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Abstract 
A CR-structure on a 2 1n + -manifold gives a conformal class of Lorentz 
metrics on the Fefferman 1S -bundle. This analogy is carried out to the 
quarternionic conformal 3-CR structure (a generalization of quaternionic 
CR-structure) on a 4 3n + -manifold M. This structure produces a conformal 
class [ ]g  of a pseudo-Riemannian metric g of type ( )4 3,3n +  on 3M S× . 

Let ( )( )4 3PSp 1,1 , nn S ++  be the geometric model obtained from the pro- 

jective boundary of the complete simply connected quaternionic hyperbolic 
manifold. We shall prove that M is locally modeled on ( )( )4 3PSp 1,1 , nn S ++  

if and only if [ ]( )3,M S g×  is conformally flat (i.e. the Weyl conformal cur- 

vature tensor vanishes). 
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1. Introduction 

This paper concerns a geometric structure on ( )4 3n + -manifolds which is re- 
lated with CR-structure and also quaternionic CR-structure (cf. [1] [2]). Given a 
quaternionic CR-structure { } 1,2,3α α

ω
=

 on a 4 3n + -manifold M, we have 
proved in [3] that the associated endomorphism Jα  on the 4n-bundle D  
naturally extends to a complex structure Jα  on ker αω . So we obtain 3 
CR-structures on M. Taking into account this fact, we study the following 
geometric structure on ( )4 3n + -manifolds globally. 

A hypercomplex 3 CR-structure on a ( )4 3n + -manifold M consists of (po- 
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sitive definite) 3 pseudo-Hermitian structures { } 1,2,3
, Jα α α

ω
=

 on M which sa- 
tisfies that  

1) 
3

1
D ker α

α
ω

=

=


 is a 4n-dimensional subbundle of TM such that  

[ ]D D,D TM+ = .  
2) Each Jγ  coincides with the endomorphism ( ) ( )1

| D | D : D Dd dβ αω ω
−

→  
( ) ( )( ), , ~ 1,2,3α β γ  such that { }1 2 3, ,J J J  constitutes a hypercomplex 

structure on D .  
We call the pair { }( )1 2 3D, , ,J J J  also a hypercomplex 3 CR-structure if it is 

represented by such pseudo-Hermitian structures on M. A quaternionic CR- 
structure is an example of our hypercomplex 3 CR-structure. As Sasakian 3- 
structure is equivalent with quaternionic CR-structure, Sasakian 3-structure is 
also an example. Especially the 4 3n + -dimensional standard sphere 4 3nS +  is a 
hypercomplex 3 CR-manifold. The pair ( )( )4 3PSp 1,1 , nn S ++  is the spherical 
homogeneous model of hypercomplex 3 CR-structure in the sense of Cartan 
geometry (cf. [4]). First we study the properties of hypercomplex 3 CR-structure. 
Next we introduce a quaternionic 3 CR-structure on M in a local manner. In fact, 
let D  be a 4n-dimensional subbundle endowed with a quaternionic structure Q 
on a ( )4 3n + -manifold M. The pair ( )D,Q  is called quaternionic 3 
CR-structure if the following conditions hold:  

1) [ ]D D,D TM+ = ;  
2) M has an open cover { }i i

U
∈Λ

 each iU  of which admits a hypercomplex 3 
CR-structure ( ) ( )( )

1,2,3
,i iJα α α

ω
=

 such that:  

a) ( )
3

1
D | ker i

iU α
α

ω
=

=


;  

b) Each hypercomplex structure ( ) ( ) ( ){ }1 2 3, ,i i i

i
J J J

∈Λ
 on D | iU  generates a 

quaternionic structure Q on D .  
A 4 3n + -manifold equipped with this structure is said to be a quaternionic 3 

CR-manifold. A typical example of a quaternionic 3 CR-manifold but not a 
hypercomplex 3 CR-manifold is a quaterninic Heisenberg nilmanifold. In this 
paper, we shall study an invariant for quaternionic 3 CR-structure on ( )4 3n + - 
manifolds. 

Theorem A. Let { }( ), D,M Q  be a quaternionic 3 CR-manifold. There exists 
a pseudo-Riemannian metric g of type ( )4 3,3n +  on 3M S× . Then the con- 
formal class [ ]g  is an invariant for quaternionic 3 CR-structure.  

As well as the spherical quaternionic 3 CR homogeneous manifold 4 3nS + , we 
have the pseudo-Riemannian homogeneous manifold 4 3 3nS S+ ×  which is a 
two-fold covering of the pseudo-Riemannian homogeneous manifold 

( )2

4 3 3 0,nS S g+ × . The pair ( ) ( )( )2

4 3 3PSp 1,1 SO 3 , nn S S++ × ×  is a  
subgeometry of conformally flat pseudo-Riemannian homogeneous geometry 

( )( )2

4 3 3PO 4 4,4 , nn S S++ ×  where ( ) ( ) ( )PSp 1,1 SO 3 PO 4 4,4n n+ × ≤ + . 
Theorem B. A quaternionic 3 CR-manifold M is spherical (i.e. locally 

modeled on ( )( )4 3PSp 1,1 , nn S ++ ) if and only if the pseudo-Riemannian 
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manifold ( )3,M S g×  is conformally flat, more precisely it is locally modeled 
on ( ) ( )( )2

4 3 3PSp 1,1 SO 3 , nn S S++ × × .  
We have constructed a conformal invariant on ( )4 3n + -dimensional pseudo- 

conformal quaternionic CR manifolds in [3]. We think that the Weyl conformal 
curvature of our new pseudo-Riemannian metric obtained in Theorem A is 
theoretically the same as this invariant in view of Uniformization Theorem B. 
But we do not know whether they coincide. 

Section 2 is a review of previous results and to give some definition of our notion. 
In Section 3 we prove the conformal equivalence of our pseudo-Riemannian 
metrics and prove Theorem A. In Section 4 first we relate our spherical 3 
CR-homogeneous model ( )( )4 3PSp 1,1 , nn S ++  and the conformally flat 
pseudo-Riemannian homogeneous model ( ) ( )( )4 3,3PSp 1,1 SO 3 , nn S ++ × . We 
study properties of 3-dimensional lightlike groups with respect to the pseudo- 
Riemannian metric 0g  of type ( )4 3,3n +  on 4 3 3nS S+ × . We apply these 
results to prove Theorem B. 

2. Preliminaries 

Let { }( )1,2,3
, ,M Jα α α

ω
=

 be a (4n + 3)-dimensional hypercomplex 3 CR-manifold. 
Put ( ) ( ), ,J Jα αω ω=  for one of α’s. By the definition, { }( ), ,M Jω  is a 
CR-manifold. Let ( )2 2,0nC M+  be the canonical bundle over M (i.e. the  -line 
bundle of complex ( )2 2,0n + -forms). Put ( ) ( ) { }2 2,0 *0 /nC M C M+= −   
which is a principal bundle: ( )1S pC M M→ → . Compare [[5], Section 2.2]. 
Fefferman [6] has shown that ( )C M  admits a Lorentz metric g for which the 
Lorentz isometries 1S  induce a lightlike vector field. We recognize the 
following definition from pseudo-Riemannian geometry.  

Definition 1. In general if 1S  induces a lightlike vector field with respect to a 
Lorentz metric of a Lorentz manifold, then 1S  is said to be a lightlike group 
acting as Lorentz isometries. Similarly if each generator 1S  of 3S  is chosen to 
be a lightlike group, then we call 3S  also a lightlike group.  

We recall a construction of the Fefferman-Lorentz metric from [5] (cf. [6]). 
Let ξ  be the Reeb vector field for ( ), Jω . The circle 1S  generates the vector 
field T  on ( )C M . Define dt  to be a 1-form on ( )C M  such that  

( ) ( ) ( )T 1, 0 .dt dt V V TM∀= = ∈                  (2.1) 

In [[5], (3.4) Proposition] J. Lee has shown that there exists a unique real 
1-form σ  on ( )C M . The explicit form of σ  is obtained from [[5], (5.1) 
Theorem] in this case:  

( )
1 1 .

2 3 2 2 2 2
idt i h dh R

n n
α αβ
α αβσ ω ω

 
= + − −  + + 

          (2.2) 

Here 1-forms { },β
α βω τ  are connection forms of ω  such that  

,

.

d ih

d

α β
αβ

α β α α
β

ω ω ω

ω ω ω ω τ

= ∧

= ∧ + ∧
                      (2.3) 
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The function R is the Webster scalar curvature on M. Note from (2.2)  

( ) ( )
1 1 1 .

2 3 2 2 2 2 2 2
d id Rd dR

n n n
α
ασ ω ω ω

 
= − − ∧  + + + 

       (2.4) 

Normalize dt  so that we may assume ( )T 1σ = . Let σ ω  denote the 
symmetric 2-form defined by σ ω ω σ⋅ + ⋅ . Since ( )T 0ω = , it follows 

( )T,T 0σ ω = . The Fefferman-Lorentz metric for ( ), Jω  on ( )C M  is 
defined by  

( ) ( ) ( ), , , .g X Y X Y d JX Yσ ω ω= +                 (2.5) 

Here ( )( ) T kerT C M ξ ω= ⊕ ⊕ . Since ξ  is the Reeb field,  
( ), 0d JXω ξ = . As [ ]ker ,T 0ω = , ( ), 0d JX Tω =  ( )kX erω∀ ∈ . On the other 

hand, { }( )T, 0J ξ =  by the definition. We have  

( ) ( ),T 1, T,T 0.g gξ = =                     (2.6) 

Thus g becomes a Lorentz metric on ( )C M  in which 1S  is a lightlike 
group.  

Theorem 2 ([5]). If uω ω′ = , then g ug′ = .  

3. Hypercomplex 3 CR-Structure 

Our strategy is as follows: first we construct a pseudo-Riemannian metric locally 
on each neighborhood of 3M S×  by Condition I below and then sew these 
metrics on each intersection to get a globally defined pseudo-Riemannian metric 
on 3M S×  using Theorem 4. (See the proof of Theorem A.) 

Suppose that { }( )1,2,3
, ,M Jα α α

ω
=

 is a hypercomplex 3 CR-manifold of 
dimension ( )4 3n + . Put 1 2 3i j kω ω ω ω= + + . It is an Im -valued 1-form 
annihilating D . In general, there is no canonical choice of ω  annihilating D . 
In [[3], Lemma 1.3] we observed that if ω′  is another Im -valued 1-form 
annihilating D , then  

ω λωλ′ =                            (3.1) 

for some  -valued function λ  on M. (Here λ  is the quaternion conjugate.) 
If we put uaλ =  for a positive function u and ( )Sp 1a ∈ , then ua aω ω′ =  
such that the map z aza  ( )z ∈  represents a matrix function ( )SO 3A∈ . 
If { } 1,2,3

Jα α =
′  is a hypercomplex structure on D  for ω′ , then they are related 

as [ ] [ ]1 2 3 1 2 3J J J J J J A′ ′ ′ = . 
For each ( ), Jα αω , we obtain a unique real 1-form ασ  on ( )C M  from 

Section 2 (cf. (2.2)). First of all we construct a pseudo-Riemannian metric on 
3M S× . In general ( )C M  is a nontrivial principal 1S -bundle. It is the trivial 

bundle when we restrict to a neighborhood. So for our use we assume:  
Condition I. ( )C M  is trivial as bundle, i.e. ( ) 1C M M S= × .  
We construct a 1-form ασ  on 3M S×  ( )1,2,3α =  as follows. Let 

T ,T ,Tα β γ  generate { }ie θ

θ∈
, { }je θ

θ∈
, { }ke θ

θ∈
 of 3S  respectively. Obtained 

as in (2.2), we have ασ ’s on each ( ) 1C M M S= ×  such that  
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( ) ( ) ( )T 1, T 1, T 1.α α β β γ γσ σ σ= = =  

We then extend ασ  to 3M S×  by setting  

( ) ( )T T 0α β α γσ σ= =                      (3.2) 

Since T ,T 2Tβ γ α  =   on 3TS ,  

( ) ( ) ( )1T ,T T ,T 1 2 T ,T
2

d α β γ α β γ β γ β γσ σ σ σ = − = − = − ∧  . Note that for any  

p M∈ ,  

{ } ( ) ( )( )32 0 on , , ~ 1,2,3 .d p Sα β γσ σ σ α β γ+ ∧ = ×        (3.3) 

On the other hand, we recall the following from [[3], Lemma 4.1].  
Proposition 3. The following hold:  

( ) ( ) ( ) ( )1 1 2 2 3 3, , , , D .d J X Y d J X Y d J X Y X Yω ω ω ∀= = ∈  

In particular Dg d Jα αω=   is a positive definite invariant symmetric 
bilinear form on D ;  

( ) ( )D D, , .g X Y g J X J Yα α=  

Choose a frame field { }1 4, , nX X  on D  such that j n jJ X Xα α +=  
( )1, ,j n=   with ( ),j k jkd J X Xα αω δ= . Let iθ  be the dual frame to iX  
( )1, , 4i n=   such that  

( ) ( ) ( ) ( )
4

1
, , D .

n
i i

i
d J X Y X Y X Yα αω θ θ ∀

=

= ⋅ ∈∑          (3.4) 

Let αξ  be the Reeb field for αω  respectively. There is a decomposition 
( ) { } { } { }3

1 2 3T ,T ,T , , D T ,T ,TT M S TM α β γ α β γξ ξ ξ× = ⊕ = ⊕ ⊕ . 
As before let ( )3

1 α α α αασ ω σ ω ω σ
=

= ⋅ + ⋅∑  be a symmetric 2-form. Define 
a pseudo-Riemannian metric on 3M S×  by  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

3

1
4

1

, ,

, , .
n

i i

i

g X Y X Y X Y d J X Y

X Y X Y

α α α α α α
α

σ ω ω σ ω

σ ω θ θ

=

=

= ⋅ + ⋅ +

= + ⋅

∑

∑

   (3.5) 

As in (2.6) it follows that ( ),T 1g α αξ = , ( )T ,T 0g α α = . If we note 
( ) 0α ασ ξ ≠ , letting ( )Tα α α α αη ξ σ ξ= − , it follows ( ), 0g α αη η = . So  

( ) ( )
( ) ( )

, ,T 0 1
T , T ,T 1 0

g g
g g

α α α α

α α α α

η η η
η

   
=   

  
 

( )1,2,3α = . As D| Dg g=  is positive definite from Proposition 3, g is a 
pseudo-Riemannian metric of type ( )4 4,3n +  on 3M S× . 

Theorem 4. Let g′  be the pseudo-Riemannian metric on 3M S×  corre- 
sponding to another Im -valued 1-form ω′  on M representing ( )D,Q , i.e. 

ua aω ω′ =  ( )( )Sp 1 , 0a u∈ > , then g u g′ = ⋅ .  
We divide a proof according to whether uω ω′ =  or a aω ω′ = . 
Proposition 5. If uω ω′ = , then g u g′ = ⋅ .  
Proof. (Existence.) Suppose uω ω′ = . We show the existence of such a 1-form 
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σ ′  for ω′ . Let { }1 4 1,2,3
T , , , , nX Xα α α

ξ
=

  be the frame on 3M S×  for ω . 
Then ω′  determines another frame { }1 4T , , , , nX Xα αξ′ ′ ′ ′

 . Since each Tα′  
generates the same 1S  as that of Tα , note  

( )T T 1,2,3 .α α α′= =                         (3.6) 

Let { } 1, ,4i i n
X

= 

 be the frame on D . Then the Reeb field αξ ′  for each αω′  is 
described as  

( ) ( ) ( )1 1 4 4 1, 2,3 .n nu x u X x u Xα α
α αξ ξ α′ ′ ′= ⋅ + + + =           (3.7) 

( )( ), 1, ,ix i nα∃ ∈  =  . As u d dω ω′⋅ =  on D  and  
( ) ( )D D, ,g X Y g J X J Yα α=  from Proposition 3, there exists a matrix 

( ) ( )Spk
iB b n= ∈  such that  

4

1
.

n
k

i i k
k

X u b X
=

′= ∑                         (3.8) 

Two frames { }1 4T , , , , nX Xα αξ  , { }1 4T , , , , nX Xα αξ′ ′ ′ ′
  give the coframes 

{ }1 4, , , ,n
α αω θ θ σ , { }1 4, , , ,n

α αω θ θ σ′ ′ ′ ′
  on 3M S×  respectively. Then the 

above Equations (3.6), (3.7), (3.8) determine the relations between coframes: 
( )

( ) ( ) ( )
4

1 2 3
1 2 3

1

1, 2,3 ,

,
n

i i j
j i i i

j

u

u b ux ux ux

α αω ω α

θ θ ω ω ω
=

′ = ⋅ =

′ = + ⋅ + ⋅ + ⋅∑
        (3.9) 

Moreover if we put  

( ) ( ) ( )

( ) ( ) ( )

4 4 4

1 1 =1

4 4 2

1 1

1
2

1 1 ,
2 2

n n n
i j
j i i i

j i i

n n

i i i
i i

b x x x

x x x

α β α
α α β

γ α α
γ α

σ σ θ ω

ω ω

= =

= =

  ′ = − + ⋅  
 

+ ⋅ −


∑ ∑ ∑

∑ ∑
          (3.10) 

then (3.15) and (3.10) show that  

( ) ( )1 4 1 4
1 2 3 1 2 3 1 2 3 1 2 3, , , , , , , , , , , , , , , , Pn nω ω ω θ θ σ σ σ ω ω ω θ θ σ σ σ′ ′ ′ ′ ′ ′ ′ ′ =   

for which  

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21 1 2 1 3
1

222 1 2 3
2

3

233 1 3 2
3

1 2 3

3

2 2 2

I
2 2 2P .

2 2 2
0
0 0 I

t t t

x x x x xux

xx x x xu ux

xx x x xux

uB B x B x B x

 − − ⋅ − ⋅ 
 
 
 −− ⋅ − ⋅ 
 =
 −− ⋅ − ⋅ 
 
 

− − − 
 
 

 

If 3
4I n  is a symmetric matrix defined by  

3

3
44

3

0 0 0 I
0 0

II ,
0 0
I 0 0 0

nn

 
 
 
 =
 
 
 
 



 



                   (3.11) 
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it is easily checked that 3 3
4 4PI P It

n nu= ⋅ . 
Letting ( )1 2 3, ,ω ω ω ω′ ′ ′ ′=  and ( )1 2 3, ,σ σ σ σ′ ′ ′ ′= , we define a pseudo- 

Riemannian metric  
4

1
.

n
i i

i
g σ ω θ θ

=

′ ′ ′ ′ ′= + ⋅∑                      (3.12) 

Then a calculation shows 

( )

( ) ( )
( ) ( )

( ) ( )
( )

3 4

1 1
1 4 3 1 4

4

1 2 3 1 2
4

1 2 3 1 2
4

3 4

1 1

, , , , I , , , ,

, , , , PI P , , , ,

, , , , I , , , ,

.

n
i i

i
n t n

n

n t t n
n

n t n
n

n
i i

i

g

u

u u g

α α α α
α

α α α α
α

σ ω ω σ θ θ

ω θ θ σ ω θ θ σ

ω θ θ σ ω θ θ σ

ω θ θ σ ω θ θ σ

σ ω ω σ θ θ

= =

= =

′ ′ ′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅

′ ′ ′ ′ ′ ′ ′ ′=

=

= ⋅

 = ⋅ + ⋅ + ⋅ = ⋅ 
 

∑ ∑

∑ ∑

 

 

 

          (3.13) 

(Uniqueness.) We prove the above σ ′  is uniquely determined with respect 
to ω′ . Let { }1 4 4 1 4 2, , , , ,n n n

αω θ θ θ θ+ +=   be the coframe for αω  where 
4 1 4 2,n n

β γθ ω θ ω+ += = . We have a Fefferman-Lorentz metric on 1M S×  from 
(3.5) and (3.4) under Condition I:  

4

1

1
3
1 .
3

n
i i

i

g d Jα α α α α

α α β β γ γ

σ ω ω

σ ω θ θ ω ω ω ω
=

= +

 = + ⋅ + ⋅ + ⋅ 
 
∑

 



         (3.14) 

(We take the coefficient 1
3

 for our use.) When uα αω ω′ = , the coframe    

will be transformed into a coframe { }1 4 4 1 4 2, , , , ,n n n
α α α α αω θ θ θ θ+ +′ ′ ′ ′ ′ ′=   such as  

4 1 4 1

4 2 4 2

,

,

,

i i j i
j

j

n n

n n

u c u y

u u

u u

α α α α

α β

α γ

θ θ ω

θ θ ω

θ θ ω

+ +

+ +

′ = +

′ = =

′ = =

∑

                  (3.15) 

( ) ( )( ), Sp , , 1, ,i i
jy c n i j nα α

∃ ∃∈ ∈ =  . 

If gα′  is the corresponding metric on 1M S× , then g ugα α′ =  by Theorem 
2 and there exists a unique 1-form ασ  such that  

4
4 1 4 1 4 2 4 2

1

4

1

1
3
1 .
3

n
i i n n n n

i

n
i i

i

g

u u

α α α α α α α α α

α α α α β β γ γ

σ ω θ θ θ θ θ θ

σ ω θ θ ω ω ω ω

+ + + +

=

=

 ′ ′ ′ ′ ′ ′ ′ ′= + ⋅ + ⋅ + ⋅ 
 
 ′ ′ ′= + ⋅ + ⋅ + ⋅ 
 

∑

∑







     (3.16) 

If we sum up this equality for 1,2,3α = ;  

( )

( )

1 2 3
,

1 2 3
4

1

1 2
3 3

2 ,
3

i i

i

n
i i

i

g g g u

ug ug ug

u

α α α α β β γ γ
α

α α β β γ γ

σ ω θ θ ω ω ω ω ω ω

σ ω θ θ ω ω ω ω ω ω
=

′ ′ ′ ′ ′ ′+ + = + ⋅ + ⋅ + ⋅ + ⋅

= + +

 = + ⋅ + ⋅ + ⋅ + ⋅ 
 

∑

∑
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which yields 
3 4 4

1 1 1

1 .
3

n n
i i i i

i i
u ugα α

α
σ ω θ θ σ ω θ θ

= = =

 ′ ′ ′+ ⋅ = + ⋅ = 
 

∑∑ ∑
           (3.17) 

Compared this with (3.13) it follows  

( ), . . 1, 2,3 .i e α ασ σ σ σ α′ ′= = =                   (3.18) 

By uniqueness of ασ , ασ ′  defined by (3.10) is a unique real 1-form with 
respect to ω′ .                                                     

Next put a aω ω= ⋅ ⋅ . The conjugate z aza  ( )z∀ ∈  represents a  

matrix ( )
11 12 13

21 22 23

31 32 33

SO 3
a a a

A a a a
a a a

 
 = ∈ 
  

. Then it follows  

[ ]1 2 3, ,
i

A j
k

ω ω ω ω
 
 =  
  

                       (3.19) 

By our definition, a hypercomplex structure { }1 2 3, ,J J J  on D  satisfies that 

( ) ( )1
| D | Dd d Jβ α γω ω

−
=  ( ) ( ), , ~ 1,2,3α β γ . A new hypercomplex structure 

on D  is described as  

1 1

2 2

3 3

.t

J J
J A J
J J

   
   =   

     







                        (3.20) 

Differentiate (3.19) and restrict to D  (in fact, d a d aω ω= ⋅ ⋅  on D ), using 
Proposition 3, a calculation shows  

( ) ( ) ( ) ( )
( )( ) ( )
D D D

1 1 2 2 3 3

D D
1 1 2 2 3 3

, , , ,

, , ,

d X Y a g J X Y a g J X Y a g J X Y

g a J a J a J X Y g J X Y
α α α α

α α α α

ω = − + +

= − + + = −





 

( ) ( ) ( )D, , 1, 2,3 .d J X Y g X Yα αω α= =

              (3.21) 

In particular, we have ( ) ( )1
| D | Dd d Jβ α γω ω

−
=  

  ( ) ( ), , ~ 1,2,3α β γ . 
Proposition 6. If a aω ω= , then g g= .  
Proof. Let ( ) ( ) ( ), , ,g X Y X Y d J X Yα ασ ω ω= + 

  
 . Since ασ  is uniquely 

determined by αω  and [ ]1 2 3, , A Aω ω ω ω ω= =  from (3.19), it implies that  

[ ]1 2 3, , .A Aσ σ σ σ σ= =                     (3.22) 

Note that  

( )
3

1

.

t t t t

t t

A A A Aα α α α
α

σ ω σ ω ω σ σ ω ω σ

σ ω ω σ σ ω
=

= ⋅ + ⋅ = +

= + =

∑    




       (3.23) 

By (3.21),  
D .g d J g gα ασ ω ω σ ω= + = + =

  
    

Proof of Theorem 4. Suppose uω λωλ ω′ = =   where a aω ω= . It follows 
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from Proposition 5 that g ug′ =  . By Proposition 6, we have g g=  and hence 
g ug′ = . This finishes the proof under Condition I.  

Proof of Theorem A 

Proof. Let { }( ), D,M Q  be a quaternionic 3 CR-manifold. Then M has an open 
cover { }i i

U
∈Λ

 where each iU  admits a hypercomplex 3 CR-structure 
( ) ( )( )

1,2,3
,i iJα α α

ω
=

. Put ( ) ( ) ( ) ( )
1 2 3

i i i ii j kω ω ω ω= + +  which is an Im -valued 1-form 
on iU . Since we may assume that iU  is homeomorphic to a ball (i.e. 
contractible), Condition I is satisfied for each iU , i.e. ( ) 1

i iC U U S= × . Then we 
have a pseudo-Riemannian metric ( ) ( ) ( ) ( ) ( )3

1
i i i i ig d Jα α α αα σ ω ω

=
= +∑    on 

3
iU S×  for ( )iω  by Theorem 4. Suppose i jU U ≠ ∅ . By condition a) of 2) 

(cf. Introduction), ( ) ( )D | ker | ker |i j
i j i j i jU U U U U Uω ω= =   . Then by the 

equivalence (3.1) there exists a function uaλ =  defined on i jU U  such that  

( ) ( ) ( ) on .j i i
i jua a U Uω λ ω λ ω= ⋅ ⋅ =              (3.24) 

It follows from Theorem 4 that ( ) ( )j ig ug=  on i jU U . We may put 
jiu u=  which is a positive function defined on i jU U . By construction, it is 

easy to see that ki kj jiu u u=  on i j kU U U ≠ ∅  . This implies that { } ,i ju
∈Λ

 
defines a 1-cocycle on M. Since +  is a fine sheaf as the germ of local 
continuous functions, note that the first cohomology ( )1 , 0H + = . (Here   
is a chain complex of covers running over all open covers of M.) Therefore there 
exists a local function { } ,i jf

∈Λ
 defined on each iU  such that ( ), jif j i uδ = , 

i.e. 1 ji
i jf f u−⋅ =  on i jU U . We obtain that 

( ) ( ) ( ) 3on .j i
j i i jf g f g U U S⋅ = ⋅ ×  

Then we may define  
( )3| .i

i ig U S f g× = ⋅                     (3.25) 

so that g is a globally defined pseudo-Riemannian metric on 3M S× . If another 
family { }i

i
ω

∈Λ
′  represents the same quaternionic 3 CR-structure ( )D,Q , then 

the same argument shows that g ug′ =  on 3M S×  for some positive function. 
Hence the conformal class [ ]g  is an invariant for quaternionic 3 CR-structure. 
In particular, the Weyl curvature tensor ( )W g  is also an invariant. This 
completes the proof of Theorem A.                                   

4. Model Geometry and Transformations 

We introduce spherical 3 CR-homogeneous model ( )( )4 3PSp 1,1 , nn S ++  and 
conformally flat pseudo-Riemannian homogeneous model  

( ) ( )( )4 3,3PSp 1,1 SO 3 , nn S ++ ×  equipped with pseudo-Riemannian metric 0g  
of type ( )4 3,3n +  and then characterize the lightlike subgroup in 

( ) ( )PSp 1,1 SO 3n + × . 

4.1. Pseudo-Riemannian Metric g0 

Let us start with the quaternionic vector space 2n+  endowed with the Her- 
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mitian form:  

( )2
1 1 1 1 2 2, , .n

n n n nz w z w z w z w z w +
+ + + += + + − ∈           (4.1) 

The q-cone is defined by  

{ }{ }2
0 0 | , = 0 .nV z z z+= ∈ − 〉                  (4.2) 

When 2n+  is viewed as the real vector space 4 8n+ , ( )O 4 4,4n +  denotes 
the full subgroup of ( )GL 4 8,n +   preserving the bilinear form Re , . 
Consider the commutative diagrams below. The image of the pair 

( )( )0O 4 4,4 ,n V+  by the projection P  is the homogeneous model of 
conformally flat pseudo-Riemannian geometry ( )( )4 3,3PO 4 4,4 , nn S ++  in 
which ( )4 3,3

0
nS P V+ =   is diffeomorphic to a quotient manifold 

2

4 3 3nS S+ × . 
The identification 2 4 8n n+ +=   gives a natural embedding  

( ) ( ) ( )Sp 1,1 Sp 1 O 4 4,4n n+ ⋅ → +  which results a special geometry  
( ) ( )( )4 3,3PSp 1,1 SO 3 , nn S ++ ×  from ( )( )4 3,3PO 4 4,4 , nn S ++ . 

As usual, the image of ( ) ( )( )0Sp 1,1 Sp 1 ,n V+ ⋅  by P  is spherical quarter- 
nionic 3 CR-geometry ( )( )4 3PSp 1,1 , nn S ++ . 

         (4.3)

 
We describe a pseudo-Riemannian metric 0g  on 

2

4 3,3 4 3 3n nS S S+ += × . Let 
4 3 3nS S+ ×  be the product of unit spheres. For ( ) 4 3 3, nz w S S+∈ × ,  
2 2 1 1 0z w− = − =  so 4 3 3

0
nS S V+ × ⊂ . Then ( ) 4 3,3

0
nP V S +=  induces a 2-fold 

covering 4 3 3 4 3,3: n nP S S S+ +× →  for which ( )4 3 3 4 3,3
* : n nP T S S TS+ +× →  is an 

isomorphism. 
Let 4 3 3nx S S+∈ ×  where we put ( ) [ ]P x x= . Choose 4 3 3ny S S+∈ ×  such 

that , 1x y = . Denote by { },x y ⊥  the orthogonal complement in 2n+  with 
respect to , . As { }2

0 | Re , 0n
xT V Z x Z+= ∈ = , it follows  
{ } 2

0 Im , n
xT V y x x y ⊥ += ⊕ ⊕ ⊂    such that  

( ) { }4 3 3 Im Im , .n
xT S S y x x y ⊥+ × = ⊕ ⊕   

In particular, ( )4 3 3
0

n
x xT V x T S S+= ⊕ × . Note that this decomposition does 

not depend on the choice of points [ ]x x′∈  and y′  with , 1x y′ ′ = . (see [3], 
Theorem 6.1]). We define a pseudo-Riemannian metric on 4 3,3nS +  to be  

[ ] ( ) ( )( )0 4 3 3
* *, Re , , .n

xxg P X P Y X Y X Y T S S∀ += ∈ ×        (4.4) 
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Noting Re , Re , 0ya ya xa xa= = , Re , 1xa ya =  ( )( )Sp 1a∀ ∈  and 

{ },
Re , |

x y ⊥  is positive definite, [ ]
0
xg  is a pseudo-Riemannian metric of type 

( )4 3,3n +  at each [ ] 4 3,3nx S +∈ . 

4.2. Conformal Group ( )nO 4 4,4+  

It is known more or less but we need to check that ( )O 4 4,4n +  acts on 
4 3 3nS S+ ×  as conformal transformations with respect to Re ,  and so does 

( )PO 4 4,4n +  on ( )4 3,3 0,nS g+ . 
For any ( )O 4 4,4h n∈ + , , , 0hx hx x x= =  so 0hx V∈ . However hx  

does not necessarily belong to 4 3 3nS S+ × . Normalized hx , there is 
4 3 3nx S S+′∈ ×  such that ( )hx xλ ′=  for some λ +∈ . Note  

[ ] ( ) ( )hx P hx P x′= =  . If 2 2: n nRλ
+ +→   is the right multiplication defined 

by ( )R z zλ λ= , then there is the commutative diagram:  

 
in which ( ) ( )* * * 0xR h X h X T Vλ ′= ∈ . As ( )4 3 3

0
n

x xT V x T S S+
′ ′′= ⊕ × , we have 

( )*h X x Xλ µ′ ′= +  for some µ ∈ , ( )4 3 3n
xX T S S+
′′∈ × . Since  

( ) ( )*
* * 0xP T P x= =   and ( )( ) ( )( )4 3,3

0: O 4 4,4 , PO 4 4,4 , nP n V n S ++ → +  is 
equivariant, it follows  

( ) ( ) ( )( ) ( ) ( )* * * * * * * * .h P X P h X P h X P x X P Xλ µ′ ′ ′= = = + =      

Similarly ( ) ( )* * *h P Y P Y ′=   for ( )*h Y x Yλ ν′ ′= +  for some ν ∈ , 

( )4 3 3n
xY T S S+
′′∈ × . As Re , Re , 0x X x Y′ ′ ′ ′= = , a calculation shows  

[ ] ( ) ( )( )
[ ] ( ) ( )( )

( ) ( )

[ ] ( ) ( )( )

0
* * * *

0
* *

* *

2 2
* *

2 0
* *

,

, Re ,

Re , Re ,

Re , Re ,

, .

hx

hx

x

g h P X h P Y

g P X P Y X Y

x X x Y h X h Y

h X h Y X Y

g P X P Y

µ ν λ λ

λ λ

λ

′ ′ ′ ′= =

′ ′ ′ ′= + + =

= =

=

 

 

 

 

Hence ( )O 4 4,4h n∈ +  acts as conformal transformation with respect to 
0g . 

4.3. Conformal Subgroup ( ) ( )nSp 1,1 Sp 1+ ⋅  

Let ( ), ,I J K  be the standard hypercomplex structure on 2n+  defined by  

, , .Iz zi Jz zj Kz zk= − = − = −  

Put ( )span , ,Q I J K=  as the associated quaternionic structure. Then Re ,  
leaves invariant Q. The full subgroup of ( )O 4 4,4n +  preserving Q is 
isomorphic to ( ) ( )Sp 1,1 Sp 1n + ⋅ , i.e. the intersection of ( )O 4 4,4n +  with 

( ) ( )GL 2, GL 1,n + ⋅  . 
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Let ( )3: O 4 4,4S nρ → +  be a faithful representation. Then the subgroup 

( )3Sρ  preserves Q so it is contained in  

( ) ( ) ( ) ( ) ( )
2 2

Sp 1 Sp 1 Sp 1 SO 4 SO 4
n n+ + 

× × ⋅ ≤ × ×  
 

 

   

which is a subgroup of ( ) ( )SO 4 4 SO 4n + × . 

4.4. Three Dimensional Lightlike Group 

Choose 1 3S S≤  and consider a representation restricted to 1S . As we may 
assume that the semisimple group ( )3Sρ  belongs to ( ) ( )( ) ( )Sp 1 Sp 1 Sp 1× × ⋅ , 
this reduces to a faithful representation: 1 2 1: nS T Sρ +→ ⋅  such that  

( ) ( )( )21e , , e e .nia tia t ibttρ += ⋅                    (4.5) 

Here we may assume that 0ia ≥  are relatively prime ( )1, , 2i n= +  
without loss of generality, and either 0b =  or 1. The element ( )tρ  acts on 

4 3 3
0

nS S V+ × ⊂  as 

( )( ) ( )
( )

1 21

1 21

1 1 1 1

1 1

, , , , , ,

, , ,

n n

n n

ia t ia tia t ibt
n n

ia t ia tia t ibt ibt ibt
n

t z z w e z e z e w e

e z e e z e e we

ρ + +

+ +

−
+ +

− − −
+

= ⋅

=

 



     (4.6) 

where 22 2
1 1 0nz z w++ + − =  for ( ) ( )1 1 0, , , ,nz w z z w V+= ∈ . If X is the 

vector field induced by ( )1Sρ  at ( ),z w , then it follows  

( ) ( )1 1 1 1 2 1 1, , , , , , .n n n nX ia z ia z ia w z ib z ib wib+ + + += −           (4.7) 

Proposition 7. If 1 2 1: nS T Sρ +→ ⋅  is a faithful lightlike 1-parameter group, 
then it has either one of the forms:  

( ) ( ) ( ) ( ) ( ) { }

( ) ( ) { } ( ) ( ) ( )

2

, , Sp 1 Sp 1 Sp 1,1 1 ,

1, ,1 1 Sp 1 Sp 1,1 Sp 1 .

n
it it

it

t e e n

t e n

ρ

ρ

+ 
= ≤ × × ≤ + ⋅  

 
= ⋅ ≤ ⋅ ≤ + ⋅



 



      (4.8) 

Proof. Case (i) 0b = . ( )1 1 1 1 2, , ,n n nX ia z ia z ia w+ + +=   from (4.7) so that  

( ) ( )2 22 2 22 2 2 2 2 2 2
1 1 1 1 2 1 2 1 1 2 1, n n n n n n nX X a z a z a w a a z a a z+ + + + + + += + + − = − + + −  . 

Since Re , 0X X =  and we assume 0ia ≥ , it follows  

1 2 1 2, , .n n na a a a+ + += =  

As ia ’s are relatively prime, this implies  

1 1 2 1.n na a a+ += = = =  

As a consequence ( ) ( ) ( ) { }, , Sp 1,1 1it itt e e nρ = ≤ + ⋅ . In this case note that 

( ) { }4 3 3 Im Im ,n
xT S S y x x y ⊥+ × = ⊕ ⊕   such that *,x y ∈ .  
Case (ii) 1b = . It follows from (4.7) that  

( ) ( )1 1 1 1 2 1 1, , , , , , .n n n nX ia z ia z ia w z i z i wi+ + + += −   

Put ( )1 1 1 1 2, , ,n n nY ia z ia z ia w+ + +=  , ( )1 1, , ,nW z i z i wi xi+= =  such that  
X Y W= −  and , , 0W W i x x i= = . Calculate  

https://doi.org/10.4236/am.2018.92008


Y. Kamishima 
 

 

DOI: 10.4236/am.2018.92008 126 Applied Mathematics 
 

22 22 2
1 1 1 1 2

1 1 1 1 1 1 2

22
1 1 1 1 2

, ,

, ,

Re , Re , .

n n n

n n n n

n n n

Y Y a z a z a w

Y W a z iz i a z iz i a wiwi

Y W a z a z a w W Y

+ + +

+ + + +

+ + +

= + + −

= + + −

= + + − =







       (4.9) 

This shows  

( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

22 22 2 2
1 1 1 1 1 1 2 2

222 2 2 2
1 1 2 2 1 1 1 2 2 1

2 2 2 222
1 2 1 1 2 1

Re , Re ,

Re , 2Re , Re , R , 2Re ,

2 2 2

2 2 2 2

1 1 1 1 .

n n n n n

n n n n n n n

n n n n

X X Y W Y W

Y Y Y W W W Y Y Y W

a a z a a z a a w

a a a a z a a a a z

a a z a a z

+ + + + +

+ + + + + + +

+ + + +

= − −

= − + = −

= − + + − − −

= − − − + + − − −

= − − − + + − − −







 

Thus 

( ) ( ) ( ) ( )2 2 22
1 2 1 21 1 , , 1 1 .n n na a a a+ + +− = − − = −           (4.10) 

On the other hand, we may assume in general  

1

1

1 1

0.

1 0, , 1 0.

1 0, , 1 0.

k

k l

l n

a a

a a

a a
+

+ +

= = =

− ≤ − ≤

− ≥ − ≥







 

(ii-1). Suppose 2 1 0na + − ≥ . As 0 1ja< ≤  for 1k j l+ ≤ ≤ , it implies 

1 1k la a+ = = = . Since ( ) ( )2 2
1 21 1k na a+ +− = −  from (4.10), it follows 2 1na + = . 

Again from (4.10), ( )2
1 0ja − =  and so 1ja =  ( )1 1l j n+ ≤ ≤ + . Note that 

0ia ≠  because ( ) ( )2 2
21 1 0i na a +− = − = . Thus 1 2 2 1na a a += = = = . This 

implies ( ) ( ), ,it it itt e e eρ = ⋅ .  
(ii-2). Suppose 2 1 0na + − < . In this case 2 0na + = . By (4.10), it follows that 

0ia∀ ≠  and 1 1la a= = = , 2ia =  ( )1 1l i n+ ≤ ≤ + . Thus  
( ) ( )2 21, ,1, , , ,1i t i t itt e e eρ = ⋅  . This contradicts that nonzero ia ’s  

( )1 1i n≤ ≤ +  are relatively prime.  
(ii-3). Suppose 2 1 0na + − <  and 1 2 1 0na a a += = = = . Again 2 0na + =  and 

so ( ) ( )1, ,1 itt eρ = ⋅ .                                              
To complete the proof of the proposition we prove the following. Put 

( ) ( ) 4 3 3
1 1 0, , , , n

nx z w z z w S S V+
+= = ∈ × ⊂  such that , 0x x = . 

Lemma 8. Case (ii-1) does not occur.  
Proof. It follows from (4.7) that  

( ) ( )1 1 1 1, , , , , , .n nX iz iz iw z i z i wi ix xi+ += − = −            (4.11) 

Put n+2 =  +  ( , C ).x p jq p q ∈  Then 2 .X kq=  As , 0X X =  implies 
, 0q q = . On the other hand, the equation 

0 , ( , , ) 2 ,x x p p q q j p q= = + −  

shows , , 0, , 0.p p q q p q+ = =  Note that if 2n+1 1S S×  is the canonical 
subset in 4n+3 3 ,S S×  then , 0p p =  if and only if 2n+1 1.p S S∈ ×  Since X is a 
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nontrivial vector field on 4n+3 3 ,S S×  there is a point x in the open subset 
4n+3 3 2n+1 1\S S S S S= × ×  such that , 0p p ≠  and thus , 0X X ≠  on S, 

which contradicts that X is a lightlike vector field. 

4.5. Proof of Theorem B 

Applying Proposition 7 to a lightlike group 3S  we obtain: 
Corollary 9. Let ( )3: O 4 4,4S nρ → +  be a faithful representation which 

preserves the metric Re ,  on 0V . If ( )3Sρ  is a lightlike group on 
4 3 3nS S+ × , then either one of the following holds.  

( ) ( ) ( )( ) ( ) { }

( ) { } ( ) ( ) ( )

3

3

diag Sp 1 Sp 1 Sp 1,1 1 ,

1 Sp 1 Sp 1,1 Sp 1 .

S n

S n

ρ

ρ

= × × ≤ + ⋅

= ⋅ ≤ + ⋅



       (4.13) 

Let ( ) ( )( ) ( )( )4 3 3diag Sp 1 S 1 Sp 1 , np S S+× × ⋅ ×  be as in (4.13). If  
4 3 3 4 3 3: n nf S S S S+ +× → ×  is a map defined by  

( )( ) ( )1 1 1 1, , , , , ,n nf z z w wz wz w+ +=  , then for ( )Sp 1a ∈ , ( )Sp 1b ∈ ,  

( )( ) ( )1 1 1 1, , , , , , .n nf az az awb bwz bwz bwa+ +=   

So the equivariant diffeomorphism f  induces a quotient equivariant 
diffeomorphism  

( ) ( )( ) ( ) ( )( )( )4 3 3 3 4 3ˆ : Sp 1 , diag Sp 1 Sp 1 , .n nf S S S Sρ+ +× → × ×    (4.14) 

We prove Theorem B of Introduction.  
Proof. Suppose that the pseudo-Riemannian manifold ( )3,M S g×  is 

conformally flat. Let ( )1 Mπ π=  be the fundamental group and M  the 
universal covering of M. By the developing argument (cf. [7]), there is a 
developing pair:  

( ) ( ) ( )( )3 3 4 3 3 0,Dev : , , O 4 4,4 , ,nS M S g n S S gρ π +× × → + ×

  

where Dev  is a conformal immersion such that * 0Dev g ug=   for some 
positive function u on 3M S×  and ( )3: O 4 4,4S nρ π × → +  is a holonomy 
homomorphism for which Dev  is equivariant with respect to ρ . 

By Corollary 9, if ( ) { } ( ) ( ) ( )3 1 Sp 1 Sp 1,1 Sp 1S nρ = ⋅ ≤ + ⋅ , then the normalizer 
of ( )Sp 1  in ( )O 4 4,4n +  is isomorphic to ( ) ( )Sp 1,1 Sp 1n + ⋅ . In particular, 

( ) ( ) ( ) ( ) ( )3 Sp 1 Sp 1,1 Sp 1S nρ π ρ π× = × ≤ + ⋅  where ( ) { } ( )3 1 Sp 1Sρ = ⋅ . We 
have the commutative diagram:  

    (4.15)

 
where ( ) ( )PSp 1,1nρ π ≤ +  and dev  is an immersion which is ρ̂ - 
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equivariant. 
If ( ) ( ) ( )( ) ( ) { }3 diag Sp 1 Sp 1 Sp 1,1 1S nρ = × × ≤ + ⋅  from (4.13), then  
( ) ( ) ( ) ( ) ( )( ) ( )3 3 diag Sp 1 Sp 1 Sp 1S Sρ π ρ ρ π× = ⋅ ≤ × × ⋅ . Composed f  with 

Dev , we have an equivariant diffeomorphism ( ) ( )( )4 3ˆ dev : , , nf M Sπ ρ π +→

  
where ( ) ( ) ( )( ) ( )diag Sp 1 Sp 1 PSp 1,1nρ π ≤ × × ≤ + . In each case taking the 
developing map either dev  of (4.15) or ˆ devf  , a quaternionic 3 CR-manifold 
M is spherical, i.e. uniformized with respect to ( )( )4 3PSp 1,1 , nn S ++ .  

Conversely recall { }( )0 0

1,2,3
, Jα α

ω
=

 is the standard quaternionic 3 CR-structure 
on 4 3nS +  equipped with the standard hypercomplex structure { }0 0

1,2,3
Q Jα α =

=  
on 0D . Suppose that { }( )1,2,3

, Jα α
ω

=
 is a spherical quaternionic 3 CR-structure 

on M with a quaternionic structure Q, then there exists a developing map 
4 3dev : nM S +→  such that  

0dev ω λωλ∗ =   

for some  -valued function λ  on M  with a lift of quaternionic 3 
CR-structure ω . In particular, 0

*dev D D=  and 0
*dev Q Q= . 

Let g  be a pseudo-Riemannian metric on 3M S×  for ω  which is a lift of 
g  and ω  to 3M S×  respectively. Put 0devω ω∗′ = . Let uaλ =  be a 

function for 0u >  and ( )Sp 1a ∈  such that  

.ua aω ω′ =   

By the definition, recall ( ) ( )0 0 0, ,d J V W d V Wβ γ αω ω=  ( )0, DV W∀ ∈ . The 
induced quaternionic structure { } 1,2,3

Jα α =
′  for 0devω ω∗′ =  is obtained as 

( )( ) ( )( )* 0 * 0dev , dev ,d J X Y d X Yβ γ αω ω′ = . Since  
( ) ( )0 0

* * * *dev ,dev dev ,devd J X Y d X Yβ γ αω ω′ = , taking *devV X= , we obtain  

( )0
* *dev dev D .J X J X Xγ γ

∀′ = ∈                 (4.16) 

As ( )0 0
*dev span , 1,2,3Q Q Jα α= = = , note that { } 1,2,3

J Qα α =
′ ∈ . 

On the other hand, let g′  be the pseudo-Riemannian metric on 3M S×  for 
ω′ , it follows from Theorem 4  

.g ug′ =                           (4.17) 

Take the above element 3a S∈  and let 3 3: S Sρ →  be a homomorphism 
defined by ( )s asaρ =  ( )3s S∀ ∈ . Define a map 3 4 3 3dev : nM S S Sρ +× × → ×  
which makes the diagram commutative. (Here p is the projection onto the left 
summand.)  

 

                 (4.18)

 
where both { }( ) { }( )* : D, J D, Jp α α′ ′→  and { }( ) { }( )0 0 0 0

* : D , J D , Jp α α→  are 
isomorphisms such that  
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( )0 0
* * * *and 1,2,3 .p J J p p J J pα α α α α′ ′= = =            (4.19) 

Recall from (3.5) that 0 0 * 0 * 0 0g p dp Jα ασ ω ω= +  . (We write p more pre- 
cisely.) Consider the pull-back metric  

( ) ( ) ( ) ( )( )
( ) ( )( )

* 0 0 * 0
* *

* 0 0
* *

dev , dev , dev

dev , dev .

g X Y p X Y

dp J X Yα α

ρ σ ω ρ ρ

ω ρ ρ

× = × ×

+ × ×



   (4.20) 

Calculate the first and the second summand of (4.20) respectively.  

( ) ( ) ( ) ( )* * *0 * 0 0 * 0

* * 0 * * 0

dev dev dev

dev dev .

p p

p

ρ σ ω ρ σ ρ ω

ρ σ ω

× = × ×

=

 



     (4.21) 

( ) ( )( )
( ) ( )( )

( )

* 0 0
* *

0 0
* ** *

0 0
* * * *

dev , dev

dev , dev

dev ,dev

dp J X Y

d J p X p Y

d J p X p Y

α α

α α

α α

ω ρ ρ

ω ρ ρ

ω

× ×

= × ×

=

 

( )0
* * * *dev ,devd J p X p Yα αω ′=  (4.16) 

( )0
* * * *dev ,devd p J X p Yα αω ′=  (4.19) 

( ) ( ) ( )* * 0 * * 0dev , dev , .dp J X Y d p J X Yα α α αω ω′ ′= =   

(4.22) 
Thus  

( ) ( )* 0 * * 0 * * 0 * * 0dev dev dev dev .ag R p d p Jα αρ σ ω ω ′× = +   

Then it follows by the construction of (3.5) that ( )* 0dev gρ×  is the 
corresponding pseudo-Riemannian metric for * 0dev ω ω′=  and so 
( )* 0dev g g ugρ ′× = =   by (4.17). Therefore ( )3,M S g×   is conformally flat 
and so is ( )3,M S g× .                                               
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