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Abstract 
In this paper, comparison of homotopy perturbation method (HPM) and 
homotopy perturbation transform method (HPTM) is made, revealing that 
homotopy perturbation transform method is very fast convergent to the solu-
tion of the partial differential equation. For illustration and more explanation 
of the idea, some examples are provided. 
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1. Introduction 

Many problems in our life are modeled by linear and nonlinear partial differen-
tial equations. In recent years, various analytical methods proposed by research-
ers to solve these PDEs. However, it is still very difficult to obtain closed-form 
solutions. The homotopy perturbation method proposed by Ji-Huan He [1] [2] 
[3] [4] and employed by scientists and engineers [5] [6] [7] to solve many prob-
lems in engineering and science. And it has proved tremendously effective to 
solve these problems. In this letter, we use the coupling of homotopy perturba-
tion method and Laplace transform named homotopy transform method 
(HPTM) [8]-[13] to compare the rate of convergent to the solution with stan-
dard homotopy perturbation method. 

2. Homotopy Perturbation Method 

To illustrate the basic ideas of the (HPM), we consider the following nonlinear 
differential equation 
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( ) ( ) ( ) 0L u u f r+ Ν − =                         (1) 

With the boundary conditions 

, 0, ,uB u r
n
∂  = ∈Γ ∂ 

                         (2) 

where L  is linear, while Ν  is nonlinear, ( )f r  is a known analytic function, 
Γ  is the boundary of the domain Ω . 

Define a homotopy ( ) [ ], : 0,1v r p RΩ× →  which satisfies  

( ) ( ) ( ) ( ) ( ) ( ) [ ]0, 1 0, 0,1 ,v p p L v L u p A v f r p r Η = − − + − = ∈ ∈Ω      (3) 

where [ ]0,1p∈  is an embedding parameter, 0u  is an initial approximation of 
Equation (3) then 

( ) ( ) ( )0,0 0,v L v L uΗ = − =                       (4) 

( ) ( ) ( ),1 0v A v f rΗ = − =                        (5) 

The changing process of p from zero to unity is just that of ( ),v r p  from tri-
vial solution ( )0u r  to original solution ( )u r , in topology this is called defor-
mation, ( ) ( )0L v L u−  and ( ) ( )A v f r−  are called homotopic.  

Here the imbedding parameter p can be considered as “small parameter”. 
Assume that the solution of Equation (3) can be written as a power series in p 

2
0 1 2v v pv p v= + + +                         (6) 

Setting 1p =  result in the approximate solution of Equation (6)  

0 1 21
lim
p

u v v v v
→

= = + + +                       (7) 

3. Homotopy Perturbation Transform Method (HPTM) 

To illustrate the basic ideas of the (HPTM), we consider the following nonlinear 
differential equation with the initial conditions of the form  

( ) ( ) ( ) ( ), , , ,Du x t Ru x t u x t g x t+ + Ν =                   (8) 

( ) ( ) ( ) ( ),0 , ,0 .tu x h x u x f x= =                     (9) 

where D is the second order linear differential operator 
2

2D
t
∂

=
∂

, R is the  

linear differential operator of less order than D; N represents the general nonli-
near differential operator and ( ),g x t  is the source term.  

Taking the Laplace transform (denoted by L) on both sides of Equation (8):  

( ) ( ) ( ) ( ), , , , .L Du x t L Ru x t L u x t L g x t+ + Ν =                       (10) 

( ) ( ) ( ) ( ) ( ) ( )2 , ,0 ,0 , , , .ts L u x t su x u x L Ru x t L u x t L g x t− − + + Ν =                (11) 

Using the initial conditions: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

1 1 1, , , , .
h x f x

L u x t L g x t L Ru x t L u x t
s s s s s

= + + − − Ν                 

(12) 
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Operating with Laplace inverse on both sides of Equation (12) gives 

( ) ( ) ( ) ( )1
2

1, , , , .u x t G x t L L Ru x t u x t
s

−  = − + Ν    
           (13) 

where ( ),G x t  represents the term arising from the source term and the pre-
scribed initial conditions. Now we apply the HPM  

( ) ( )
0

, ,n
n

n
u x t p u x t

∞

=

= ∑                        (14) 

And the nonlinear term can be decomposed as  

( ) ( )
0

, n
n

n
u x t p u

∞

=

Ν = Η∑                       (15) 

where ( )n uΗ  are He’s polynomials given by  

( )0 1
0 0

1, , , , 0,1, 2,
!

n
i

n n in
i p

u u u p u n
n p

∞

= =

 ∂  Η = Ν =  ∂   
∑        (16) 

Substituting Equations (14) and (15) in Equation (13), we get  

( )

( ) ( ) ( )

0

1
2

0 0

,

1, , .

n
n

n n
n n

n n

u x t

G x t p L L R p u x t p u
s

∞

=

∞ ∞
−

= =

   = − + Η      

∑

∑ ∑
      (17) 

Comparing the coefficient of like powers of p, the following approximations 
are obtained.  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0
0

1 1
1 0 02

2 1
2 1 12

3 1
3 2 22

: , , ,

1: , , ,

1: , , ,

1: , , ,

p u x t G x t

p u x t L L Ru x t u
s

p u x t L L Ru x t u
s

p u x t L L Ru x t u
s

−

−

−

=

 = − +Η    

 = − +Η    

 = − +Η    



 

And so on.  

4. Application 

Example 1. Consider the inhomogeneous Advection problem [14]  

( ) ( ) ( )1sin sin 2 , ,0 cos
2

u uu x t x t u x x
t t

∂ ∂
+ = − + − + =

∂ ∂
       (18) 

Standard HPM: According to homotopy Equation (3) we have  

( ) ( )0 0 1sin sin 2 0
2

u uv vp v x t x t
t t x t

∂ ∂∂ ∂ − + + + + + + = ∂ ∂ ∂ ∂ 
      (19) 

And the solution for first few steps reads:  
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( ) ( )

( )

( ) ( )

( )

0

1

2 2 2
2

2

cos ,
1 1 1sin 2 cos cos cos 2 cos 2 ,
2 4 4

1 1sin sin 2 cos cos 2 sin sin sin
4 2

1 1cos cos cos sin 2 sin sin 2 sin sin 2
8 8

1 1 1 1cos cos 2 cos cos 2 sin cos 2 cos sin 2
4 4 4 2

v x

v t x x t x x t x

v t x x t x x x x t x

x x t x t x x x t x x

x x t x x t x x t x x

=

= + + − + + −

= − + − + +

+ + + + − + +

+ + − + +



 

Therefore, the approximate solution of Equation (19) can be written as  

(
( ) ( ) ( ) ( )

( ) )

2 21 cos 2 cos 12cos 2 3cos3 6 cos3
16

16cos cos 2 16cos 2 4 4cos 2 2

3cos 3 2 2 sin 8 sin 2 6 sin 3

u x t x x x t x

x t t x x x t

x t t x t x t x

= − + + −

+ + − + + + + +

− + − − − +

    (20) 

HPTM: to solve Equation (18) by MPTM, taking the Laplace transform on the 
both sides, subject to the initial condition, we get  

( ) 2 2

cos 1 cos sin 1 2cos 2 sin 2 1,
21 4

x x s x x s x uu x s L u
s s s xs s

  − − +  ∂   = + − −     ∂+ +     
 (21) 

Taking inverse Laplace transform, we get  

( ) ( ) ( ) 11 1 1, cos cos 2 cos 2
4 4

uu x t x t x t x L L u
s x

−  ∂  = + + + − −   ∂  
    (22) 

Now, we apply the homotopy perturbation method; we have  

( ) ( )
0

, ,n
n

n
u x t p u x t

∞

=

= ∑                      (23) 

( ) ( ) ( ) 1

0 0

1 1 1, cos cos 2 cos 2
4 4

n n
n n

n n
p u x t x t x t x p L L p

s

∞ ∞
−

= =

   = + + + − − Η      
∑ ∑  

(24) 

where nΗ  are He’s polynomials that represent the nonlinear terms.  
The first few components of He’s polynomials, for example, are given by 

( )
( )

0 0 0

1 0 1 1 0

,

,
x

x x

u u u

u u u u u

Η =

Η = +



 

Comparing the coefficient of like powers of p, we have  

( ) ( ) ( )0
0

1 1: , cos cos 2 cos 2 ,
4 4

p u x t x t x t x= + + + −  

( ) ( ) ( )1 1
1 0

1 1 1 1: , cos 2 cos cos 4 ,
4 4 64

p u x t L L u x t x x
s

−  = − Η = − + + + +    
  

It is important to recall here that the noise terms appear between the compo-
nents ( )0 ,u x t  and ( )1 ,u x t , more precisely, the noise terms  
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( )1 1cos 2 cos 2
4 4

x t x± + ±  between the components ( )0 ,u x t  and ( )1 ,u x t  can  

be cancelled and the remaining terms of ( )0 ,u x t  still satisfy the equation. 
The exact solution is therefore 

( ) ( ), cosu x t x t= +                         (25) 

Example 2. Consider the inhomogeneous non-linear Klein Gordon equation 
[15]  

2 2
2 2 2

2 2 cos cosu u u x t x t
t x

∂ ∂
− + = − +

∂ ∂
                 (26) 

Subject to the initial conditions  

( ) ( ),0 , ,0 0uu x x x
t

∂
= =

∂
                     (27) 

Standard HPM: According to homotopy Equation (3) we have  
2 22 2

2 2 20 0
2 2 2 2 cos cos 0

u uv vp v x t x t
t t x x

 ∂ ∂∂ ∂
− + − + + − = 

∂ ∂ ∂ ∂ 
       (28) 

And the solution for first few steps reads:  

0

2 2 2 2
1

4 3 2 3 4 3
2 2 2 2 2 2

2

3

1 3 1cos cos 2
8 4 8

1 1 2 2 cos
16 8 24 16 8 24
1 1cos 2 cos 2

16 16

v x

v x x x t x t x x

t x t x t xv x t x t x x t

x x x

=

= − + − + −

= − + − − + + − + +

− −



 

Therefore, the approximate solution of Equation (26) with conditions (27) can 
be written as  

( )
4 3 2 3 4 3

2 2 2 2 2 2

2 2 3

31 3 1, cos
16 4 8 24 16 8 24
1 1 1cos 2 2 cos cos 2 cos 2
8 16 16

t x t x t xu x t x x t t t x x t

x x x t x x x

= − − + − + + − + +

− + − − +

  (29) 

HPTM: To solve Equation (26) by MPTM, taking the Laplace transform on 
the both sides, subject to the initial condition, we get  

( ) ( )
( )
( )

2 2 2
2

22 3 2

2 1,
1 4

s xx x uu x s L u
s s xs s s s

+  ∂
= − + + − ∂+ +  

        (30) 

Taking inverse Laplace transform, we get  

( )
2 2 2 2

2 1
2

1 1, cos cos
8 4 8

x t x uu x t x t x t L L u
s x

−   ∂
= − + + + −  ∂   

     (31) 

Now, we apply the homotopy perturbation method; we have  
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( )

( )

2 2 2
2

0

2
1

2
0 0

1, cos cos
8 4 8

1 ,

n
n

n

n n
n n

n n

x t xp u x t x t x t

p L L p u x t p
s x

∞

=

∞ ∞
−

= =

= − + +

   ∂  + − Η     ∂      

∑

∑ ∑
    (32) 

The first few components of He’s polynomials, for example, are given by  

( )
( )

2
0 0

1 0 1

,

2 ,

u u

u u u

Η =

Η =



 

Comparing the coefficient of like powers of p, we have  

( )

( ) ( )

2 2 2
0 2

0

2 2 2 2
1 1 2 40

1 02

1: , cos cos ,
8 4 8

1 1 1: , cos cos 2
8 4 8 64

x t xp u x t x t x t

u x t xp u x t L L u x t x t
s x

−

= − + +

  ∂
= −Η = − − + +  ∂   





 

The noise terms 
2 2 2

21 cos
8 4 8

x t xx t± ± ±  between the components ( )0 ,u x t   

and ( )1 ,u x t  can be cancelled and the remaining terms of ( )0 ,u x t  still satisfy 
the equation. 

The exact solution is therefore 
( ), cosu x t x t=                         (33) 

Example 3. Consider the following non homogeneous nonlinear PDE [16]: 
22 2

4
2 2 2 ,u u u x t

xt x
∂ ∂ ∂ + + = + ∂∂ ∂  

                  (34) 

With the initial conditions 

( ) ( ),0 0, ,0 ,uu x x a
t

∂
= =

∂
                   (35) 

Standard HPM: According to homotopy perturbation method we have: 
22 22 2

40 0
2 2 2 2 2 0

u uv v vp x t
xt t x x

 ∂ ∂∂ ∂ ∂ − + + + − + =   ∂∂ ∂ ∂ ∂  
        (36) 

Let’s ignore the first few steps and start from determining iv  

0

2 6
1

2

,
1 ,
30

0,

v at

v xt t

v

=

= +

=

 

6
3

1 ,
30

0, 4k

v t

v k

=

= ≥
  

Therefore, we obtain  
2

0 0 1 2 3 .v v v v v at xt= + + + + = +                   (37) 
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HPTM: To solve Equation (34) by MPTM, taking the Laplace transform on 
the both sides, subject to the initial condition, we get  

( )
22

2 3 7 2 2

2 4! 1, a x u uu x s L
xs s s s x

 ∂ ∂ = + + − +  ∂∂    
            (38) 

Taking inverse Laplace transform, we get  

( )
26 2

2 1
2 2

1,
30
t u uu x t at xt L L

xs x
−
  ∂ ∂ = + + + +   ∂∂      

          (39) 

Now, we apply the homotopy perturbation method; we have  

( ) ( )
6 2

2 1
2 2

0 0

1,
30

n n
n n

n n

t up u x t at xt p L L p u
s x

∞ ∞
−

= =

   ∂
= + + − + Η    ∂    

∑ ∑    (40) 

The first few components of He’s polynomials, for example, are given by  

( )

( )

( )

2
40

0

0 1
1

2
01 2

2

,

2 0,

2 0,

uu t
x
u uu
x x

uu uu
x x x

∂ Η = = ∂ 
∂ ∂

Η = =
∂ ∂

∂∂ ∂ Η = + = ∂ ∂ ∂ 


 

Comparing the coefficient of like powers of p, we have  

( )

( ) ( )

( ) ( )

6
0 2

0

2 6
1 1 0

1 02 2

2
2 1 1

2 12

: , ,
30

1: , ,
30

1: , 0,

tp u x t at xt

u tp u x t L L L u
s x

up u x t L L L u
s x

−

−

= + +

   ∂
= − + Η = −       ∂    

   ∂
= + Η =       ∂    


 

( ), 0, 2ku x t k= ≥  

Therefore, the exact solution is given by  

( ) 2,u x t at xt= +                         (41) 

5. Conclusion 

In this work, we compared HPTM with standard HPM, it is clear that the rate of 
convergence of HPTM is faster than HPM. In most cases, the number of calcula-
tions in the HPTM is less than HPM. Furthermore, the exact solution can easily 
be obtained by using HPTM in comparison to HPM in some equations. The 
HPTM usually results in the exact solution for the inhomogeneous problem, 
even for the problem which HPM leads to an approximate solution. 
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