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Abstract 
With this paper, we propose a network coding based cloud storage scheme. 
The storage system is in the form of an m * n data array. The n columns stand 
for n storage nodes, which are comprised of a part of systematic nodes storing 
source symbols and a part of nonsystematic nodes storing parity symbols. 
Every row of the data array is a (n, k) systematic Maximum Distance Separa-
ble (MDS) code. A source symbol is only involved in the encoding with the 
unique row; it locates at and is not used by other rows. Such a design signifi-
cantly decreases the complexity of encoding and decoding. Moreover, in case 
of single node failures, we use interference alignment to further reduce repair 
bandwidth. Compared to some existing cloud storage schemes, our scheme 
significantly reduces resource consumption on storage, update bandwidth and 
repair bandwidth. 
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1. Introduction 

Cloud storage services, such as Dropbox, Microsoft One Drive, and Amazon S3, 
etc., greatly assist users to manage data at any time and from anywhere. The ba-
sic requirement of a cloud storage system is reliability, which can be generally 
achieved by adding data redundancy. Although the simplest way for redundancy 
is to store the replica of data in multiple storage nodes, coding has been proved 
to be more storage efficient and has been playing prominent roles in distributed 
storage for long time. The techniques of storage coding include redundancy ar-
ray of independent disks (RAID), erasure coding, and network coding, etc. 

A cloud storage system inevitably consumes a variety of network resources. In 
between, storage, update bandwidth and repair bandwidth are three important 
performance metrics for evaluating a cloud. Storage measures the memory space 
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on drives occupied by a file. Additionally, in a coding storage system, even the 
change of a single block of original data will outdate all coding blocks, so the 
system needs to initiate an update procedure to recalculate, retransmit, and re-
place outdated data on drives. The number of symbols transported during this 
procedure is defined as update bandwidth. Similar to update problem, when one 
or more storage nodes or drives malfunction, down or leave a cloud, the system 
needs to initiate a repair procedure by requesting data from survival nodes to re-
store the lost data within newly built nodes. The number of symbols shipped for 
the repair procedure is defined as repair bandwidth. So, update bandwidth and 
repair bandwidth measure the computation and communication cost of a cloud 
system for file update and data restore. 

Building an efficient cloud storage system with low consumptions of storage, 
update bandwidth and/or repair bandwidth is an everlasting goal for a cloud 
storage system designer. Dimakis et al. [1] [2] addressed the repair problem of 
distributed storage. They proposed a network coding based storage scheme, 
named by regenerating code. With this type of code, they showed how to de-
crease repair bandwidth by using network coding. Dimakis et al. viewed the re-
pair problem as a kind of multicast transmission. By utilizing the method of in-
formation flow graph, they found quantitative relations between storage and re-
pair bandwidth. The seminal work of [1] [2] shed light on the potential of net-
work coding for distributed storage. Acedański et al. [3] thoroughly compared 
the efficiency between three storage schemes, including uncoded random storage, 
traditional erasure coding, and random linear network coding. They made de-
tailed calculations to the decoding probability as a function of storage space and 
bandwidth, and demonstrated that random linear network coding performs as 
well as traditional erasure coding but greatly reduces storage consumption. 

Besides the theoretical studies of [1] [2] [3], many researchers put great efforts 
into finding or designing practical efficient cloud storage schemes based on 
network coding. Zakerinasab et al. [4] [5] proposed a method to reduce update 
bandwidth for network coding based cloud. The key point is to keep the coding 
coefficients unchanged so that a new version code word turns out to be the sum 
of an old version word and a difference Δ between two versions. Hence, the calcu-
lation of recoding for update could be simplified significantly. Wu and Dimakis [6] 
proposed a smart method based on interference alignment to reduce repair 
bandwidth. Interference alignment [7] is a communication technique for signal 
design which produces useful fading at ignorant receivers while keeps its 
sensitivity to intended receivers. Taking the similar idea, [6] deal with a group of 
equations with multiple variables so as to decrease the amount of variables. The 
method of [6] is usable for our storage scheme too. 

Papailiopoulos et al. [8] proposed a simple regenerating coding scheme. In 
their scheme, a number of 2k source symbols 11 1, , kβ β  and 21 2, , kβ β  are 
encoded with two (n, k)-MDS encoder (See Figure 1). Then, the encoded words 

1, , nc c , and 1, , nd d , as well as the sum ( )1, ,i i is c d i n= + =   are stored in 
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n storage nodes with an elaborately arranged sequence as Figure 2. In this 
scheme, if one node fails, lost symbols on this node can be restored by extracting 
symbols from other nodes. For instance, assuming node 1 fails, the lost symbols 
c1, d2, and s3 could be restored by accessing d1, s1, c2, s2, c3, and d3 from other 
nodes. An evident advantage of this scheme is the encoding and decoding of a 
source symbol is confined within one single row. In comparison, recall the 
scheme of [1] [2] uses inter-row references for encoding, i.e., symbols at mul-
tiple rows are entangled together for encoding. From this sense, [8] is more 
lightweight than [1] [2]. However, there are several disadvantages with the 
scheme of [8] showed in Figure 1 and Figure 2. First, the MDS encoder in Fig-
ure 1 is not in a systematic form so that decoding is complex. Second, it con-
sumes an extra of n symbols of storage than normal MDS codes. In Figure 2, the 
storage for 2k original symbols are 3n code symbols, i.e., the code rate equals 
(2k/3n), which is lower than the standard MDS code rate (k/n). Third, to rebuild 
a failed node in Figure 2, the repair bandwidth will be 6 symbols, which is more 
than the lower bound of minimum bandwidth regenerating code [1] [2]. Fourth, 
file updating is very heavy in that the update of a single source symbol β will in-
cur with a concomitant change of 2n code symbols in total. Last but not the least, 
if there are more than one failed nodes, the system will collapse and the lost 
symbols could never be recovered.  

Mostly motivated by [1] [8], this paper aims to decrease the resource con-
sumption and design complexity for a cloud storage system. We contribute a 
network coding based cloud storage scheme. Compared to [1], the scheme is  
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Figure 1. Two MDS encoders are used in the scheme of [8]. 
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Figure 2. The arrangement of symbols in the scheme of [8]. 
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lightweight because only intra-row encoding is permitted. Moreover, it fixes the 
above problems of [8]. Analysis shows our scheme significantly exceeds [8] on 
all performance metrics, including storage, update bandwidth, and repair band-
width.  

2. A Network Coding Based Cloud Scheme 

Our scheme extends Figure 1 to the number of m (n, k)-MDS encoders. Specif-
ically, assume the source file is composed of mk symbols over the finite field 
GF(q). Divide the source file into m disjoint groups, each of which consists of k 
symbols, say 1, ,i ikβ β , ( 1, ,i m=  ). Then, every group is encoded with a (n, 
k)-systematic MDS encoder. See Figure 3. The output of the ith encoder is 
composed of two parts: The one is the systematic part composed of k original 
symbols 1, ,i ikβ β ; The other is the nonsystematic part composed of (n − k) 
redundant parity symbols ( )1, ,i i n kc c −

. Within one row, parity symbols are 
generated by the linear combination of original symbols, i.e., 

1

k

ij ijh ih
h

c l β
=

=∑
                         

(1) 

The generator matrix of the ith MDS encoder, i.e., the ith row in Figure 3, is 
as below. 

( )

( )

11 1

1

1 0

0 1

i i n k

i

i k i n k k

l l

G
l l

−

−

 
 

=  
 
 

 

     

 

                

 (2) 

The property of MDS requires arbitrary k columns of Gi should be indepen-
dent. The arrangement of code words is illustrated in Figure 3. To highlight 
three parameters in Figure 3, we call it (n, k, m) code in the following. It should 
be stressed that there is none of cross reference between rows in Figure 3, i.e., 
the encoding related to a source symbol βij is confined within the ith row. Such a 
structure is beneficial to users on two facets: On the one hand, it decreases the 
complexity of encoding and decoding significantly. On the other hand, the file 
updating of Figure 3 becomes very lightweight. To follow the change of any sin-
gle original symbol, say βij, only βij and (n − k) nonsystematic symbols  
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Figure 3. The array structure of (n, k, m) code. Every row is a systematic (n, k)-MDS 
code; Every column is a storage node. Node 1 to node k store source symbols; Node k + 1 
to node n store parity symbols. 
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{ }1, ,i inc c  on the ith row are to be updated. All other symbols are kept intact. 
Thus, the update bandwidth for a single source symbol is (n – k + 1) symbols. 
Moreover, since the coding coefficients are invariant in our scheme, the method 
of [4] [5] can be utilized to decrease update bandwidth further. 

Next, consider the repair procedure of Figure 3. Based on the property of 
MDS, any failure of less than (n – k) nodes can be recovered by accessing k sur-
vival nodes. In the following, denote such a repairing way by “regular way”. In 
the regular way, the repair bandwidth for any failure of less than (n – k) nodes 
equals k nodes (or equivalently, km symbols). In comparison, we mention that 
the scheme of [8] is unrecoverable in front of the failures of more than one 
nodes. 

Furthermore, the most frequently happening failures in practice are related to 
one node, so it is more meaningful to discuss the failures of a single node. 
Within this category, ones can implement linear operations on the systematic 
MDS codes in Figure 3 so that further reduce repair bandwidth than regular way 
by using the method of interference alignment. Consider failures related to a 
systematic node first, i.e., node 1 to node k in Figure 3. Without loss of general-
ity, assume node 1 collapses, i.e., { }11 1, , mβ β  are lost. From node 2 to node k 
− 1, we can take a set of symbols 

( ) ( ) ( )( ){ }12 2 1 1 1, , , , , ,m k m kβ β β β− −Λ =   

              
(3) 

From node k, a sum symbol θ could be got as below 

1
ik

i

m
θ β

=

=∑
                          

(4) 

Moreover, symbols in a nonsystematic node can be combined and trans-
formed into a linear function of Λ , θ and { }11 1, , mβ β . Take the jth nonsys-
tematic node as an example, we can build an equation 

 
( )11 1

1
, , , ,j

m

ij ij m
i

c fα β β θ
=

= Λ∑ 

                  
(5) 

where αij is a coefficient assigned for cij, such that { }1 , ,k mkβ β  could be com-
bined into θ. In total, we get a set of (n − k) linear equations for all nonsyste-
matic nodes as below 

( ) ( ){ }1 11 1 11 1, , , , , , , , , ,m n k mf fβ β θ β β θ−Ξ = Λ Λ  

         
(6) 

By collecting the symbol of Λ , θ and Ξ , the lost symbols of { }11 1, , mβ β  
can be resolved and restored by solving equations in (6) given that ( )m n k≤ − . 
Hence, the repair bandwidth equals ( )1 1 2k m m n+ − − +  symbols. It should be 
noted that in Ξ , there may exist some linearly dependent equations which do 
not contribute to the solution, so the coding coefficients {lijh} should be assigned 
elaborately to guarantee there are at least m independent equations in Ξ . 

Next, consider the failure of a nonsystematic node. For the output of an (n, 
k)-MDS encoder, i.e., a row in Figure 3, the property of MDS guarantees that 
every symbol can be uniquely determined by a group of k distinct symbols, no 

https://doi.org/10.4236/ijids.2018.31001


Y. T. Liu, Y. Morgan 
 

 

DOI: 10.4236/ijids.2018.31001 6 International Journal of Internet and Distributed Systems 
 

matter these symbols are in the systematic part or in the nonsystematic part. 
Accordingly, any group of k symbols can be viewed as a systematic part and the 
other (n − k) symbols as a nonsystematic part. It is to say the roles of systematic 
part and nonsystematic part in Figure 3 are interchangeable, so the interference 
alignment method is still effective to decrease repair bandwidth when a nonsys-
tematic node fails. Moreover, the method of interference alignment is effective to 
repair the failures of multiple nodes if ( )m n k≤ −  satisfies. Take (7, 3, 2) code 
as an example. When two nodes fail, five sum symbols and four equations as (5) 
could be constructed from the residue nodes so that the two lost symbols could 
be resolved, so the repair bandwidth equals 5 symbols. However, we note that 
the repair bandwidth benefit in this case is got with the cost of rate loss.  

Finally, an example based on (5, 3) MDS code is given to illustrate the scheme. 
Example: Figure 4 is a (5, 3, 2) coding scheme over GF(7). Two systematic 

generator matrices are 

1 2

1 0 0 1 1 1 0 0 1 1
0 1 0 1 2 , 0 1 0 1 3
0 0 1 1 3 0 0 1 3 4

G G
   
   = =   
   
   

 

First, apply the method of interference alignment to repair the failure of a sys-
tematic node. Take node 1 as an example. In this case, lost symbols are β11 and 
β21. So, { }12 22,β βΛ = , 13 23θ β β= + , and 

1 11 21 11 21 12 22

2 12 22 11 21 12 22

3 3 3 3
4 3 4 3 2 5

f c c
f c c

β β β β θ
β β β β θ

= + = + + + +
 = + = + + + +             

(7) 

With the values of β12, β22, θ, f1 and f2, one can restore β11 and β21 by solving 
(7).  

Next, take node 4 as an example to repair the failure of a nonsystematic node. 
When node 4 fails, the lost symbols are c11 and c12. Exchange the roles of node 4 
and node 3 in Figure 4 with linear operations over GF(7). As Figure 5 shows, c11 
and c12 move to the systematic part. Thus, using interference alignment, we have

{ }11 21,β βΛ = , 12 22θ β β= +  and 

1 13 11 21 11 21

2 12 22 11 21 11 21

233 6
2 3 6 3 6 5

6 6f c c
f c c c c

β β β β θ
β β θ

= + = + +
 = + = + + +

+ +

+             
(8) 

 

 
Figure 4. An example of (5, 3, 2) code. 
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Figure 5. Exchange the roles of node 4 and node 3 in Figure 4. 
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Table 1. Comparison Between Secure LNC Codes. 

Performance metrics [8] (5, 3, 2) code 

Storage 15 symbols 10 symbols 

Code rate 2/5 3/5 

Repair bandwidth for one node failure 6 symbols 5 symbols 

Repair bandwidth for two or more node failures Nonrepairable 6 symbols 

Update bandwidth for one symbol updating 10 symbols 3 symbols 

 
With the values of β11, β21, θ, f1 and f2, one can restore c11 and c12 by solving (8). 

In this example, the repair bandwidth for a single node failure is 5 symbols. Re-
call that 6 symbols are needed if we use the regular way or the scheme of [8]. 

Consider the update procedure of Figure 4. Take the update of β11 as an ex-
ample, only β11, c11 and c12 need to be updated, so the update bandwidth related 
to one symbol in this example equals 3 symbols. While, the update bandwidth of 
[8] equals 10 symbols.  

Last, with this example, a comparison is made between [8] and our scheme 
within Table 1. Both take (5, 3)-MDS code. In [8] or Figure 2, the needed space 
for storing 6 source symbols are 15 symbols, so the code rate equals 2/5; In our 
scheme, it needs 10 symbols, so the rate equals 3/5. To repair the failure of one 
node, [8] needs to ask 6 symbols from survival nodes; our scheme only needs 5 
symbols by using interference alignment. [8] cannot recover from the failures of 
more than two nodes; On the contrary, our scheme can survive from the failures 
of two nodes with the regular way of repair. Due to the usage of nonsystematic 
MDS code in Figure 1, any change of a source symbol cause concomitant 
changes of 5 code symbols and 5 sum symbols in Figure 2, so the update band-
width equals 10 symbols; While, as mentioned, only 3 symbols in our scheme 
change to follow the change of a source symbol. As a result, our scheme outper-
forms [8] in all performance metrics. 

3. Conclusion 

With this paper, we propose a network coding based cloud storage scheme. The 
key points of our scheme include systematic MDS code and none of inter-row 
reference for encoding. Moreover, the method of interference alignment is uti-
lized to reduce repair bandwidth in the case of single node failures. These tech-
niques bring significant advantages to a cloud storage network with respect to 
system simplicity, resource consumption, and communication loads, etc. De-
tailed analysis and an example show that our scheme keeps the simplicity of [8] 
but is superior to that scheme from all performance metrics of storage, update 
bandwidth, and repair bandwidth, especially for the case of single node failure. 
Moreover, because there is no inter-row reference, our scheme is more lightweight 
and flexible than [1]. 
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