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http://creativecommons.org/licenses/by/4.0/ The existence and uniqueness of the solution for nonlinear backward stochastic

differential equations (BSDEs) were first proved by [1]. Since then, BSDEs have

been extensively studied by many researchers. At the same time, many appli-

cations have been found. In [2], Peng obtained the relation between the back-
ward stochastic differential equation and the parabolic partial differential equation
(PDE). By using the relation between the BSDE and PDE, a four step scheme was
proposed in [3]. In [4], some simple numerical schemes were proposed for
BSDEs and half-order convergence error estimates were proved. In [5], Zhao et
al. proposed some new kind of high accurate numerical method for BSDEs,
which the scheme with second order convergence rate was first proposed and
analyzed in [6] [7] and [8]. However, In [6] [7] [8], the authors only proved the
schemes were of high order convergence for solving y and z with the generator £
not depending on z In [8], the authors proved the errors measured in the
L’ (p=>1) sense are of high order convergence in solving y and z In [9], the
authors rigorously obtained the error estimate of Crank-Nicolson scheme for
solving generalized BSDEs, and theoretically proved the high convergence rates

for solving yand z In this paper we consider the following decoupled FBSDE
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X =x+[b(s,X\*)ds + [ o(s, X *)dN,, (SDE) w
1.1
1 =p{xi?)s [ e[ [uia,  (esDE)

where the generator f* = f; (S, XY ) +h(s)I'y* with
Y =I£U§'Xp(e)/1(de) and h:[0,T]>R".

In this paper, we will consider the BSDEs (1.1). Under weaker conditions, we
proved the Crank-Nicolson scheme has second-order convergence rate for
solving the decoupled FBSDEs. In Section 2, we introduce some preliminaries
and notation, and introduce the scheme in Section 3. In Section 4, we prove that

the scheme is of second-order convergence in solving y and of first-order

convergence in solving I" for the FBSDEs (1.1).

2. Preliminaries and Notation

Let Tbe a fixed positive number and {Q, F,P, {ﬁ}ogg}

probability space on which a standard Brownian motion W, is defined. Note

be a complete, filtered

that {]—;}oSt . is the natural filtration of the Brownian motion W, and all the

P-null sets are augmented to each o-field J . We denote || and

L? = sz (O,T;Rd) as the standard Euclidean norm in R™ (or R™?) and the

set of all F -adapted and Z*-integrable processes valued in RY, respectively.

Aprocess (X.,Y,,I,):[0,T]xQ—>R"xR™ is called an Z*-adapted solution

of the BSDE (1.1) if it is {7} -adapted and L*-integrable, and satisfies (1.1).

Now we introduce the following notations.

* C,*: the set of continuously differential functions ¢<[0,T]—> R with the
partial derivatives ¢ uniformly bounded for |, <I.

d C,I;, : the set of continuously differential functions ¢eR® — R with all of its
partial derivatives 0%¢ of order up to and including | have the poly-
nomial growth.

¢ F™(t<s<T): o-field generated by the Brownian motion
{X+W, W, t <r <s} starting from the time-space point (t,x). When
s=t,weuse F'* todenote . E[X]:the mathematical expectation of
the random variable .X. E{*[X]: the conditional mathematical expectation
of the random variable X under the o-field £, ie, EJ*[X]= E[X | .7-";’*] :
When s=t,weuse E[X] todenote E[X |.7{t'x].

* Throughout this paper, Cis a generic positive constant depending only on
C,» 7, and upper bounds of functions A, ¢, f, and their derivatives,

moreover Ccan be different from line to line.

3. Schemes for BSDE (1.1)

We will give a brief review on the schemes proposed in [10] for solving the
BSDE (1.1).

For the time interval [0,T], we introduce the following time partition:

O=t,<---<ty =T, and let At=t -t and h:om"’hxlm' From (1.1), it is
<N<N -
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easy to obtain that for 0<n<N -1,

n n th+ n th: noo~
Y =YX [0 s - [ [ Ul AN (3.1)

where X" = fl(s, X;“’XH,Y;”’X")+ g(s)r'™*". Taking the conditional mathe-

matical expectation E: ! [] on both sides of (3.1), we get

o e [ o fome [ 19 ] 6

that

The integrand E:n [fst"'xn} on the right-hand side of (3.2) is a deterministic
smooth function of time s. We may use some numerical integration methods to
accurately approximate the integral in (3.2). In particular, we use the trapezoidal
rule to approximate the integral on the right hand side of (3.2) and obtain

n n n+ ]_ n n N+ 2
G ol L Rl D LA,
=t
where
Rn — thi EX" ftn,X" —EEXH ftn,Xn _lftn,X" dS,
Vi tq th S 2 th tha 2 ty

Ry, =B [ —Y‘"+1'X"+1J+%AtnEf§" [ £ = ]

that that tha tha

(3.4)

Let AN, = p(e)N(det,t,,]) for t,<s<t.,. Then AN, is a com-
pensated Poisson process with mean zero and variance S—t . Now multiply
(3.1) by AN‘T),”, and take the conditional mathematical expectation Ef;n [] on

both sides of the derived equation, we obtain by the It6 isometry formula

thia s

B YN = [ AN - s, (3.5

Based on (3.5), we have

N vl |l Bl AL

2 n 2 n n+l n n+l P (3 6)

1 n n+ ~ 2 ’

e A S
=t

where

4 n noo~ 1 nl noo~
Rpl=j:n poly [fS‘”’X AN;n]ds—EAnEt’: f X AN/T,'nJ

that

that | X" [ty X" 1y ty. X" | 1 t,, X"
_-[tn {Eln |:F5 ]_EEtn |:F1n+1 __Ertn }dS,

1 n n N+ n r n N+ ~
RE, =5 A,B] [rtnvx o 1J+E: (Y‘"'X Y 1)ANT }

(3.7)

thia thia th pin

1 n n n+l ~
-l I A
Based on reference Equations (3.3) and (3.6), for solving the BSDEs (1.1) we
introduce the following scheme.

Scheme 1 Given a random variable YV, solve random variables Y" and
z" (n =N-1L,N-2,---,1, 0) backwardly by
X=X Y g, (6 X" ) s (3.8)

aelp\{v}
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YMJQ”PWQ+%AQU"+fMy (3.9)

%AQF”=—%AQE§[PM}+E§[YMANLJ+%AQE§[fM%N;J.(31@

where f”:fl(tn,X",Y")+h(tn)F" for n=N-1,N-2,---,0.

4. Error Estimates

In this section, we will estimate the errors e, :Yt;"'xn -Y" and e = FI:'XH -I"
in L norm, where Yt;”'xn,an”'X") is the solution of the BSDE (1.1) and
(Y”,Z“) is the solution of Scheme 1. For the sake of simplicity, we only
consider one-dimensional BSDEs (i.e, m=d =1). However, all error estimates

we obtain in the sequel also hold for general multidimensional BSDEs. Let

At= max At. In our error analysis, we will use the constraint on the time
0<n<N-1

partition step At:

max At
Osns.N—l < CO. (41)
min At
0<n<N-1
Let us first introduce the following lemma. Its proof can be found in the
reference.
Lemma 1 Let Ry and R; be the truncation errors defined in (3.4) and

(3.7), respectively. If f eC2*, heC? and ¢peC},
J(ary,
ary,

n
R 1

SC@ﬂX"

n
Rp,

sc@+V"

()
J(at,).

Here Cis a positive constant depending only on 7, and the upper bounds of

(4.2)

n
RYz

sc@ﬁx"

n
Rr,

sc@ﬁx"

¢ and fand their derivatives.
Theorem 1 Suppose f eCZ*, heC? and ¢peC;. Let (X,,Y,,T,) be the
solution of the BSDE (1.1) and (Y " Z“) be the solution of scheme 1. Assume

E[ 'ﬂAQﬂ

EUF&P”l—rN ryAQ?

ty XN yN
Y; Y

2
}sc@+vn

2
}sc@+vn
Then for sufficiently small time step At, we have

2 . 2
L ngx—r”}sc@+vn

+Zm0

'ymf, (4.3)

0<n<N

nmeUﬂ?“"—Y”

where Cis a constant depending on C,, 7; and upper bounds of functions A, ¢

and fand their derivatives.
Proof. Let €} =Y»*" -Y", and ! =I'"*" —-I". The Equations (3.10) and
(3.6) give
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%mnep - —%AtnEtXn" [ept ]+ B [ aNT, ]

L, (44)
+EAtn]Etf [e’;*lAN;nJ+jZ:1:RF”j.
Subtracting (3.9) from (3.3) gives
n n+ 1 X" n 1 n
e =E: [eY 1J+5Atn{fl(tn,yt;nx )_fl(tn,Y )}+Eh(tn)Atner
1 n n+
- MLE [f(m,\(t )=t 1)} (4.5)
! h(t,.,)At, EX gt 3 R"
+E (t..) [ J+J§ i
By the Holder inequality (see [11] for details) we get
n ~ 2 n 2
S [ef"aN], ] SAtn(E: [eY"“ } B[] j (4.6)
and
n ~ 2 n 2
EX"[h(t,..)ef"aN] | <cat, [E: [e”” } B (e ] j (4.7)
Then by the inequalities (4.6) and (4.7) we have
2
s T ], <[ (o -y [er]) v,
XN ST \2 |mx"| [ anel X o]\
S (O (G AT N BN

n+l

<[.p"(e)A(de)At (Ef[e,

=[P (e)A(de)AtVar" (e)*).

2:|_

Equation (4.4) into (4.5) leads to
n " n+ "Nt AN 1 n n
e =B [ef" +h(t, ) B [¢f lAN;nJ+EAtn{fl(tn,Yt;"’X J-,(t,v")

+]Ef:n[f ( AL ) fl(tml,Y”*l)}}Jr%AtnEé"[(h(tm)—h(tn))epﬂ]

1.

s o)

)

n 2
E [X]‘ . Inserting lAteﬁ which satisfies the
" 2

where Var"(X)=B; |

h(t ) ) (4.9)
+T”AtnEf: [( f (tm,Ytn )— f (tn+1,Y”*1)+ h(t,..) E*l)AN;n}
2
+ h(tn)ZRﬁj +ZR;‘J_.
1 1
By the Taylor expansion (see [11] for details) we get
h(t,..—)h(t,)=h/(t, +aAt)At, (4.10)

where a is a positive number which values in [0,1]. Thus, from the Hoélder

inequality, (4.9) and (4.10), we deduce
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< EtX |: n+1:| |h | |:e$+1AN :I
+%LAt( |: :|) +aAt ) EX |: n+1:|
+|h(2tn) LAtEXn[e;‘*lZTE:"[ ~;n 2}; (4.11)
+w X [epﬂAl\ﬂl; J | Rn JZ:l: R;,- ,

where L is the Lipschitz constant of f,(t,y) with respect to y. Then by the

1
inequalities (4.11) and (a+ b)2 <(1+x,At) a’+ [14— Gj b?, we have
7

u(l

J+ At ZEX [
R

n+1AN

Etx [ n+1

J)+ta
%

| <(1+ A1)
&1

" [ef"aN], |

f

R;‘j J (4.12)

)

n+1 n+l

n+l

e

B [Je

+At( y

+ At

n+l

2
s o 2 o
N
2 2
2 ‘ ‘ + Rn
+Var"[ef |+ (at) By [ e }+(At) Var'|[e M]*Z .
The Equation (4.4), the inequalities (4.6), (4.12) and
(a+b)2 s(1+72At)az+{1+ ]bz vield
7,At
1 2
(86" (e0)
Loy e
£Z(Atn) (1+72At)(EX [ en 1})
1 1 X" [ n+l N~T 1 N W 2 - 2 s
+ +}/2At Etn |:eY A p’n]+EAtEln |:ef A l"+1:|+jZ:1: r, ( . )

S%(Atn )2 (1+ 7’2At)(EtX [eﬁﬂ)z +C]'+LM(E;:" |: ecﬂ 2
Ve

At)’
Multiplying both sides of (4.13) by (( ))2 implies
At

n

EX |: n+1:| 2

n+1

e [+
=R

J+AtE:n[

L (At )(EX[
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%Mﬂ%ﬁr<%uﬂqhyAQ@%T@“N+C£%%gﬁMWEWJ

(4.14)

+(At) Var" [ e ]+ AtEY [ et

< At

Now by the inequalities (4.12) and (4.14) we get

(a0 et

s o]

N

n

ey

X" [ 4n+l 2
B [er” ]

2D+(At)3E:n[

2
2 " 2 ‘R” 1+ y,At
+(At) Var”[eﬁ 1J+]Z:; AJt +C 7:

<(1+y,At)

2 1 2
+Z(At) (1+7,At)

en+1 2
T

n+l

ey

n
eY

2 n
+E [
n

} (4.15)

n+l

€y

x{Var” [ey™]+(at) var" [e}‘”]+AtE:"[ o
=i

1+§i},

Choosing y, =y, =8C such that c.1 and Ez% in (4.15), and using

no 8 V2
2 1 nly e 2
oo [ e )
§(1+8CAt)EtXnn[ 2]
TR T)

(At) (2 B [ep“]

s%(m)z (1+8CAt)Ef:n[

the estimate

n+l

(1+ 8CAI)[ e

X" [ on+l
B [er” ]

o]

n+l

ey

1+8CAt

n+l
eF

2 NG
+E; [
n

1

X" [ o+l
E; (]

n+l
er

we deduce

() ()

<(1+8CAt)E}’ [

n

€

n+l

e

+1+88CM(At( o

n+l
eF

2} +%(At)2 (1+8CAL) B’ [

2D+(At)3E:n[

2 2
Rﬁj +|RY
t

e[ <Ry
e

]

2} (4.16)

n+l

er

n+l

e

n

2 n
+B [
n

n+l
eY

+AtEf§" |:

R" ’ R" ’
2 2 r| + vi
+CY — !

< At

2 1 2
—(At
A

<(1+CAt)ES [ eyt

n+l
eF

2
:|+CAt

e

By Lemma 1, we have < C(At)3 < C(At)3 and |R7 SC(At)3 SC(At)3

n
Ryj

DOI: 10.4236/jamp.2018.62032 344 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.62032

Z.Wang, Y. Li

for j=1,2. Taking mathematical expectation on both sides of (4.16), then for
sufficiently small At, we have

[ La(e )}

_LHCAL T s 2], C(AL)
4.17
st } (17

1-CAt
1+CAtY' ™" [ \p C N 1101+ CAt)
R |ev|
1-CAt 1 1-CAt

for n=N -1,---,0. The terminal conditions EU(}? |2:| <C (At)4 and

2
E ) ler™

2
E|:|erN | :| <C (At)2 , the time step constraint (4.1), and the inequality

C(At) Nznl(ucm] _(ar)’ (e 1)

1-CAt i \1-CAt 2

oo

for n=N,N —1,---,0. The proof is completed.

lead to

n

+%(At)2 el Z}SC(At)A (4.18)

5. Conclusion

In this paper, we study the error estimate of the Crank-Nicolson scheme
proposed in [10] for solving a kind of decoupled FBSDEs. Under weaker con-
ditions than that in [9], we rigorously prove the second order convergence rate

of the Crank-Nicolson scheme.
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