ θ θ  using 
( )0 0

Q
θ

∂
=

∂

θ
, ( )Q θ  is mini-

mized at 0=θ θ . 

For the approximation to be valid, we define  

( )
( ) ( ) ( )( ) ( ) ( )( )0 0 0 0

0

n n
n

nn Q Q Q Q
R

′− + − + −
=

−

Dθ θ θ θ θ θ θ
θ

θ θ
 

and requires ( )
0

sup 0
n

p
nRδ− ≤ →θ θ θ  as , 0nn δ→∞ →  as indicated by the  

proofs of Theorem 7.1 given by Newey and McFadden. The following Theorem 
3 is essentially Theorem 7.1 given by Newey and McFadden but restated with es-
timators obtained by minimizing an objective function instead of maximizing an  
objective function and requires ( )

0
sup 0

n

p
nRδ− ≤ →θ θ θ  which is slightly  

more stringent than the original condition v) of their Theorem 7.1. We also re-
quire compactness of the parameter space Ω . Newey and McFadden do not use 
this assumption but with this assumption, the proofs are less technical and sim-
plified. It is also likely to be met in practice. 

Theorem 3 

Suppose that ( ) ( ) 1infn n pQ Q o
n∈Ω

 ≤ +  
 



θθ θ , 0
p→θ θ  and 

1) ( )Q θ  is minimized at 0=θ θ ; 
2) 0θ  is an interior point of the parameter space Ω ; 
3) ( )Q θ  is twice differentiable at 0=θ θ  with nonsingular matrix H ; 
4) ( ) ( )0 0,L

nn N→D Kθ ; 
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5) ( )
0

sup 0
n

p
nRδ− ≤ →θ θ θ  as , 0nn δ→∞ → . Then 

( ) ( )1 1
0 0, .Ln N − −− → H KHθ θ  

The regularity conditions (1-3) of Theorem 3 can easily be checked. The con-
dition 4 follows from expression (27) established by Simpson [14]. The condi-
tion 5 might be the most difficult to check as it involve technicalities and it is ve-
rified in TA2 of the Appendices. By assuming all can be verified, we apply 
Theorem 3 for SMHD estimation with S=θ θ . 

The objective function ( )nQ θ  is as defined by expression (3), 

( ) ( ) ( )

( ) ( ) ( )

0

0 0

21 1
2 2

0

21 1
2 2

0 0

,

0,

i

i

Q p i p i

Q p i p i

∞

=

∞

=

 
 = −     
 

 
   = − =    
 

∑

∑

θ θ

θ θ

θ

θ

 

the matrix of second derivative of ( )0Q θ  is  

( )( ) ( )( ) ( )
0 0 00

12
2i s i s i∞

=
′= =∑H I θ θ θ  

and it can be seen that 

( ) ( ) ( ) ( )
0 0

11
22

0 02 S
n ni p i p i s i∞

=

 
 = − −     

 
∑D θ θθ , 

by performing limit operations to find derivates as in real analysis and using 
Assumption 1 and Assumption 2. Therefore, we have the following equality in 
distribution using the condition 4) of Theorem 3 and expression (27)  

( ) ( )( ) ( )
( ) ( )( )0

0

1
0 0 0

log
,d S

n
S

i

p i
n n p i p i

− ∞

=

∂
− = −

∂∑I θ
θθ θ θ

θ
   (29) 

which is similar to the grouped case. 
Now with ( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0 0 0

S S
n np i p i p i p i p i p iθ− = − − −θ θ θ  with the size 

of the simulated sample is U nτ=  and the simulated sample is independent of 
the sample given by data, we can argue as for the grouped case to conclude 

( ) ( )( ) ( )( )1 1
0 0 0

1 with ~ 0, 1S dn n N
τ

− − − = + 
 

 
 
 

I Z Z Iθ θ θ θ . (30) 

One might want to define the extended Cramér-Rao lower bound for simu-

lated method estimators to be ( )( ) 1
0

1 11
n τ

− + 
 

I θ ; with this definition, the 

asymptotic covariance matrix of SMHD estimators attains this bound just as the 
asymptotic covariance matrix of ML estimators attain the classical Cramér-Rao 

lower bound. The factor 
11
τ

 + 
 

 is a common factor which also appears in  

other simulated methods, it can be interpreted as the adjustment factor when 
estimators are obtained via minimizing a simulated version of the objective 
function instead of the original objective function with the model distribution 
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being replaced by a sample distribution using a simulated sample, see Pakes 
and Pollard [16] (p1048) for the simulated minimum chi-square estimators, 
for example. Clearly, ( )0I θ  can also be estimated numerically as in the 
grouped case which is given in section (2). Results of Theorem 2 and Corollary 
1 allow us to establish asymptotic normality of the MHD estimators for both 
versions in a unified way.  

We close this section by showing the asymptotic breakdown point   of 
SHMD estimators is the same as HMD estimators under the true model with  

1
2

≥  by using the argument used by Simpson for the version D of HD estimators,  

see Simpson [14] (p805-806) and assuming only the original data set might be 
contaminated, there is no contamination coming from simulated samples. This 
assumption appears to be reasonable as we can control the simulation proce-
dures. We focus only on the strict parametric model and the set up is less general 
than the one considered by Theorem 3 of Simpson [13] (p805) which also in-
cludes distributions near the parametric model. 

Let 
0,nH 

θ  be the contaminated distribution function defined as 
( )

0 0, 1n nH F K= − +  θ θ , where 
0

Fθ  is the true distribution function and the 

distribution nK  is introduced to contaminate the model. The pmfs of 

0 0, ,nH F
θ θ  and nK  are given respectively by ( ) ( )

0 0, ,n ip ip
θ θ  and ( )

nKp i . The 

asymptotic breakdown point is the smallest value   which makes S
n →∞θ . 

The vector S
nθ  minimizes with respect to θ  the objective function 

( ) ( ) ( )
0 0

1 1
2 2

, ,0, S S
n nip p p i p iρ ∞

=
   =   ∑ 

θ θ θ θ .  

Now with the same seed used across θ , ( )Sp iθ  can be viewed as a proxy 

pmf for the true parametric model. We let S
n →∞θ  and show that this will 

imply 1
2

≥  in probability. As S
nθ  is the vector which minimizes SHD or 

maximizes ( )0, , S
np pρ 
θ θ  clearly 

( ) ( )0 0 0, ,, ,
S
n

S S
n np p p pρ ρ≥ 
θ θ θθ

. Now observe that 

( ) ( ) ( ) ( ) ( )
0 0 0 0

1 1
2 2

, 0, 1
n

S S
n Kip p p i p i p iρ ∞

=
   = − +   ∑  θ θ θ θ   

but 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1 1
2 2

0

1 11 1
2 22 2

0

1

1 1

n

S
Ki

pS
i

p i p i p i

p i p i

∞

=

∞

=

   − +   

   ≥ − → −   

∑

∑

 

 

θ θ

θ θ

 

as ( ) ( )
0 0

1
2 pSp i p i  → θ θ  which implies ( ) ( )

0 0

1 1
2 2

0 1pS
i p i p i∞

=
    →   ∑ θ θ . So, 

in probability, we have the lower bound  

( )
( )0

1
2 ,1 ,

S
n

S
np pρ− ≤  θ θ

. 
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With 
( ) ( ) ( ) ( )

0 0

11
22

, 0, 1
S Sn
n n

S S
n Kip p p i p i pρ ∞

=
  = − +    ∑  θ θθ θ

, 

using the inequality ( )
1 11
2 22a b a b+ ≤ +  with 0, 0a b≥ ≥ , we have the upper 

bound inequality 

( ) ( ) ( ) ( )


( )

( ) ( )


( )

( )


( )

0 0

0

111 11 222 22, 0

111 222
0

11 11
22 22

0

, 1

1

.

S Sn
n n

S
n

Sn
n

S S
n Ki

S
i

S
Ki

p p p i p i p i

p i p i

p i p i

ρ ∞

=

∞

=

∞

=

      ≤ − +         

  ≤ −     

  + ≤    

∑

∑

∑

  



 

θ θθ θ

θ θ

θ

 

The last inequality follows from the assumption that  

( )


( )
0

11
22

0 0
S
n

pS
i p i p i∞

=
   →    ∑ θ θ

 since n →∞θ  which implies the two pmfs 

( )
0

p iθ  and 


( )S
n

Sp i
θ

 are not close according to the discrepancy measure using 

SHD as n →∞ , an argument also used by Simpson [14] to justify his expression 
* 0ρ = , see Simpson [14] (p805-806). 

Using ( )


( )
11
22

0 1
Sn
n

S
Ki p i p i∞

=
   ≤    ∑

θ
, we might conclude in probability we 

have the inequalities ( )
( )0

11
22 ,1 ,

S
n

S
np pρ− ≤ ≤ θ θ

 which implies 1
2

≥  in  

probability under the true model which is similar to version D. The only differ-
ence is here we have an inequality in probability. From this result, we might 
conclude that the SMHD estimators preserve the robustness properties of ver-
sion D and the loss of asymptotic efficiency comparing to version D can be mi-
nimized if 10τ ≥ .  

4. Numerical Issues 
4.1. Methods to Approximate Probabilities 

Once the parameters are estimated, probabilities can be estimated. For situations 
where recursive formulas exist then Panjer’s method can be used, see Chapter 9 
of the book by Klugman et al. [4]. Otherwise, we might need to approximate 
probabilities by simulations or by analytic methods. 

In this section, we discuss some methods for approximating probabilities 
, 0,1,hp h =   for a discrete nonnegative random variable X with pgf ( )P s  

which can be used if a recursion formula for hp  is not available. The saddlepoint 
method and the method based on inverting the characteristic function can be used. 

See Butler [35] (p8-9) for details of the saddlepoint approximation. It can be 
described as using a

hp  to approximate hp , with 

( )
( )( )1 exp

2π
a
hp K s sh

K s
= −

′′
. 
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The saddlepoint s  is defined implicitly, using the pgf, as the solution of 

( )( ) ( )log esP K s= , and ( )K s h′ =  with ( ) ( )K s
K s

s
∂

′ =
∂

 and  

( ) ( )2

2

K s
K s

s
∂

′′ =
∂

. The function ( )K s  is the cumulant function. 

If the cumulant function does not exist, an alternative method which is based 
on the characteristic function, as described by Abate and Whitt [36] (p32), can 
be used. 

4.2. A Limited Simulation Study 
4.2.1. Neymann Type A distribution  
As an example for illustration we choose the Neymann Type A distribution with 
the method of moments (MM) estimators for λ  and ф  which have been given  

by Johnson et al. [8]. The MM estimators are given by X
ф

λ =


 and 
2

1sф
X

= −   

with the sample mean and variance given respectively by X  and 2s . The MM 
estimators are classical moment estimators. We perform a limited simulation 
study to compare the performance of the SMHD estimator which is given by  

  ( ),S S Sфλ
′

=θ  vs the MM estimators given by ( ),фλ ′=  θ . 

For the range of parameter values, we let 0.25,0.5,1,2, ,6λ =  ,  
30,40, ,80,100ф =   are used in the study. For applications often the parame-

ter λ  for the mixing distribution much smaller than the parameter ф . The 
SMHD estimators seem to perform much better than the MM estimators, in 
general. The results are displayed in Table A. The criterion for overall relative  

efficiency used is the ratio 
( ) ( )
( ) ( )

S SMSE MSE ф
ARE

MSE MSE ф

λ

λ

+
=

+ 

 with ( ).MSE  denotes  

the mean square error of the estimator inside the parenthesis. The mean square 
error of an estimator π̂  for 0π  is defined as  

( ) ( )2
0ˆ ˆMSE Eπ π π= − . 

The ratio ARE can be estimated using simulated data and they are displayed 
in Table A. Due to limited computing facilities, we only draw 50M =  samples 
of size 1000n =  and the simulated sample is fixed at 12000U = , 12τ =  and 
the results are summarized using Table A. It takes around one minute using a 
laptop computer for obtaining the SMHD estimators for one simulated sample. 
The MM estimators appear to perform reasonably well for some samples but 
display erratic results for some other samples which account for the loss of effi-
ciency of the MM estimators. Also, the parameter ф  is not well estimated by 
the moment method but it gives reasonably good estimates for the parameter λ  
in general. The MM estimators are based on the sample mean and variance and 
these statistics are known to be nonrobust. If outliers are present, the MM esti-
mators again might become erratic. The mean square errors (MSE) for estimat-
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ing the parameters and the corresponding ratios ARE are estimated using the 
simulated samples and the AREs are displayed in Table A. 

4.2.2. Poisson Distribution 
For the Poisson model with parameter λ  we compare the performance of 


MLλ  the MLE for λ  which is the sample mean vs the SMHD estimator Sλ   

using the ratio 
( )
( )
ML

S

MSE
ARE

MSE

λ

λ
=  for 5,10,12, , 20,100λ =  . For the Poisson  

model, the information matrix exists and we can check the efficiency and ro-
bustness of the SHD estimator and compare it with the ML estimator which is 
the sample mean. Since there is only on parameter estimate we are able to fix  

 
Table A. Asymptotic relative efficiencies between MM estimators and SMHD estimators 

( ) ( )
( ) ( )ˆ

S SMSE MSE ф
ARE

MSE MSE ф

λ

λ

+
=

+


. 

фλ  30 40 50 60 80 100 

0.25 0.0032 0.0082 0.0238 0.0173 0.0074 0.0063 

0.5 0.0523 0.0024 0.0148 0.2053 0.0115 0.0429 

1 0.0337 0.0256 0.1253 0.1502 0.0892 0.0481 

2 0.0073 0.0197 0.0393 0.0536 0.2986 0.0147 

3 0.0038 0.0046 0.0020 0.3167 0.0229 0.0057 

4 0.0098 0.0103 0.0117 0.0156 0.0102 0.0020 

5 0.0481 0.1431 0.0062 0.0073 0.0100 0.0009 

6 1.0330 0.0632 0.0145 0.0236 0.0126 0.0062 

 

Asymptotic relative efficiency between MLE MLλ  and SHD λ̂ , 


( )
( )ML

S

MSEARE
MSE

λ

λ
=  for 

the Poisson model with parameter λ . 
 

λ  5 10 12 14 16 18 20 100 



( )
( )ML

S

MSE

MSE

λ

λ
 0.7000 0.7864 0.9639 0.7649 0.8256 0.9480 0.8102 1.097 

 
Asymptotic relative efficiency between MLE MLλ  and SHD Sλ  for the Poisson model 

( )λ  when 10% of data coming from the discrete positive distribution with parameter λ  

and 0.9α = , i.e., ( ) ( )0.9 0.1 , 0.9Poisson DPSλ λ α+ = . 

λ  5 10 12 14 16 18 20 100 



( )
( )ML

S

MSE

MSE

λ

λ
 87.736 87.5592 43.6890 102.8376 85.9624 62.8738 51.2473 75.8619 
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U = 10000 for the simulated sample size from the Poisson model without slow-
ing down the computations. It appears overall the SHD estimators performs very 
well for the range of parameters often encountered in actuarial studies, here we 
observe that the asymptotic efficiencies range from 0.7 to 1.1. We also study a 
contaminated Poisson model ( λ ) with 90%p =  observations coming from the 
Poisson model ( λ ) and 1 10%q p= − =  of observations coming from a dis-
crete positive stable (DPS) distribution with the parameter for 0.9α =  and λ  
has the same value of the Poisson model. We compare the performance of the 
sample mean for λ  which is the ML estimator vs the SMHD estimator Sλ  
using the contaminated model Poisson model as described and estimate the  

( )
( )
ML

S

MSE
ARE

MSE

λ

λ
=  for 5,10,12, , 20,100λ =   to compare the robustness of  

the SMHD estimator vs ML estimator in presence of contamination. The sample 
mean looses its efficiency and becomes very biased. The results are given at the 
bottom of Table A which shows that the Sλ  performs much better than the 
sample mean which is the ML estimator. For drawing simulated samples from 
the DPS distribution, the algorithm given by Devroye [37] is used. 

5. Conclusion 

More simulation experiments to further study the performance of the SMHD es-
timators vs commonly used estimators across various parametric models are 
needed and we do not have the computing facilities to carry out such large scale 
studies. Most of the computing works were carried out using only a laptop 
computer. So far, the simulation results confirm the theoretical asymptotic re-
sults which show that SMHD estimators have the potential of having high effi-
ciencies for parametric models with finite Fisher information matrices and they 
are robust if data is contaminated; the last feature might not be shared by ML es-
timators. 
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Appendices  
Technical Appendix 1 (TA1) 

TA 1.1 
In this technical appendix, we shall show that a sequence of random functions 
( ){ }ng θ  which is continuous in probability and bounded in probability on a 

compact set θ  will attain its supremum on a point of θ  in probability. Pick a 
sequence { }jθ  in θ  with the property ( ) ( )supn j

p
ng gθ∈→θ θ . Since θ  

is compact we can extract a subsequence { }kj
θ  from { }jθ  with the property 

0
kj
→θ θ  which belongs to θ . This property in real analysis is also known un-

der the name Bolzano-Weirstrass theorem. We then have ( ) ( )0
kn j n

pg g→θ θ  
and ( ) ( )0sup p

n ng gθ∈ =θ θ . 
TA 1.2 
In this technical appendix, we shall show that the sequence of function 
( ){ }ng θ  is continuous in probability and for the grouped case of Section (2.2.2), 
( )ng θ  for the grouped data case can also be expressed as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

2 21 1 1 1
2 2 2 2

0 0

1 1 1 1
2 2 2 2

02 .

k kS S
n j j j ji i

k S S
j j j ji

g n p I p I n p I p I

n p I p I p I p I

= =

=

   
       = − + −             
   

  
       − − −           
  

∑ ∑

∑

θ θ θ θ

θ θ θ θ

θ

 

The first two terms of the RHS of the above equation are bounded in proba-
bility as they have a limiting distributions and this implies the third term is also 
bounded in probability by using Cauchy-Schwartz inequality. Now using the 
conditions of Assumption 1 of Section (2.2.2) and implicitly the assumption of 
the same seed is used across different values of θ , we then have as ′→θ θ ,  

( ) ( ) ( ) ( )
2 21 1 1 1

2 2 2 2
0 0

k kpS S
j j j ji in p I p I n p I p I′ ′= =

   
       − → −             
   

∑ ∑θ θ θ θ  

and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1 1 1 1
2 2 2 2

0

1 1 1 1
2 2 2 2

0

2

2 .

k S S
j j j ji

kp S S
j j j ji

n p I p I p I p I

n p I p I p I p I

=

′ ′=

  
       − −           
  

  
       → − −           
  

∑

∑

θ θ θ θ

θ θ θ θ

 

From the above property, it is clear that ( )0 0ng =θ , ( )ng θ  is continuous 
in probability, and using TA1.1 we conclude that there exists 0θ  which  
belongs to ( ) { }0 0, n nS δ δ= − ≤θ θ θ θ  and ( ) ( )0

0sup
n

p
n ng gδ− ≤ =θ θ θ θ  but as 

0
0,n →∞ →θ θ , ( ) ( )0

0 0p
n ng g =→θ θ . Therefore, ( )

0
up 0s

n n
pgδ− ≤ →θ θ θ , 

as 0
0,n →∞ →θ θ . 

The justifications for the ungrouped case are similar using the same type of 
arguments but with the use of Theorem 7.1 given by Newey and McFadden [17] 
and will be given in TA2.  
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Technical Appendix 2 (TA2) 

In this technical appendix we shall verify the condition  
( )

0
sup 0

n n
pRδ− ≤ →θ θ θ  as , 0nn δ→∞ →  for SMHD estimation using un-

grouped data. Despite ( )0 0Q =θ , we will keep ( )0Q θ  and define the sequence 

of functions ( ) ( ) ( )( ) ( ) ( )( )( )0 0n n nu n Q Q Q Q= + − +θ θ θ θ θ  then it will allow 

us to express ( ) ( ) ( )( )0 0

0

n n
n

u n
R

′− −
=

−

Dθ θ θ θ
θ

θ θ
. Now with 

( )0 0
Q∂

=
∂

θ
θ

, 

( )nu θ  is differentiable in probability at 0=θ θ . The derivative vector for ( )nu θ  

at 0=θ θ  is simply ( )0nnD θ  as it can be seen by performing limit operations 
as in real analysis and using Assumption 1 and Assumption 2 in Section 3. There-

fore, we have ( ) 0p
nR →θ  as 0→θ θ  by using definition of the derivative. 

Since ( )nu θ  is approximable by ( )( )0 0nn ′ −D θ θ θ  which is bounded in 
probability in a neighborhood including 0θ ,  

( ) { }0 00 0, n nS δ δ= − ≤θ θ θ θ  using expression (27), we might assume ( )nu θ  is 

bounded in probability for ( )00 , nS δ∈θ θ . We might also assume that 

( ) ( )p
n nu u→′ ′′θ θ  as ′ ′′→θ θ , using Dominated Convergence Theorem (DCT) 

with ( ) ( )p
n nQ Q→′ ′′θ θ  when ′ ′′→θ θ , ( )nQ θ  as defined by expression (28) 

of Section 3, the summand of ( )nQ θ  satisfies the following inequalities 

( ) ( ) ( ) ( ) ( ) ( )
1

11 2
22 , 0,1,S

n n np i p i p i p i p i p i i
 

 − ≤ − ≤ + =     
 

θ θ θ , 

hence the use of DCT is justified. Therefore, ( )nu θ  is continuous in probabili-
ty for all ( )00 , nS δ∈θ θ . 

Now if we define ( )0 0nR =θ , ( )nR θ  is continuous in probability for all θ  

which belongs to ( )00 , nS δθ . Consequently, ( ) ( )0

0sup
n

p
n nR Rδ− ≤ =θ θ θ θ  

with ( )0
0 , nS δ∈θ θ  as the set ( )0 , nS δθ  is compact. As n →∞ , 0nδ → , 

0
0→θ θ , ( ) ( )0

0 0p
n nR R =→θ θ , this establishes the result and the argu-

ment used is similar to the one used in TA1.2 for the grouped data case. 
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