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Abstract 
The Generalized Markov Fluid Model (GMFM), introduced in [1], is assumed 
for modeling sources in the network because it is versatile to describe the traf-
fic fluctuations. In order to estimate resources allocations or in other words 
the channel occupation of each source, the concept of effective bandwidth 
proposed by Kelly [2] is used. In this paper, we present a formula for calcu-
lating the effective bandwidth, developed for the Generalized Markovian Flow 
model, which is of particular interest because it allows expressing said magni-
tude depending on the parameters of the model. We present unbiased esti-
mators for these parameters that can be obtained from real data. The conver-
gence and the consistency of the estimation are studied, and confidence bands 
are found. Illustrative calculation and performance of the proposed estimators 
were tested with simulated data and ideal results were obtained. 
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1. Introduction 

A multiplexing system can be thought as a buffer with capacity B and output 
velocity C, fed by many different data sources that share the common output 
port. One of the more interest study subject is to know how many resources will 
each source required from the system. This knowledge has different applications 
to call admission, control and building. This magnitude of the required resources 
is known as the Effective Bandwidth of the traffic source and is an useful and 
realistic measure of channel occupancy. The best interpretation and collection 
of results on Effective Bandwidth are given in Kelly [2] where the Effective 
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Bandwidth for a process tX , with stationary increments, that represents the 
total amount of work arriving from a source in the interval [ ]0, t  is defined as  

( ) 1, log e , 0 , .tsXs t E s t
st

α = < < ∞                  (1) 

This definition can be motivated in several ways, perhaps the most important 
is that the logarithmic moments generating function is naturally associated with 
the additive property of the sources in a node of the network. The space 
parameter s, measured in data units, point out the degree of the multiplexing. 
The time parameter t, measured in time units, it is related with period of greater 
buffer occupancy before overflow; slow accumulation of work load in the buffer 
corresponds to large values of t as well as fast accumulation corresponds to small 
values of t. Both parameters characterize the link operating point depending on 
the context of the stream. 

The general problem is that resources are shared by a set of heterogeneous 
communications and when a new communication is accepted, its workload must 
be estimated to allocate part of the available resources. Therefore two problems 
motivate our work: to propose a realistic model for communications traffic and 
calculate the effective bandwidth for this model for the allocation of resources, 
and to obtain consistent estimators for the parameters. 

The paper is organized as follows, the Generalized Markov Fluid Model model 
is introduced in Section 2, In Section 3, we compute de effective bandwidth for 
the introduced model and in Section 4 the proposed estimator is presented with 
its properties. Section 5 contains the numerical results of simulations, conclu-
sions are presented in Section 6 and finally some useful lemmas are in the Ap-
pendix. 

2. The Model 

The needs for networks that integrate various telecommunication services leads 
to the emergence of the concept of integrated services digital network, which 
involves the use of a single infrastructure for transport, at high speeds, of data, 
voice and images. An important issue is the selection of the transfer process, 
which could be defined as the set of multiplexing mechanisms for commu- 
nication in the network. Through the concept of statistical multiplexing of 
sources, high efficiency is achieved in the use of network resources. If a source 
sends data at a variable rate, multiplexing the sources in a link, it reserves for 
each a capacity greater than the average rate but lower than the maximum 
emission rate. The price to pay is that the probability that many sources agree on 
dispatching the maximum rate is not zero, in which case overflow would occur 
with consequent damage to the Quality of Service (QoS). 

To minimize these effects of data loss and maintain quality of service, both for 
existing sources as well as new, is necessary to have connection admission 
control (CAC) which to decide whether it can accept a new connection, as well 

https://doi.org/10.4236/ojs.2018.81006


J. Bavio, B. Marrón 
 

 

DOI: 10.4236/ojs.2018.81006 71 Open Journal of Statistics 
 

as of congestion control mechanisms. For this we need mathematical models to 
describe the behavior of the sources. 

The Generalized Markov Fluid  

Markov Fluid models have been applied to model many kinds of digital sources 
but there are limitations when speed data transfers take too much values and the 
Generalized Markov Fluid model, introduced in [1], can be used to describe 
properly those kind of traffic in a source. 

In the GMFM, a source in a data network assumes the state tZ  at time t, 
where Z is a continuous time, homogeneous and irreducible Markov chain, with 
finite state space { }1, ,K k= � , invariant distribution π  and infinitesimal 
generator Z . That is, at time t the chain Z reaches states i and the rate data 
transfer of the sources is drawn, independently of the chain Z, by the law if . So, 
the random variable |t tY Z i= , is distributed according the probability law if  
and the density functions 1 2, , , kf f f� , are known and with disjoint support for 

1, ,i k= � . 
The process Y does not change until the chain Z changes its state and since 

the supports of the k laws of probability are known and disjoint, observe the 
process tY  allow us to restore the process tZ . 

The work load received from the source that delivers information with speed 

tY  is represented by the Markov flow modulated by the chain tZ  and can be 
written as  

0
d .

t
t sX Y s= ∫                            (2) 

The advantage of the GMFM is that makes manageable those networks where 
the speed of the source in each state is a random variable. In this model, abrupt 
changes in the transfer speed report a change of state in the chain, but within a 
state is allowed the rate to assume randomly any value according to some 
probability distribution. The laws of probability may be discrete or continuous. 

To interpret this model we could think that each state in the chain is 
interpreted as the activity performed by a user, like chat or video conferences, 
then speed data transfer assumes values that depend specifically for such activity. 

3. Effective Bandwidth Estimation 

One of the main issues in QoS for admission control is the estimation of the 
resources needed for guaranteed communications, which cannot be the peak 
rate because would be too pessimistic and would lead to resource waste, nor the 
mean rate of the service, because would be a too optimistic estimation, that 
would cause frequent losses. Given an expected QoS, interpreted as the 
probability of buffer overflow, the Effective Bandwidth (EB) of the traffic sources 
defined in (1), was proposed by Kelly in [2] and is a realistic measure of channel 
occupancy. The space and time parameters, s and t respectively, depend not only 
on the source itself, but on the context on which this source is acting as the 
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capacity, the buffer size, the scheduling policy of the multiplexer, the QoS 
parameter to be achieved and the number of other sources in the channel, this is 
the actual traffic mix. The EB concept can be applied to sources or to aggregated 
traffic, as it can be the networks core link, but also it can be used for any shared 
resource models. 

In order to estimate EB for a given GMFM, our first goal is to find the type of 
formulas obtained by Kesidis, Walrand and Chang [3] [4] to calculate the EB, 
that depends on estimable data from traffic traces. 

Computation of the EB for the GMFM 

Let { } 0t t
X

≥
 be a GMFM modulated by a continuous time, homogeneous and 

irreducible Markov chain Z with finite state space { }1, ,K k= �  and invariant 
distribution π  and infinitesimal generator Z . Let iY  be the random 
variables with density function if , mean iµ , variance 2

iσ  and Laplace 
transform ( )i tφ , for 1, ,i k= � . Let us also assume that each if  has known 
and disjoint support [ )1,i ic c +

+ ⊂   with 1i ic c +< . Let us denote   the 
diagonal matrix of dimension k, whose nonzero elements are the first moments 

iµ  of each distribution. 
Theorem 1. Let { } 0t t

X
≥

 be a GMFM, then the effective bandwidth has the 
following expression  

( ) ( ){ }1, log exp ,Zs t s t
st

α π  = + �  1                 (3) 

where 1  is a column vector with all entries equal to 1.   
Proof. By definition (1), it is enough to proof ( ) ( )e exp .tsX ZE s tπ  = +   1  

The process tX  can be represented as in (2) and tY  is uniformly bounded, 
hence applying Lebesgue’s dominated convergence theorem 

( ) 1e lim e .

n
rt

rt n

ts Y
nsX

n
E E =

→∞

∑ 
 =   
 

                    (4) 

The Markov chain sZ  is homogeneous and π  is the invariant distribution, 
so the argument of the limit in (4) can be written as 

( )
( ) ( ) ( ) ( )1

1
1

0

1

0 1 1 1
0, ,

, e d .j

j
n

n

stn uZ n
t j j i j j

ji i n

i P i i f u uπ +

+ +
+

−

+ + +
=∈

  
      

∑ ∏ ∫
�




       (5) 

Each integral in (5) represents the Laplace transform of the density function, 
so we can express the right side as the product of the transition matrix and a  

diagonal matrix t
n

C
 
 
  

, whose non zero elements are 
,

t i
n i i

stC
n

φ
   =       

, in the 

next way 

.
n

Z
t t
n n

P Cπ
    
    
        

1  
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Applying Taylor’s formula to each matrix we obtain  

( )0 0
,Z Z Z Z

t t t
n

t t t tP P P o I o
n n n n=

   ′= + ⋅ + = + ⋅ +   
   

           (6) 

( )0 0
,t t t

n

t t t tC C C o I s o
n n n n=

   ′= + ⋅ + = + ⋅ +   
   

            (7) 

with I the identity matrix and   a diagonal matrix which non zero element are 
( )0i iφ µ′ = . 
Then,  

( ) ,
n n

Z Z
t t
n n

t tP C I s o
n n

       = + + ⋅ +                  
                 (8) 

and the right side of (8) tends to ( )exp Z s t +   .                     ☐ 

The importance of this result is that provides an expression for the EB that 
depends on the infinitesimal generator of the modulating chain, its invariant 
distribution and a matrix containing information of the transfer rate, and all 
these elements can be estimated with traffic traces. 

4. The Estimator and Its Properties 

In order to introduce an estimator for the EB to this traffic model, the elements 
of the matrices Z  and   are the parameters that must be estimated 
according to the Equation (3). 

For the first, a result presented by Lebedev and Lukashuk [5] [6] plays a key 
role in the construction of our estimator, providing asymptotically gaussian 
estimator, based on traffic traces, of the infinitesimal generator matrix. The 
maximum likelihood estimator ( )n

ijq  of each element ijq  not belonging to the 
diagonal of infinitesimal generator matrix, is the ratio between the number of 
transitions of the chain Z from the state i to the state j and the time spent by the 
chain Z in the state i, both during the same unitary time interval. So defined  

( )n
ijq  is unbiased with variance 

( )
ijq
iπ

, where ( )iπ  is the i-th element in the 

vector of the invariant distribution π . 

4.1. The Estimator of the Elements of    

The elements of   are the mean data transfer rate iµ  at each state i of the 
chain Z. The proposed estimator is  

( )
( )( )

( )
1 ,
iN n r

in r
i

i

Y
N n

µ == ∑                           (9) 

where ( )r
iY  denotes the r-th observed rate corresponding to the range of Y 

when modulating chain is in state i and ( )iN n  the number of times that the 
modulating chain Z reaches the state i in the interval [ ]0,n . 

Before proving the following results let us remark that the random value 
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( )iN n  grows as the observed range n increases and due to assumptions about 
the chain Z, each states i is positive recurrent with average turnaround time 
1 iλ  satisfying this relationship  

( ) c.s. .i
i

N n
n

λ→                           (10) 

Proposition 2. Let { } 0t t
X

≥
 be a GMFM and ( )n

iµ  defined in (9), then   

1) ( )n
iµ  is an unbiased and consistent estimator of iµ .  

2) ( )( )
2

0,n w i
i i n

i

n N σ
µ µ

λ→∞

 
− →  

 
.  

Proof. 1) Let us compute the expected value of (9) using conditional 
expectation 

( )( ) ( ) ( )( )( )|n n
i i iE E E N nµ µ=                        (11) 

( ) ( )( )
( )

|j
i ij

i

E Y N n
E

N n
∈

 
 =
 
 

∑                    (12) 

iµ=                                      (13) 

so ( )n
iµ  is unbiased. 

To prove consistence it is enough to show that the variance of (9) tend to 0 as 
n grows. The second moment can be compute similarly 

( )( ) ( )( ) ( )
2 2

|n n
i i iE E E N nµ µ   =   

   
                       (14) 

( ) ( ) ( )( )( )( )

( )
1 1

2

|
,

i iN n N n j k
i i ij k

i

E Y Y N n
E

N n
= =

 
 =
 
 

∑ ∑
         (15) 

Replacing ( ) ( ) ( )( ) ( ) ( )2 2 2| 1k j
i i i i i kj i kjE Y Y N n σ µ δ µ δ= + + − , where kjδ  is the 

Kronecker delta, this is 1kjδ =  if k j=  and 0 elsewhere, we obtain  

( )( ) ( ) ( ) ( )( )2 2 2 2
2

1n
i i i i i

i

E E N n N n
N n

µ µ σ
   = +       

             (16) 

( )
2 2 1 ,i i

i

E
N n

µ σ
 

= +   
 

                        (17) 

and then 

( )( ) ( )
2

2 1 ,n i
i i

i i

V E
N n n

σ
µ σ

λ
 

= ≈  
 

                    (18) 

that tends to 0 as n grow, hence consistence is proved. 
2) Applying a classic Central Limit Theorem [7], to the variables ( )r

iY , it is 
true that  

( )[ ] 2
1 0, .
in r

i w ir
i n

i i

Y
n N

n

λ
σ

µ
λ λ
=

→∞

    − →      

∑                (19) 
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A classic result of the stochastic process theory, see [8], will allow us to achieve 

the result by just proving that 
( )( )

( )

( )[ ] 2

1 1 0
i iN n nr r

i ir r
n

i i

Y Y
E

N n n

λ

λ
= =

→∞

 
 − →
 
 

∑ ∑ . 

( )( )

( )

( )[ ] ( )
( )

( )

2 2

1 1

1

1 12
i i i

N n nr r N n
i i rr r

i
ri i i i

Y Y
E E Y

N n n N n n

λ

λ λ
= =

=

     − ≤ −          

∑ ∑ ∑      (20) 

( )( ) ( )[ ] 2

1 1 .
i iN n nr r

i ir r

i

Y Y
E

n

λ

λ
= =

 −  +     

∑ ∑       (21) 

Calculating the first term by conditional expectation we obtain  

( )
( )

( )
( )( )
( )( )

( ) ( )( )
2 2

2 2 2
2

1

1 1iN n
i ir

i i i i i
r i i i i

n N n
E Y N n N n

N n n nN n

λ
σ µ

λ λ=

  − 
− = +      

∑   (22) 

( )
( )

2
2 211 ,i
i i

i i

N n
n N n

σ µ
λ

  
= − +       

       (23) 

that tends to 0 as n grows. 
The argument in de expectation of the second term can be written like 

( )( ) ( )[ ] ( )
1 1 ,
i i MN n n rr r

ii i mr r

i i

YY Y
n n

λ

λ λ
= =

−
= ∑∑ ∑                 (24) 

where ( ) [ ]( )min ,i im N n nλ=  and ( ) [ ]( )max ,i iM N n nλ= , so similarly we 

compute 

( ) ( ) ( ) ( )( )2

2 2

M M k jM r
i i im mim

i i

E Y Y N nY
E E

n nλ λ

  
   =
  

   

∑ ∑∑            (25) 

( ) ( )22 2

2 2 .i i

i

M m M m
n

σ µ
λ

− + −
=                (26) 

But ( ) [ ]i iM m N n nλ− = − , so (26) becomes into  

( ) [ ] ( ) 2
2 2

2 2 1 ,i i i
i i

ii

N n n N n
nn

λ
σ µ

λλ

−  
+ − 
 

                 (27) 

that also tends to 0 as n grows, and the theorem is proved.                 ☐ 

4.2. The Estimator of ( ),s tα  

From the maximum likelihood estimators of ijλ  and the estimator of iµ  in (9), 

a estimator of (3) can be construct. Let us define ( )( )
1

n
n ij i j k

λ
≤ ≠ ≤

Λ =  and 

( )( )
1

n
n i i k

µ
≤ ≤

ϒ =  the vector with de no diagonals elements of   and   res- 

pectively. 
Let us also define some functions that allow to build the matrices from the 
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vectors presented above, they are ( )1: k k
k k

−
×→   such that ( )Λ = , 

where ( )1 ,ij i j k
Q

≤ ≤
=  such that ij ijQ q=  if i j≠  and 

1,
j k

ij ij iij j iQ q q=

= ≠
= = −∑  

if i j= ; : k
k k×→   such that ( )ϒ = , where ( )1 ,ij i j k

H
≤ ≤

=  is de- 

fined ij iH µ=  if i j=  and 0 otherwise. 

Finally, another function whose response is a matrix that gives the same 
information that   but that has the advantage of admitting inverse is defined  

as ( )ˆ ˆΛ = , where ( )
1 ,

ˆ ˆ
ij i j k

Q
≤ ≤

=  is such that ˆ
ij ijQ q=  if j k<  and 1 if 

j k= . 

Since ,Λ  and ̂  contain exactly the same information, we can think any 
parameter that depends on   as a function of Λ . 

We are now able to present the following result that gives the asymptotic 
distribution of (3). 

Theorem 3. Let tX  be a GMFM, the vectors ( )( )
1

n
n ij i j k

λ
≤ ≠ ≤

Λ = , and  

( )( )
1

n
n i i k

µ
≤ ≤

ϒ =  containing the estimators of ijλ  and iµ  respectively. Let us 

define the following functions: 

( ) ( ) ( ) ( )( )1: , that , exp ,k k k
k k s t−
×  × → Λ ϒ = Λ + ϒ           (28) 

( ) ( ) ( ) ( )1: , that , , ,k k kg g π− × → Λ ϒ = Λ Λ ϒ    1            (29) 

( ) ( ) ( )( )1 1: , that , log , .k k k g
st

−Ψ × → Ψ Λ ϒ = Λ ϒ            (30) 

Then, for fixed s and t, ( ) ( ) ( ), ,n
n ns tα = Ψ Λ ϒ  follows that  

( ) ( ) ( )( ) ( )2, , 0, ,n w
nn s t s t Nα α σ→∞− →              (31) 

with ( ) ( )2 , , tσ ′= ∇Ψ Λ ϒ Σ ∇Ψ Λ ϒ , where  

( )

( )

( )

11

1

2
1

1

2

1

k k

k

k

k

λ
π

λ

π

σ
λ

σ
λ

−

 
 
 
 
 
 
 
 ′Σ =
 
 
 
 
 
 
 
  

�

�

. 

Proof. As ( )n
ijλ , ( )n

iµ  are unbiased, asymptotically gaussian, and the 
functions used to construct ( ) ( ),n s tα  in (31) are differentiable so applying 
Lemma (6) and Lemma (7) in Appendix the result holds. Then 2σ  can be 
written more precisely like  
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( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2
2

2
1

, 0 0

22 1

1 0 0

1

,

, ,

, ,

l
ij

i j D l rij

k l
i

i l ri

st

q
A

i q

A

σ
π

π
π

π

σ
π

λ

∞ −

∈ = =

∞ −
∗

= = =

=
Λ Λ ϒ

  ∂ Λ× Λ ϒ + Λ Λ ϒ   ∂ 
 + Λ Λ ϒ  

  

∑ ∑∑

∑ ∑∑





1

1 1

1

    (32) 

where 

( ) ( ) ( )( ) ( ) ( )( )
1 1

0 0
, ,

!

ll r l rij
ij

l r

tA s V s
l

∞ − − −

= =

Λ ϒ = Λ + ϒ Λ + ϒ∑∑          (33) 

( ) ( ) ( )( ) ( ) ( )( )
1 1

0 0
, ,

!

l ll r l ri
i

l r

t sA s U s
l

∞ − − −∗

= =

Λ ϒ = Λ + ϒ Λ + ϒ∑∑         (34) 

and ( )
1 if and

1 if
0 otherwise

ij

lm

i l j m i
V l i m

= = ≠
= − = =



, ( ) 1 if
0 otherwise

i

lm

l m i
U

= =
= 


. 

☐ 

4.3. Consistency of the Estimators 

We show now the main result that allows us to find consistent estimators for 
each parameter involved in the formula of the variance 2σ  obtained in the 
Theorem 3. 

Proposition 4. Let ( )( )
1

n
n ij i j k

λ
≤ ≠ ≤

Λ = , and ( )( )
1

n
n i i k

µ
≤ ≤

ϒ =  containing the 

estimators of ijλ  and iµ  respectively then   

1) ( )1ˆ
n k np e −= Λ  is a consistent estimator of ( )π Λ .  

2) ( ) ( ) ( )1 1
ˆ

ˆ ˆij
n k n n

ij

dp e
q

− −∂ Λ
= − Λ Λ

∂


   is a consistent estimator of 
( )

ijq
π∂ Λ
∂

.  

3) 
( ) ( )( )

0 !
n

ll
m n n

n l

t s
l=

Λ + ϒ
=∑

 
  is a consistent estimator of  

( ) ( ) ( )( ), exp .s t Λ ϒ = Λ + ϒ      

4) n n nS stp B= 1  is a consistent estimator of ( ) ( ),S st Bπ= Λ Λ ϒ 1 .  

Proof.  
1) By definition ( )ˆ ˆ= Λ   and ˆ

keπ = , then by Lema 8 in Appendix, 
1ˆ

keπ −=  . As . .a s
n n→∞Λ →Λ  and ( )ˆ Λ  is continuous then  

( ) ( ). .ˆ ˆa s
n n→∞Λ → Λ  . 

On the other hand 1ˆ −  is also continuous, then for n large enough, ( )ˆ
nΛ  

admits inverse and it is fulfilled that ( ) ( ). .1 1ˆ ˆa s
n n

− −
→∞Λ → Λ  , so  

( )1ˆ
n k np e −= Λ  is a consistent estimator of ( )π Λ . 

2) As ( ) ( )1ˆ
keπ −Λ = Λ , then ( ) 1ˆ

,k
ij ij

e
q q

π −∂ Λ ∂
=

∂ ∂
  and by Lemma 8 in 
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Appendix  

( ) ( )
1 1

1 1
ˆ ˆˆ ˆ .

ij ijq q

− −
− −∂ ∂

= − Λ Λ
∂ ∂
 

                    (35) 

But ( )1ˆ
n

− Λ  is a consistent estimator of ( )1ˆ − Λ , then  

( ) ( ) ( )1 1
ˆ

ˆ ˆnij
n k n n

ij

dp e
q

− −∂ Λ
= − Λ Λ

∂


   is a consistent estimator of ( )

ijq
π∂ Λ
∂

. 

3) To prove that ( ). . ,a s
n n→∞→ Λ ϒ  , or equivalently  

( ), 0n n→∞− Λ ϒ →  , let us remember that the matrix ( ),Λ ϒ  it can be 

written in two equivalent ways as follows  

( ) ( ) ( )( ) ( ) ( )( )( )
0

, exp .
!

l
l

l

ts t s
l

∞

=

 Λ ϒ = Λ + ϒ = Λ + ϒ  ∑         (36) 

Then  

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
0

1

,
!

.
!

n

n

lm l l
n n n

l
l

l

l m

t s s
l

t s
l

=

∞

= +

 − Λ ϒ = Λ + ϒ − Λ + ϒ  

+ Λ + ϒ

∑

∑

     

 
    (37) 

The second term is the tail of a convergent series, therefore it tends to 0 when 
n grows. 

For the first term, we will apply the Mean Value Theorem defining the 
function : k k k kf × ×→   such that ( ) lf M M= , to express the increment of 
the function as a proportion of the argument increment through the differential 
operator in the following way then  

( ) ( ) ( ) ( ) ,n n nf f Df− = ⋅ −�                    (38) 

where n
�  is between n  and  , or in other way (38) can be written  

( ) ( ) ( )( ) ( ) ( )( )( ).n n nDf s⋅ Λ − Λ + ϒ − ϒ�      

By definition of differential operator to ( )f A , Equation (38) becomes into  

( ) ( ) ( ) ( )( ) ( ) ( )( )( )
1

1

0
,

l
i l i

n n n n n
i

f f s
−

− −

=

− = Λ − Λ + ϒ − ϒ∑ � �           (39) 

so we have 

( ) ( )( ) ( ) ( )( )
0 !

n lm l l
n n

l

t s s
l=

 Λ + ϒ − Λ + ϒ  ∑                    (40) 

( ) ( )( ) ( ) ( )( )( )
1

1

0 0!

n lm l
i l i
n n n n

l i

t s
l

−
− −

= =

= Λ − Λ + ϒ − ϒ∑ ∑ � �       

( ) ( )( ) ( ) ( )( )( )
1 1

0 0!

n lm l l

n n n
l i

t s
l

− −

= =

≤ Λ − Λ + ϒ − ϒ∑ ∑ �             (41) 

( ) ( )( ) ( ) ( )( )( )1

0 !

n lm l

n n n
l

t l s
l

−

=

≤ Λ − Λ + ϒ − ϒ∑ �              (42) 

( ) ( )( ) ( ) ( )( )( ) ( )
1 1

0
.

1 !

n lm l

n n n
l

ts t
l

− −

=

= Λ − Λ + ϒ − ϒ
−∑ �          (43) 
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As 
( )

1 1

0 1 !
n

l lm
nl

t
l

− −

= −∑ �  is bounded by being the partial sum of a convergent  

series, and both nΛ  as nϒ  are consistent estimator of Λ  and ϒ  respectively, 
each terms of the first factor tend to 0, so n  is a consistent estimator of  . 

4) This point is derived directly from the points 1 and 3.  
☐ 

4.4. Confidence Interval for ( ),s tα   

The following theorem and corollary show how to perform numerical computa-
tion using the main result. 

Theorem 5. Let ( )n
ijq  be the maximum likelihood estimators of Q,  

, ,n n nS p dp  and n  the estimators presented in the proposition above, and nm  
a succession of positive real numbers such that n nm →∞→∞ , then  

( )

( ) ( )

�

� ( )

21 1
2

2
1 1 0 0

2 21

1 0 0

1 ,

, ,

n

n

n mk k l
ij ij ij

n n n m n n
i j l rnn

mk l
iji
n n n

l l ri

q
dp p A

p iS

p A

σ

σ
λ

− −

= = = =

−
∗

= = =

  
= + Λ ϒ  

  
  + Λ ϒ    

∑∑ ∑∑

∑ ∑∑

 1 1

1

        (44) 

is a consistent estimator of 2σ , with ( ),A ⋅ ⋅  and ( ),A∗ ⋅ ⋅  defined as in (33) 
and (34) respectively.  

The main argument in the proof is the differentiability , and a straightforward 
consequence of the theorem is the following result, 

Corollary 1. Taking ( ),s tα , ( ) ( ),n s tα  and 2
nσ  defined in (3), (31) and 

(44) respectively, we have  

1) 
( ) ( ) ( )( )

( )2

, ,
0,1 .

n

w
n

n

n s t s t
N

α α

σ →∞

−
→   

2) If ( ) ( ) ( ) ( ) ( ), , , ,n nn nz zI n s t s t
n nα
σ σ

α α 
= − + 
 

   where z  is such that 

( )
2

P Z z> =
  for ( )~ 0,1Z N , then  

( ) ( )( )lim , 1 .
n

P s t I nαα
→∞

∈ = −                     (45) 

5. Simulation and Numerical Results  

In this section we will carry out the analysis with traffic traces generated by 
simulations from the model introduced in Section 2 to perform the estimations. 

5.1. Parameters for the Simulation 

To validate the results obtained, we performed several traffic simulations 
according to the GMFM model presented. 

In the model chosen, the modulating Markov chain has 13k =  states and 
each state is associated with a data transfer rate interval as shown in Table 1. 
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It is expected the usual state to be that of the highest transfer rate available in 
the transmission channel, so the most probable state is 13. It is also more 
common to jump from one state to the adjacent ones, or to the maximum 
transfer rate, or minimum or no transfer rate. With these considerations it is 
designed the infinitesimal generator of the modulating chain that is given by the 
matrix   

7 2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 3.75
2 7 2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.88
1 2 7 2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1
1 0.125 2 7 2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1
1 0.125 0.13 2 7 2 0.13 0.13 0.13 0.13

Q

−
−

−
−

−

=

0.13 0.13 1
1 0.125 0.13 0.13 2 7 2 0.13 0.13 0.13 0.13 0.13 1
1 0.125 0.13 0.13 0.13 2 7 2 0.13 0.13 0.13 0.13 1
1 0.125 0.13 0.13 0.13 0.13 2 7 2 0.13 0.13 0.13 1
1 0.125 0.13 0.13 0.13 0.13 0.13 2 7 2 0.13 0.13 1
1 0.125 0.13 0.13 0.13 0.13 0.13 0.13 2 7 2 0

−
−

−
−

−

.

.13 1
1 0.125 0.13 0.13 0.13 0.13 0.13 0.13 0.13 2 7 2 1
2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 8 4
2 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 5.00 10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 −
  − 

 

(46) 

Within each of these intervals, it is raffled how much is actually dispatched by 
means of a normal distribution truncated to the interval with mean equal to the 
midpoint of the interval and deviation equal to one sixth of the length of the 
interval. The diagonal matrix   will contain the mean values of these distri- 
butions. 
 

Table 1. Transfer speed. 

State Transfer speed (Mbps) 

1 (0, 64] 

2 (64, 128] 

3 (128, 256] 

4 (256, 512] 

5 (512, 1024] 

6 (1024, 2048] 

7 (2048, 3072] 

8 (3072, 4096] 

9 (4096, 5120] 

10 (5120, 6144] 

11 (6144, 7168] 

12 (7168, 8292] 

13 (8292, 10240] 
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An example of the traces generated for the simulations can be seen in Figure 
1. 

5.2. Estimation of the Effective Bandwidth from Traces 

The first objective is to calculate the EB of the presented model, for which we 
will use the result shown in Theorem 1, and the EB is then calculated according 
to the formula (3). Figure 2 shows the EB calculated for the GMFM. 

For each simulated trace we estimate the EB using the estimator presented in 
Theorem 2 according to the Equation (31) and in Figure 3 the comparison of 
the estimated effective bandwidth for a trace with the theoretical value is shown. 
 

 
Figure 1. Trace generated with the GMFM. 

 

 
Figure 2. Effective bandwidth for the GMFM model. 
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Figure 3. Effective bandwidth vs. Estimated effective bandwidth. 

6. Conclusions 

In this work, we have presented contributions in two areas related to data net-
works. About the modeling, we have proposed the GMFM that has the advan-
tage of being very realistic for the current requirements of telecommunication 
networks, in which it is possible to apply refined tools and mathematical statis-
tics results. We have also found a formula for the effective bandwidth where can 
be visualized the role that play each parameters of the model. 

Regarding the estimation of parameters, we have proposed a methodology to 
estimate the effective bandwidths, from traffic traces of a GMFM source, which 
has the expected properties to ensure that it complies with a Central Theorem of 
Limit and thus be able to build a confidence interval. These results enable the 
calculation of the effective bandwidth from simulated traffic traces. A numerical 
example has been presented, where the results were applied to traffic traces and 
ideal results were obtained. 

It is expected to extend statistical effective bandwidth calculation to other 
stochastic phenomena where the supports of each probability law are not dis-
joint, or which do not need to be Markovian and the application of these tech-
niques to real data scenarios. 
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Appendix 

Lemma 6. Let ( )n n
Z

∈  be a sequence of random variables in , 1d d ≥ , 
( )n n
a

∈  sequence of positive numbers satisfying na →∞  and dZ ∈  such 
that  

( ) ( )0, .w
n n na Z Z N→∞− → Σ                     (A1) 

Let us consider : dG →   differentiable in an neighborhood of Z, then  

( ) ( )( ) ( ) ( )( )0, .tw
n n na G Z G Z N G Z G Z→∞− → ∇ Σ∇          (A2) 

Lemma 7. Let us consider Ψ  as in (30), g  as in (29) and   as in (28), 
and ( )1: k k

k k
−

×→   and : k
k k×→   defined in Section 4.2, then 

1) ( )
( )

( ), ,1
,ij ij

g
q st g q

∂Ψ Λ ϒ ∂ Λ ϒ
=

∂ Λ ϒ ∂
. 

2) ( )
( )

( ), ,1
,i i

g
st gµ µ

∂Ψ Λ ϒ ∂ Λ ϒ
=

∂ Λ ϒ ∂
. 

3) 

( ) ( ) ( ) ( ) ( )(

( ) ) ( ) ( )( ) )

1
0 0

1

,
= ,

!

,

l
l

l r
ij ij

r l rij

g t
q q l

s V s

π
π ∞ −

= =

− −

∂ Λ ϒ ∂ Λ 
Λ ϒ + Λ Λ∂ ∂ 

+ ϒ Λ + ϒ

∑ ∑ 

  

1

1

 

with ( )
1 si y

1 si
0 otherwise

ij

lm

i l j m i
V l i m

= = ≠
= − = =



. 

4)  
( ) ( ) ( ) ( )( ) ( ) ( )( ) 11

0 0

,
!

l l
r l rl i

l r
i

g t s s U s
l

π
µ

− −∞ −

= =

∂ Λ ϒ  
= Λ Λ + ϒ Λ + ϒ ∂  

∑ ∑     1 , 

with ( ) 1 si
0 otherwise

i

lm

l m i
U

= =
= 


.  

Lemma 8. The matrix ( )ˆ ˆ= Λ   supports inverse ( )1ˆ − Λ  that is diffe-
rentiable and fulfills  

( )( )( ) ( ) ( )( ) ( )( )1 1 1ˆ ˆ ˆ .D x D x− − −Λ = − Λ Λ Λ            (A3) 
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