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Abstract 
Income distributions are commonly unimodal and skew with a heavy right 
tail. Different skew models, such as the lognormal and the Pareto, have been 
proposed as suitable descriptions of income distribution and applied in spe-
cific empirical situations. More wide-ranging tools have been introduced as 
measures for general comparisons. In this study, we review the income analy-
sis methods and apply them to specific Lorenz models. 
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1. Introduction 

Income distributions are commonly unimodal and skew with a heavy right tail. 
Therefore, different skew models, such as the lognormal and the Pareto, have 
been proposed as suitable descriptions of income distribution, but they are 
usually applied in specific empirical situations [1]. For general studies, more 
wide-ranging tools have been considered. The target for them is to introduce 
measures that are useable for comparisons of different distributions. Primary 
income data yield the most exact estimates of income inequality coefficients such 
as Gini and Pietra. Earlier studies have shown that no method is always optimal. 
Therefore, different attempts are still worth studies. In this study, we review in-
come analysis methods based on Lorenz curves. The theory is applied to specific 
models.  

Fellman [2] analyzed different methods for numerical estimation of Gini coef-
ficients. As an application of these methods, he considered Pareto distributions. 
Using Lorenz curves, various numerical integration attempts were made to ob-
tain accurate estimates. Mettle et al. [3] considered Lorenz curves and estimated 
the Gini coefficient of income by Newton-Cotes methods, and compared the 
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accuracy of these estimates for some (Ghanaian) data. 

2. Methods 

The Lorenz curve. The most commonly used theory is based on the Lorenz 
curve. Lorenz [4] developed it in order to analyze the distribution of income and 
wealth within populations. He described the Lorenz curve, ( )L p , for wealth 
within populations in the following way: 

“Plot along one axis accumulated per cents of the population from poorest to 
richest, and along the other, wealth held by these per cents of the population”. 

Consequently, ( )L p  is an accumulated amount of income (wealth) defined 
as a function of the proportion p of the population. It satisfies the condition 
( )L p p≤  because the income share of the poor is less than their proportion of 

the population. The increase L∆  caused by a fixed increase p∆  of the popu-
lation is a growing function of p, and accordingly, the derivative ( )L p′  is an 
increasing function of p and ( )L p  is a convex function [5].  

Consider the income distribution ( )XF x  of a non-negative variable X. Let 

( )Xf x  be the corresponding frequency distribution and let the mean of X be 

( )
0

dX Xx f x xµ
∞

= ∫ . Then, the Lorenz curve ( )XL p  is  

( ) ( )
0

1 d
px

X X
X

L p x f x x
µ

= ∫ ,                    (1) 

where px  is the p quantile, that is ( )X pF x p= . The Lorenz curve is not de-
fined if the mean is zero or infinite. A Lorenz curve always starts at ( )0,0  and 
ends at ( )1,1 . The higher the Lorenz curve, the lesser is the inequality of the in-
come distribution. The diagonal ( )L p p=  is commonly interpreted as the Lo-
renz curve for complete equality between income receivers, but according to [6] 
it is not perfectly associated with the Lorenz curve. As everyone has the same 
income level, strictly speaking, no one can be said to be at the lowest or highest 
level of the population. The associated Lorenz curve then exists only at the origin 
and the termination point by the definition of the curve. To overcome this prob-
lem, they adopted the convention of allocating any fraction 0 1x< <  of the 
population to be the lowest/highest x percent. This convention then allowed the 
45 degree line through the origin to be associated with complete equality, as 
usually loosely taken to be so. This permitted Wang & Smyth [6] to use 
( )L p p=  as a useful component in the creation of Lorenz curves. 
On the other hand, increasing inequality lowers the Lorenz curve, and theo-

retically, it can converge towards the lower right corner of the square. A sketch 
of a Lorenz curve is given in Figure 1.  

Variable transformations. Consider a transformed variable ( )Y g X= , 
where ( )g ⋅  is positive and monotone increasing. Then, the distribution of 

( )YF y  is 

( ) ( ) ( ) ( )( ) ( ) ( )Y XF y P Y y P g X g x P X x F x= ≤ = ≤ = ≤ = .      (2) 
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Figure 1. A sketch of a Lorenz curve ( )XL p . The diagonal interpreted as complete 

equality is included in the figure. 
 

For the transformed variable Y, the p quantile py  is ( )Y pF y p= , that is, 

( )p py g x= .  
Now  

( ) ( ) ( ) ( )d d d d
d d d d
Y X

Y X
F y F x x xf y f x

y x y y
= = = .             (3) 

Hence,  

( ) ( ) ( ) ( ) ( )
0 0 0

dd d d
dY Y X X

xyf y y g x f x y g x f x x
y

µ
∞ ∞ ∞

= = =∫ ∫ ∫
        

(4) 

and  

( ) ( ) ( )
0

1 d
px

Y X
Y

L p g x f x x
µ

= ∫ .                  (5) 

If the transformation is linear ( )g x xθ= , then Y Xθ= , Y Xµ θµ= , 

( ) ( ) ( )
0

1 d
px

Y X X
X

L p xf x x L pθ
θµ

= =∫ ,               (6) 

and consequently, the Lorenz curve is invariant under linear transformations. A 
simple example of this property is that the Lorenz curve of income distributions 
is independent of the currency used. Another not so obvious result is that pro-
portional income increase and flat tax policies are linear transformations and do 
not influence the Lorenz curve. Consequently, the Lorenz curve satisfies the 
general rules [1]: 

To every distribution ( )F x  with finite mean corresponds a unique Lorenz 
curve, ( )XL p . The contrary does not hold because every curve ( )XL p  is a 
common Lorenz curve for a whole class of distributions ( )F xθ , where θ  is 
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an arbitrary positive constant.  
Consider two variables X and Y, their distributions ( )XF x  and ( )yF y , and 

their Lorenz curves ( )XL p  and ( )YL p . If ( ) ( )X YL p L p≥  for all p, then 
measured by the Lorenz curves, the distribution ( )XF x  has lower inequality 
than the distribution ( )yF y  and ( )XF x  is said to Lorenz dominate ( )yF y . 
We denote this relation ( ) ( )X YL

F x F y  [1]. An example of Lorenz dominance 
is given in Figure 2. 

Income inequalities can be of different type and the corresponding Lorenz 
curves may intersect and for these no Lorenz ordering can be identified (cf. Fig-
ure 3). The Lorenz curve ( )1L p  in Figure 3 corresponds to a population with  

 

 
Figure 2. Lorenz curves with Lorenz ordering, that is, ( ) ( )X YL

L p L p . 

 

 
Figure 3. Two intersecting Lorenz curves.  
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very poor among the poor and rich who are not so rich. On the other hand, Lo-
renz curve ( )2L p  corresponds to a population where the poor are relatively 
not so poor and the rich are relatively rich. For intersecting Lorenz curves, al-
ternative inequality measures have to be defined. 

Properties of Lorenz curves. The Lorenz curve has the following general 
properties:  

i) ( )L p  is monotone increasing,  
ii) ( )L p p≤ ,  
iii) ( )L p  is convex,  
iv) ( )0 0L =  and ( )1 1L = .  
If the Lorenz curve is differentiable, the derivative has the following properties. 

Let ( ) ( )
0

1 d
px

X X
X

L p x f x x
µ

= ∫ , ( )X pF x p=  and the density function ( )Xf x . 

When we differentiate the equation ( )X pF x p= , we obtain  

( ) ( )d d d
1

d d d
X p X p p

p

F x F x x
p x p

= = ,  

( ) d
1

d
p

X p

x
f x

p
=                         (7) 

and  

( )
d 1
d

p

X p

x
p f x
= .                        (8) 

The differentiation of ( ) ( )
0

1 d
px

X X
X

L p x f x x
µ

= ∫  yields 

( ) ( )
( )0

d d
d dd 1 1

d d d d

px

X
p p pX

p X p
X p X X

x f x x
x x xL p

x f x
p x p pµ µ µ

= = =
∫

,      (9) 

and consequently,  

( )d
d

pX

X

xL p
p µ

= .                       (10) 

If the Lorenz curve is differentiable twice, then the second derivative is  

( )
( )

2

2

dd 1 1 1
dd

pX

X X X p

xL p
pp f xµ µ

= = . 

Hence, 

( )
( )

2

2

d 1
d X X p

L p
p f xµ

= .                    (11) 

If 
1

lim
p↑

 denotes the limit from the left, we can prove the following theorem 
[1]: 

Theorem 1. If Xµ  exists, then ( )( )
1

lim 1 0
p

L p p
↑

′ − = . 
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Proof. Consider the integral ( )dX
x

t f t t
∞

∫ . If Xµ  exists, then ( )
0

dX Xt f t t µ
∞

=∫  

and for every 0ε >  there exists an x′  such that ( )dX
x

t f t t ε
∞

<∫  if x x′> . 

Choose p so that px x′> , then 

( ) ( ) ( )d d 1
p p

X p X p
x x

t f t t x f t t x pε
∞ ∞

> ≥ = −∫ ∫
            

(12) 

and ( )
1

lim 1 0pp
x p

↑
− = . 

As a consequence of (12), 

( )( ) ( ) ( )
1 1 1

1lim 1 lim 1 lim 1 0p
X pp p p

X X

x
L p p p x p

µ µ↑ ↑ ↑
′ − = − = − = . 

Consider a one-parametric class of cumulative distribution functions 
( ),F x θ , defined on the positive x-axis. If we assume that ( ) ( ),F x F xθ θ= , i.e. 

it depends only on the product xθ , then the following theorem holds [1]: 
Theorem 2. Let ( ),F x θ  be an one-parametric class of distributions with the 

properties 
i) ( ) ( ),F x F xθ θ= , 
ii) ( )F xθ  is defined on the positive x-axis, 
iii) ( )F xθ  and its derivative are continuous, 
iv) ( )X E Xµ =  exists. 
Let T Xθ= , then  

( ) p
p

t
x θ

θ
=

                         
(13) 

and  

( )X
c

µ θ
θ

= ,                         (14) 

where pt  and c are independent of θ . 
Proof. Let θ  be an arbitrary, positive parameter. Then the quantile ( )px θ  

is defined by the equation ( )pF x pθ = . If we define pt  by the equation 

( )pF t p= , then pt  does not depend on θ  and ( )p px tθ θ = , and (13) is  

proved. The formula (14) and the statement that ( ) ( ) ( )
( )

0

1 d
px

L p x F x
θ

θ
µ θ

= ∫  is 

independent of θ  is proved by using the substitution t xθ=  in the integrals 

( ) ( )
0

dE X x F xθ
∞

= ∫  and ( ) ( ) ( )
( )

0

1 d
px

L p x F x
θ

θ
µ θ

= ∫ . 

Furthermore, we can prove the following [1]: 
Theorem 3. Consider a function ( )L p  defined on the interval [ ]0,1  with 

the properties 
1) ( )L p  is monotone increasing and convex to the p-axis,  
2) ( )0 0L =  and ( )1 1L = ,  
3) ( )L p  is differentiable,  
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iv) ( )( )
1

lim 1 0
p

L p p
↑

′ − = , 
then ( )L p  is a Lorenz curve of a distribution with finite mean.  

Proof. If we denote the unknown distribution ( )F x  and its derivative 

( )f x , then necessarily ( ) px
L p

µ
′ = . The derivative ( )L p′  is a monotone-  

increasing function. If its inverse is denoted ( )M p , we get the necessary rela-
tion 

( ) p
p

x
F x p M

µ
 

= =  
 

. 

If 1θ
µ

= , then ( ) ( )F x M xθ= . Now we shall prove the sufficiency, that is, 
that ( )M xθ  is a distribution whose mean is 1

µ
θ

=  and whose Lorenz curve 
is ( )L p . We denote ( ) ( )M x F xθ = , then ( ) ( ) ( )f x F x M xθ θ′ ′= = . After 
observing that the property (iv) indicates that ( )L p′  is integrable from 0 to 1, 
we introduce the variable transformation 

( )y M xθ=  

( )d dy M x xθ θ′=  

( )1x L y
θ

′= . 

We obtain 

( ) ( ) ( )
1 1

0 0 0

1 1 1lim d lim d lim d
p pt

t p p
x M x x L y y L y yµ θ θ

θ θ θ→∞ ↑ ↑
′ ′ ′= = = =∫ ∫ ∫ . 

The given function ( )L p  has a monotone-increasing inverse function whose 
mean is µ .  

Using the same transformation, we obtain that the Lorenz curve ( )L p  of 
( ) ( )F x M xθ=  is 

( ) ( ) ( ) ( )
0 0 0

d d d
px p p

L p x M x x L y y L y yθ θ θ′ ′ ′= = =∫ ∫ ∫ , 

and the theorem is proved. 
These results have been collected in the following theorem [7] [8]: 
Theorem 4. Consider a given function ( )L p  with the properties  
(i) ( )L p  is monotone increasing and convex to the p-axis,  
(ii) ( )0 0L =  and ( )1 1L = ,  
(iii) ( )L p  is differentiable, 
(i) ( )( )

1
lim 1 0
p

L p p
↑

′ − = , 
then ( )L p  is the Lorenz curve of a whole class of distribution functions 
( )F xθ , where θ  is an arbitrary positive constant and the function ( )F ⋅  is 

the inverse function to ( )L p′ . 
Fellman [7] presented this result and later Fellman [8] presented the following 

theorem:  
Theorem 5. A class of continuous distributions ( ),F x θ  with finite mean 
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has a common Lorenz curve if and only if ( ) ( ),F x F xθ θ= . 
Additional properties of the Lorenz curves. Consider the vertical difference 

D, between the diagonal and the Lorenz curve 

( )XD p L p= −  

( )d 1 1
d

p
X

X

xD L p
p µ

′= − = −  

( ) ( )
2

2

dd 1 1 0
dd

p
X

X X X

xD L p
p f xp µ µ

′′= − = − = − < . 

The maximum of D implies 1 0p

X

x
µ

− = , that is, px µ= .  

For p Xx µ= , ( ) 1X
X

X

L p µ
µ

′ = =  and at the point ( )X Xp Fµ µ=  the tangent  

is parallel to the line of perfect equality. This is also the point at which the ver-
tical distance between the Lorenz curve and the egalitarian line attains its maxi-
mum ( ) ( )( )max X X XD F L Fµ µ= − . This maximum is defined as the Pietra in-
dex, in this study denoted P, and discussed below [9]. 

Kleiber and Kotz have outlined a progressive development of how the income 
distributions can be characterized by their Lorenz curves [10] [11]. 

Income inequality indices. When Lorenz curves intersect, the corres-
ponding distributions cannot be compared by the Lorenz curves. Consequently, 
the distributions have to be compared by numerical indices mainly based on the 
Lorenz curves. 

Gini index. The most frequently used index is the Gini coefficient, G [12]. 
Using the Lorenz curves, this coefficient is the ratio of the area between the di-
agonal and the Lorenz curve and the whole area under the diagonal (cf. Figure 
1). The formula is  

( )
1

0

1 2 dG L p p= − ∫ .                      (15) 

This definition yields Gini coefficients satisfying the inequalities 0 1G< < . 
The higher the G value, the lower the Lorenz curve and the stronger the inequa-
lity. If X YG G< , then the distribution ( )XF x , measured by the Gini coefficient, 
has lower inequality than the distribution ( )yF y  and we say that ( )XF x  Gini 
dominates ( )yF y , and denote this relation ( ) ( )X YG

F x F y  [13]. Finally, one 
observes the obvious result ( ) ( ) ( ) ( )X Y X YL G

F x F y F x F y⇒  , that is, Lorenz 
dominance implies Gini dominance. 

The coefficient allows direct comparison of the income of two populations’ 
distributions, regardless of their sizes. The Gini’s main limitation is that it is not 
easily decomposable or additive. Also, it does not respond in the same way to 
income transfers between people in opposite tails of the income distribution as it 
does to transfers in the middle of the distribution. The reason for the popularity 
of the Gini coefficient is that it is easy to compute being a ratio of two areas in 
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Lorenz curve diagrams. As a disadvantage, the Gini index only maps a number 
to the properties of a diagram, but the diagram itself is not based on any model 
of a distribution process. The “meaning” of the Gini index can only be unders-
tood empirically. Hence, the Gini does not capture where in the distribution the 
inequality occurs. As an additional result, two very different distributions of in-
come having different Lorenz curves can have the same Gini index. 

Using the Gini coefficient presented in the text, one can compare the Gini 
coefficients for ( )1L p  and ( )2L p  in Figure 3; ( )1L p  has less inequality 
( 1 0.333G = ) than ( )2L p  ( 2 0.360G = ).  

There are other inequality measures defined by the Gini coefficient. Yitzhaki 
[14] proposed a generalized Gini coefficient 

( ) ( ) ( ) ( )
1

2

0

1 1 1 dG p L p pνν ν ν −= − − −∫ ,             (16) 

where 1ν > . Different sν ′  are used in order to identify different inequality 
properties. For low sν ′  greater weights are associated with the rich and for 
high sν ′  greater weights are associated with the poor.  

Using the mean income ( µ ) and the Gini coefficient (G), Sen [15] proposed a 
welfare index  

( )1W Gµ= − .                        (17) 

Pietra index. The Pietra index P is defined as the maximum  
( ) ( )( )max X X XD F L Fµ µ= − , presented above. It can be graphically represented 

as the longest vertical distance between the diagonal and the Lorenz curve, or the 
cumulative portion of the total income held below a certain income percentile, 
with the 45 degree line representing perfect equality. The definitions yield Pietra 
coefficients satisfying the inequality 0 1P≤ < . The lower bound of P is obtained 
when there is total income equality, that is, the Lorenz curve coincides with the 
diagonal. The upper bound can be obtained when the Lorenz curve converges 
towards the lower right corner. The limits in the inequalities can be obtained, 
and this is outlined in Figure 4. The Pietra index can be interpreted as the in-
come of the rich that should be redistributed to the poor in order to obtain total 
income equality. In other words, the value of the index approximates the share 
of total income that must be transferred from households above the mean to 
those below the mean to achieve equality in the distribution of incomes. Higher 
values of P indicate more inequality, and more redistribution is needed to 
achieve income equality. Therefore, the index is sometimes named the Robin 
Hood index. The Pietra index is also known as the Hoover index and it is still 
better known as the Schutz index [16] [17] [18]. 

If X YP P< , then the distribution ( )XF x  measured by the Pietra index has 
lower inequality than the distribution ( )YF y , and we say that ( )XF x  Pietra 
dominates ( )YF y . We denote this relation ( ) ( )X YP

F x F y . For the Lorenz 
curves in Figure 3, ( )1L p  is more equal than ( )2L p . In general, the Pietra 
and the Gini orderings are not identical [1]. However, one observes the similar  
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Figure 4. Sketches of two extreme cases of simplified Rao-Tam Lorenz curves with 
corresponding P indices. For the Lorenz curve 1.25k = , the Pietra index is 0.0819 and 
for the Lorenz curve 10k =  the index is 0.697 [1].  

 
obvious result ( ) ( ) ( ) ( )X Y X YL P

F x F y F x F y⇒  , that is, Lorenz dominance im-
plies Pietra dominance.  

An alternative definition of the Pietra index has also been given. It can be de-
fined as twice the area of the largest triangle inscribed in the area between the 
Lorenz curve and the diagonal line [9]. In Figure 5, one observes that the triangle 
obtains its maximum when the corner lies on the Lorenz curve where the tan- 

gent is parallel to the diagonal. The height of the triangle is 
2

Ph = , and the 

base is the diagonal 2b = . The double of the area is 12area 2 2
2 2

P P= = .  

In comparison, the Gini index, G, is twice the area between the Lorenz curve and 
the diagonal, and the Pietra index is twice the area of the triangle inscribed in 
this area. Hence, the inequality G P≥  holds generally [1].  

3. Applications 

In this section, we collect some examples in order to elucidate the theory. The 
models Pareto [19], the simplified Rao-Tam [20] and the Chotikapanich [21] 
contain only one parameter. Therefore, they can easily be analyzed. Rohde [22] 
and Fellman [2] [13] paid these models special attention and examined them in 
more detail. However, they are so simple that it is impossible to distinguish be-
tween the estimated length of the range for the income distribution function and  
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Figure 5. The Lorenz curve and the geometric interpretations of the Pietra index. 

 
the Gini coefficient. If one of these properties is estimated, the other is fixed. We 
consider these three theoretical Lorenz curve models. We present how the Lo-
renz curves and the Gini and the Pietra indices depend on the model parameters. 
In addition, we compare the Lorenz curves of the models when their Gini indic-
es are equal. 

Pareto model. We define the Pareto distribution as ( ) 1F x x α−= − , where 
1x ≥  and 1α > .  

The frequency function is ( ) 1f x x αα − −= , the mean is 
1

α
µ

α
=

−
, the quan-

tiles are 

1

1
1px

p

α 
=  − 

, the Lorenz curve ( ) ( )
1

1 1L p p
α
α
−

= − −  and the Gini 

coefficient 1
2 1

G
α

=
−

. If 1α → , 1G →  and if α →∞ , 0G → . In Figure 6, 

we present the Pareto distribution as a function of the parameter α .  

Finally, the Pietra index is 
11 1P

αα
α α

−− =  
 

. According to the general theory, 

the inequality G P≥  holds for all parameter values, and consequently, 0P →  

when α →∞ . Let 1β α= − , then 1
1 1

P
β

β
β β

 
=  + + 

. When 0β → , 

( )1α → , then, 1P → . In Figure 7, we compare the Gini and Pietra indices as 
functions of the model parameter α . One observes that the inequality G P≥  
holds. 

Simplified Rao-Tam model. Consider the simplified Rao-Tam model whose 
Lorenz curve is ( )L p pα=  ( )1α >  [20]. When 1α → , then ( )L p p→  and  
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Figure 6. Lorenz curves for Pareto distributions with different parameter values. 

 

 
Figure 7. Gini and Pietra indices for Pareto distributions with different parameter values. 

 
when α →∞  ( ) 0L p →  for all 0 1p≤ <  and the Lorenz curve converges, 
towards the lower right corner of the square. In Figure 8, we present the Lorenz 
curve for a set of α  values.  

The Gini coefficient is 1
1

G α
α
−

=
+

. When 1α → , then 0G →  and when 

α →∞  then 1G → . The Pietra index is 
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α α

α α
− −   = −   

   
. Using the ver-

tical difference D p pα= − , the index inequalities D P G≤ <  hold, and for 
1α →  0G → , and consequently, 0P → . For increasing α  values, the su-

premum of D p pα= −  is one. This must also hold for the supremum of 
1

1 11 1P
α

α α

α α
− −   = −   

   
. Consequently, the interval 0 1P< <  cannot be short-

ened. In Figure 9, we present G and P for different α . 
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Figure 8. Lorenz curves for simplified Rao-Tam distributions with different parameter 
values. 

 

 
Figure 9. Gini and Pietra indices for simplified Rao-Tam distributions with different pa-
rameter values. 

 
Chotikapanich. Chotikapanich [21] defined the Lorenz curve  
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0k →  and arbitrary 0 1p< < , we obtain 
0 0

e 1 elim lim
e 1 e

kp kp

k kk k

p p
→ →

−
= =

−
. This 

means that the Lorenz curve converges towards the diagonal. For k →∞ , one 
obtains that for all 0 1p< <   
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e 1 e e

kp kp kp
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k k kk k k k
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→∞ →∞ →∞ →∞

−
= = = =

−
 

This means that the Lorenz curve converges towards the lower right corner of 
the square.  

The extreme Lorenz curves can be obtain by the limit studies 0k →  and 
k →∞ , and the Lorenz curves as functions of the parameter k are presented in 
Figure 10.  

The Gini index is for the Chotikapanich model  
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When k →∞ , one obtains  
 

 
Figure 10. Lorenz curves for Chotikapanich distributions with different parameter val-
ues. 
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Consequently, for G, the inequalities 0 1G< <  hold and the range cannot be 
shortened. 

The Pietra index is 
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In general, P G< , and consequently, 0P →  when 0k → . When k →∞ , 
one obtains  
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Hence, lim 1
k

P
→∞

=  and the inequalities 0 1P< <  hold and cannot be short-
ened.  

The G and P as functions of the parameter k indices are presented in Figure 
11. 

 

 
Figure 11. Gini and Pietra indices for Chotikapanich distributions with different para-
meter values. 
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Figure 12. Lorenz curves for distributions with the same Gini index ( 0.5G = ). Note that 
the Lorenz curves for the simplified Rao-Tam and Chotikapanich models are rather simi-
lar, but the Lorenz curve for the Pareto model is markedly different.  

 
Above, we made the general remark that different distributions can result in 

the same Gini index. In Figure 12, we present a simple example of this finding. 
We compare a Chotikapanich model with the Gini index 0.500 (k = 3.593525) 
with a Pareto model (with 1.5α = ) and a simplified Rao-Tam distribution 
(with 3.0α = ), all having the same Gini index. The Lorenz curves for the sim-
plified Rao-Tam and Chotikapanich models are rather similar, but the Lorenz 
curve for the Pareto model is markedly different. This is caused by the fact that 
the Pareto model is introduced as a model for distributions with high income 
levels. 

4. Discussion 

In general, the step from the Lorenz curve to the income distribution starts from 
the formula 

( ) px
L p

µ
′ = ,                         (18) 

where px  is the p-percentile and µ is the mean of the corresponding distribu-
tion ( )F x . We define ( )M ⋅  as the inverse function of the derivative ( )L′ ⋅ . 
From (18), we obtain  

px
p M

µ
 

=  
 

.                        (19) 

Equation (19) indicates that ( )M ⋅  is the income distribution function cor-

responding to the given Lorenz curve, that is, ( ) xF x M
µ

 
=  

 
. This connection  

between the Lorenz curve and the distribution function is easily defined, but for 
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most of the exact Lorenz curves, it is difficult or even impossible to mathemati-
cally obtain the distribution. 

Primary income data yield the most exact estimates of the income inequality 
coefficients, such as Gini and Pietra. Fellman [2] analyzed different methods for 
numerical estimation of Gini coefficients based on Lorenz curves. As an applica-
tion of these methods, he considered Pareto distributions. Using Lorenz curves, 
various numerical integration attempts were applied to obtain accurate estimates. 
The trapezium rule is simple, but yields a positive bias for the area under the 
Lorenz curve, and consequently, a negative bias for the Gini coefficient. Simp-
son’s rule is better fitted to the Lorenz curve, but this rule demands an even 
number of subintervals of the same length. Lagrange polynomials of second de-
gree can be considered as a generalization of Simpson’s rule. Fellman [2] com-
pared different methods and he also gave references concerning numerical inte-
gration. To include Simpson’s rule in his study, he considered Lorenz curves 
with deciles. Compared with Simpson’s rule, he used the trapezium rule, La-
grange polynomials and generalizations of Golden’s method [23]. No method 
was uniformly optimal, but the trapezium rule was almost always inferior and 
Simpson’s rule was superior. Golden’s method is usually of medium quality. 
Mettle et al. [3] estimated the Lorenz curve by Newton-Cotes methods, namely, 
the trapezium rule, Simpson’s 1/3 rule and Simpson’s 3/8 rule. Using these, they 
estimated the Gini coefficients of income and compared the accuracy of these 
estimates on some (Ghanaian) data. The curves in Figure 12 in this study indi-
cate weaknesses in the inequality indices. Lorenz curves with the same Gini in-
dex may show marked geometrical differences and consequently different in-
come distributions.  
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