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Abstract 

This work discusses the problem of the apparently non-symmetric form of the 
electromagnetic fields’ energy-momentum tensor, which is obtained from the 
variational principle. The analysis treats differently radiation fields and bound 
fields. This distinction has a solid experimental basis where the hydrogen 
atom proves that radiation fields and bound fields have a different spin and a 
different parity. A direct calculation proves that in the case of radiation fields, 
the variational principle yields the well known symmetric energy momentum 
tensor and the problem does not exist. 
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1. Introduction 

The energy-momentum tensor of electromagnetic fields (called also stress tensor) 
represents the fields’ energy-momentum density and current (see [1], pp. 86, 87; 
[2], pp. 601-605). As a tensor in Minkowski space, it is a part of the relativistic 
description of classical electrodynamics. This energy-momentum tensor is an 
indispensable element of this theory because it is used in a proof of local 
conservation of energy and momentum (see [1], pp. 88, 89; [2], pp. 606-607). 

The standard procedure of constructing this tensor uses the invariance of the 
fields’ Lagrangian density under a space-time translation. A general argument 
proves that this tensor conserves energy-momentum and that it should be 
symmetric (see [1], pp. 82-85). However, it turns out that in the case of 
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electromagnetic fields, the tensor obtained from this procedure is not symmetric 
and a specific mathematical trick is used for symmetrizing it (see [1], pp. 86, 87; 
[2], pp. 604-605). This is certainly a problem of the theory because one expects 
that a fundamental argument which relies on the fields’ Lagrangian density 
should directly yield a consistent expression for the energy-momentum tensor. 
The following words nicely describe this problem (see the first paragraph of [3]). 
“Few things are more frustrating to students than to be led through a long, 
formal argument only to be told at the end that the result obtained is incorrect and 
must somehow be fixed by an auxiliary procedure. This is particularly harmful if 
the formal argument involved turns out to be one of the mathematical 
cornerstones of modern physics. Unless the discussion includes a re-examination 
of the analysis to find out exactly what went wrong, the students will be left with 
the paradoxical feeling that a supposedly very general theorem produces unacceptable 
answers when applied to certain specific situations. Quite understandably, later on 
they will be reluctant to think about any physical problem in terms of the tools 
provided by such a theorem.” 

The situation described by this quotation indicates that the problem requires 
“a re-examination of the analysis to find out exactly what went wrong” in the 
standard construction of the energy-momentum tensor of electromagnetic fields. 
This issue is the main objective of the present work. The analysis refrains from 
using specific assumptions that directly aim to correct the problem. Instead, it 
relies on well established experimental evidence that affects the structure of the 
electromagnetic part of the Lagrangian density. 

Units where 1c= =  are used. Greek indices run from 0 to 3 and Latin 
indices run from 1 to 3. The metric g µν  is diagonal and its entries are (1, −1, 
−1, −1). The symbol ,µ  denotes the partial differentiation with respect to xµ . 
The second section proves that radiation fields and bound fields are different 
physical objects. The third section shows how the well known symmetric tensor 
is directly obtained from the Lagrangian density of radiation fields. The fourth 
section shows how this tensor is obtained for bound fields. The fifth section 
contains a discussion of the results. The last section contains a summary of this 
work. 

2. Radiation Fields and Bound Fields 

Let us examine physical properties of electromagnetic fields (see Section 4 in [4]). 
For the completeness of the presentation, this analysis is briefly repeated here. 
The hydrogen atom is used as the experimental device. Since quantum 
mechanics provides an excellent description of properties of the hydrogen atom, 
quantum textbooks are used here as a reliable basis. 

Maxwellian electrodynamics proves the existence of radiation fields (see [1], 
pp. 184-187; [2], pp. 391-397). Outgoing radiation fields emitted by a given 
system of charges are the fields of the system’s charges at the wave zone (see [1], 
p. 184; [2], p. 392). (The wave zone is also called far zone or radiation zone.) For 
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a given system of charges, incoming radiation fields are the outgoing radiation 
fields of other systems of charges. 

Let us examine the interaction of the hydrogen atom with an incoming 
radiation. Here the atom can absorb the photon’s energy if the energy of the 
final state equals the energy of the initial state plus the photon’s energy and the 
angular momentum of the initial state l  and that of the final state l′  satisfy  

1l l′ − = ±                            (1) 

(see [5], p. 264; [6], p. 466). It follows that the photon, which is the quantum 
form of electromagnetic radiation, has spin-parity 1jπ −= . These facts are 
recognized by an authorized institute (see the data on the γ  photon here [7]). 

On the other hand, let us examine the quantum description of the ground 
state of the hydrogen atom. Here the electron is in an s-wave and the 
electromagnetic binding energy is  

2
† 3d .b

eE r
r

ψ ψ= ∫
                       

(2) 

Energy is the 0-component of the energy-momentum 4-vector. Therefore, the 
left hand side of (2) is a scalar in the 3-dimensional space. Let us evaluate the 
right hand side of (2). The angular momentum of the hydrogen atom ground 
state is 0l = . Evidently, the radial coordinate r is independent of the angular 
coordinates and it is a scalar in the 3-dimensional space. The same is true for the 
contribution of the integration elements 3d r . Hence, the angular momentum of 
the two sides of (2) is 0l = . It follows that the angular momentum of bound 
fields is 0l = . An analogous argument proves that the parity of bound fields is 
even. 

Wigner’s analysis of the inhomogeneous Lorentz group (see [8] [9] [10]) 
proves that a massive quantum particle is characterized by mass and spin 
whereas a massless particle is characterized by its helicity. Furthermore, if the 
quantum state of a particle is determined by a parity conserving interaction (like 
strong and electromagnetic interactions) then parity is a good quantum number 
and each particle has a well-defined parity. 

These arguments prove that bound fields and radiation fields are different 
physical objects, because they have a different intrinsic angular momentum and 
a different parity. For these reasons, the following construction of the 
electromagnetic energy-momentum tensor treats separately radiation fields and 
bound fields. As explained above, this approach has a solid experimental basis. 

3. The Energy-Momentum Tensor of Radiation Fields 

Let us follow a standard construction of the energy-momentum tensor of 
electromagnetic fields (see [1], pp. 86, 87). The analysis begins with the 
electromagnetic fields Lagrangian density  

1
16πEM F Fµν

µν= −
                       

(3) 
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and applies the standard procedure for the construction of the energy- 
momentum tensor. Here the electromagnetic 4-potential Aν  is used and one 
obtains  

EM
EM

AT
Ax
x

µ µλ
ν νν

λ
µ

δ
∂ ∂

= −
∂∂  ∂  ∂ 




                   

(4) 

It is proved in [1] (p. 86) that a substitution of (3) into (4) yields the following 
form of the contravariant energy-momentum tensor  

1 1 .
4π 16π

AT F g F F
x

λ
µν ν µν αβ

λ αβ
µ

∂
= − +

∂                 
(5) 

The first term of the contravariant tensor (5) does not take a symmetric form 
whereas physical principles prove that “the energy-momentum tensor must be 
symmetric” (see [1], p. 84). This issue shows that the analysis described above 
apparently does not yield the required expression for the energy-momentum 
tensor. In particular, it is proved that the tensor (5) can be cast into a symmetric 
form if the following term  

( )1 1
4π 4π

A F A F
x x

µ
νλ µ νλ

λ λ

∂ ∂
=

∂ ∂                   
(6) 

is added to it (see [1], near the bottom of p. 86 or [2], near the bottom of p. 604). 
The added term (6) is a 4-gradient and it does not alter the total energy- 
momentum which is obtained from the spatial integrals of the appropriate 
entries of the energy-momentum tensor. This result shows the main problem 
which is discussed in this work: In the case of electromagnetic fields the 
variational principle does not yield the correct energy-momentum tensor and 
the quantity obtained is corrected by an auxiliary mathematical trick. 

However, it is explained in the previous section that radiation fields and 
bound fields should be treated separately. Therefore, let us examine the form of 
the tensors (5) and (6) in the case of radiation fields. Here one can define axes so 
that the radiation looks locally as a plane wave which propagates in the 
z-direction and is linearly polarized in the x-direction (see [1], pp. 118-120 and p. 
184, after eq. (66.2)). The 4-potential of this wave is discussed in the literature. 
In appropriate units the physically meaningful mathematically real part of the 
4-potential of this plane wave is  

( )( )0,1,0,0 .A f z tµ = −                      (7) 

(Note that in the units used herein 1c =  and the argument of F is ( )z t− .) 
The standard form of the electromagnetic field tensor is (see [1], p. 65)  

( ), ,

0
0

.
0

0

x y z

x z y

y z x

z y x

E E E
E B B

F g g A A
E B B
E B B

µν µα νβ
β α α β

− − − 
 − = − =  −
  −           

(8) 
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Let us calculate the correction term (6) in the case of the linearly polarized fields 
discussed herein (7). For these fields one finds that in the units where 1c = , 

=E B  and only the components xE  and yB  do not vanish. Therefore, the 
tensor of the radiation fields discussed herein is  

( )

0 1 0 0
1 0 0 1

,
0 0 0 0
0 1 0 0

F f z tµλ

− 
 
 ′= −
 
 

−                    

(9) 

where f ′  denotes the derivative of f . The 4-potential (7) depends only on the 
coordinates ,z t . Hence, a direct calculation of the partial derivatives of the 
4-potential of (6) is  

( )

0 0 0 0
1 0 0 1

.
0 0 0 0
0 0 0 0

A f z t
x

µ

λ

 
 −∂  ′= −
 ∂
 
                   

(10) 

A substitution of (9) and (10) into the correction term (6) proves that it is a 
null quantity. It follows that in the case of radiation fields, the energy- 
momentum tensor (5) which is directly obtained from the variational principle 
is already symmetric. Its form can be written in the well known standard 
expression (see [1], p. 87)  

1 1 .
4π 4

T F F g F Fµν µλ ν µν αβ
λ αβ

 = − + 
                 

(11) 

The following example illustrates the significance of the symmetric form (11) 
of the energy-momentum tensor. The 0iT  and the 0iT  entries of (11) denote 
energy current and momentum density of the fields, respectively. In the symmetric 
tensor (11) they take the same form of the well-known Poynting vector (see [2], 
pp. 236-240)  

1 .
4π

= ×S E B
                        

(12) 

This example emphasizes the need for a symmetric energy-momentum tensor of 
electromagnetic fields. 

4. The Energy-Momentum Tensor of Bound Fields 

The construction of the energy-momentum tensor of bound fields is done separately 
for the case of charge-free space-time points and for space-time points that 
contain charge. At charge-free space-time points the charge’s 4-current 0jµ = . 
Therefore, bound fields and radiation fields satisfy the same homogeneous 
Maxwell equations (see [1], pp. 71, 79)  

*
, ,0; 0.F Fµν µν
ν ν= =                       (13) 

Here the dual tensor of the second equation is *F Fµν µναβ
αβ=   and µναβ  is 

the completely antisymmetric unit tensor of the fourth rank. 
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Since at charge-free space-time points radiation fields and bound fields satisfy 
the same equations of motion, one concluded that these fields have the same 
energy-momentum tensor (11). In order to complete the construction of the 
bound fields energy-momentum tensor it is required to show that (11) is suitable 
for space-time points where charge does not vanish. Here it is proved (see [1], 
pp. 88, 89) that the sum of the fields energy-momentum tensor FT µν  and that of 
charged matter MT µν  conserve energy-momentum  

( ) 0.F MT T
x

µν µν
ν

∂
+ =

∂                      
(14) 

Therefore, the energy-momentum tensor (11) is a good expression for radiation 
fields and for bound fields as well. 

As shown above, the energy-momentum tensor of bound fields is derived not 
from the Lagrangian density. Indeed, in a charge-free space where 0jµ = , the 
derivation relies on the already known energy-momentum tensor of radiation 
fields and on the fact that the two kinds of fields satisfy the same equations of 
motion. If 0jµ ≠ , the proof relies on an explicit calculation. 

5. Discussion 

A fundamental principle of physics says that a mathematical analysis of a given 
well established physical theory yields correct results. Therefore, the need for the 
correction term (6) which is added to the energy-momentum tensor (5) is 
inconsistent with this principle. This state of affairs proves the existence of a 
problem that should be settled. This dilemma is described in the quotation taken 
from [3] which is presented in the second paragraph of the Introduction section 
of this work. The novelty of this work is the proof that demonstrates that as a 
matter of fact the original tensor (5) is already symmetric provided the analysis 
is restricted to radiation fields. It is also proved above that the distinction 
between bound fields and radiation fields has a solid experimental basis. 
Therefore, the analysis must treat radiation fields and bound fields separately. 

The following argument explains this conclusion. The analysis examines the 
hydrogen atom interaction with radiation fields and with bound fields and 
proves that in the quantum domain the spin-parity of radiation fields is 1jπ −=  
whereas bound fields have 0jπ += . Hence, in the quantum domain these fields 
should be treated separately. However, the Bohr correspondence principle shows 
that classical physics is the classical limit of quantum mechanics (see [5], pp. 15, 
25-27, 137, 138). This important relationship between classical physics and 
quantum mechanics can be found in many textbooks. For example, “classical 
mechanics is contained in quantum mechanics as a limiting form” (see [6], p. 3). 
In particular, the electromagnetic fields term of the Lagrangian density (3) is 
used in the classical theory (see [1], p. 75) and in quantum theory (see [11], p. 
70). Hence, the validity of the Bohr correspondence principle proves that the 
separation between radiation fields and bound fields must also take place in 
classical physics. 
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Textbooks explain the drawbacks of the energy-momentum tensor (5) which 
is obtained from the electromagnetic Lagrangian density (see [1], pp. 82-86 or 
[2], p. 604). Let us examine the scientific meaning of the standard correction of 
the energy-momentum tensor which casts it into the symmetric form (6). The 
justification for this correction is that it is a 4-gradient which does not alter the 
integrals which yield the overall energy-momentum (see e.g. [1], pp. 83, 84). The 
following argument proves that this is just an arbitrary correction trick that has 
no profound basis. 

Physics says that a mathematical analysis which is based on fundamental 
principles yields meaningful results. If adding a 4-gradient to a given energy- 
momentum tensor is a legitimate procedure then instead of adding the term (6), 
one may multiply it by a factor 1a ≠  and add the new term. Evidently, the 
addition of the new term yields an unacceptable result. 

In the scientific literature, the incorrect form of the energy-momentum tensor 
(5), which is directly obtained from the Lagrangian density, is called the 
canonical energy-momentum tensor (see [2], p. 601). The distinction between 
the canonical energy-momentum tensor and the physically acceptable 
symmetric energy-momentum tensor is still used in these days [12]. This is an 
indication of the novelty of the present work which proves that in the important 
case of radiation fields, the canonical energy-momentum tensor is already the 
physically acceptable symmetric tensor. 

6. Summary 

The problem of the apparently non-symmetric energy momentum tensor of 
electromagnetic fields which is derived from the variational principle is 
explained. The analysis relied on experimentally confirmed differences between 
radiation fields and bound fields. It is proved that in the case of radiation fields, 
a symmetric energy-momentum tensor is directly derived from the variational 
principle. Therefore, there is no need to fix this tensor by adding to it a 
correction term. It is also proved that the energy-momentum tensor of bound 
fields can be constructed from a mathematical analysis that does not directly 
depend on the variational principle. This work shows an example where the 
distinction between radiation fields and bound fields yields meaningful results. 
This distinction may be used in an analysis of other electromagnetic problems. 
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