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Abstract 
 
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a 
methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic 
manipulator solving tracking problems. The proposed design scheme optimizes various parameters belong-
ing to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concur-
rently to design manipulator, which can track some given paths accurately with a minimum power consump-
tion. The main strength of this study lies with the design of an integrated scheme to solve the above problem. 
Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimi-
zation problem. Four approaches have been developed and their performances are compared. Particle Swarm 
Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and 
local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with 
adaptive gain values have shown better performance compared to the conventional ones, as expected. 
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1. Introduction 
 
In the age of high precision manufacturing of compo-
nents and parts, there is a need to develop precisely con-
trolled manipulator for handling micro-precision jobs 
and machining applications. Also, the manipulator has to 
traverse a given trajectory as accurately as possible to 
avoid variations in trajectory causing damage to other 
parts in assembly or distorted machining of geometric 
components or inaccurate welding of jobs. Thus, trajec-
tory tracking is one of the most important tasks to be 
performed by the manipulator.  

A user specify motions as the sequences of points 
through which a tool fixed to the end-effector of a ma-
nipulator has to pass. The effectiveness of such motion 
specifying mechanism is greatly increased, if the tool 
moves in a specified path between the user-specified 
points. Intermediate points are interpolated along the 

path at regular intervals of time during the motion, and 
the manipulator’s kinematics equations are solved to 
produce the corresponding joint parameter values. The 
developed path interpolating function offers several ad-
vantages, including less computational cost and im-
proved motion characteristics. A second method uses a 
motion planning phase to pre-compute enough interme-
diate points, so that the manipulator may be driven by 
interpolation of joint parameter values, while keeping the 
tool on an approximately pre-specified path. This tech-
nique allows a substantial reduction in real-time compu-
tation. The planning is done by an efficient recursive 
algorithm, which generates enough intermediate points to 
guarantee that the tool’s deviation from the path to be 
tracked stays within a pre-specified error bounds.  

Several attempts were made by various investigators 
to design and develop suitable controllers for the robots. 
The following model-based robot controllers had been 
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used: computed torque control, non-adaptive Propor-
tional Derivative (PD) control, PD control with feed- 
back, and others. Some of those attempts are discussed 
below. 

Qu [1] developed PD control scheme to solve trajec-
tory tracking problem of a manipulator. He concluded 
that PD control with time-varying gains could guarantee 
global stability for the trajectory following problem of a 
manipulator. Homsup and Anderson [2] proposed a 
model-based PD control for a 2-dof planar manipulator. 
Its performance was measured using system performance 
ellipsoids drawn utilizing the information of control pa-
rameters, manipulator’s Jacobian and inertia matrices. 
Thus, the performance was dependent not only on the 
robot’s kinematics and dynamics, but also on the control 
algorithm. A correlation between trajectory tracking er-
rors and workspace location was established. Kelly and 
Salgado [3] developed a design procedure for selecting 
gain values (that is, pK  and dK ) of PD control with 
computed feed-forward of robot dynamics and desired 
trajectory. The performance of their approach was tested 
through computer simulations on 2-dof manipulator. An 
evolutionary PD control strategy was used by Ouyang 
and Zhang [4] to improve trajectory tracking perform-
ance of a closed-loop robot manipulator. It could ensure 
good trajectory tracking performance without using the 
knowledge of robot dynamics. The performance of their 
strategy was tested through computer simulations and 
found to be better than conventional PD and non-linear 
PD control strategies in terms of trajectory tracking per-
formance and fluctuation in the actuator’s torques. 

Ravichandran et al. [5] developed a scheme for simul-
taneous plant-controller design optimization for a 2-dof 
planar rigid manipulator and non-linear PD controller. 
During optimization, a heuristic search technique named 
evolution strategy and a weighted-sum problem formula-
tion were adopted to take care of multiple objectives and 
generate a single Pareto-optimal solution. The perform-
ance of the developed scheme was demonstrated on 
computer simulations, and the potential of the scheme to 
yield desirable designs of the manipulator and controller 
was realized. 

Soft computing-based tools [6] had also been used to 
design and develop suitable controller for the robots. 
Some of those studies are discussed here. Ozaki et al. [7] 
proposed a non-linear compensator using neural net-
works for trajectory control of a 2-dof manipulator. Its 
performance was compared with that of adaptive con-
troller proposed by Craig [8] in compensating unstruc-
tured uncertainties of the manipulator. The neural net-
work-based approach was found to be effective and effi-
cient in learning manipulator dynamics, and conse-
quently could track the trajectory accurately. Ghalia and 

Alouani [9] designed a fuzzy logic-based controller of a 
2-dof manipulator to determine appropriate gain values 
of the compensator for tracking some trajectories accu-
rately. The performance of their approach was tested on 
computer simulations. Rueda and Pedrycz [10] proposed 
a hierarchical fuzzy-neural-PD controller for N-dof robot 
manipulators to solve tracking problems accurately. In 
their approach, a coordinator was implemented as a 
fuzzy-neural network, whose purpose was to select acti-
vation levels for local regulators implemented as time- 
varying PD controllers. 

Park and Asada [11] developed a concurrent design 
method of determining mechanical structure and suitable 
controller for a 2-dof planar non-rigid manipulator. An 
attempt was made to achieve high speed positioning by 
optimizing arm link geometry, actuator locations and 
feedback gains. In their study, optimal feed-back gains 
minimizing the settling time were obtained as the fluc-
tuations of structural parameters, which were optimized 
using a non-linear programming technique. Based on the 
obtained optimal design, one prototype robot was built 
and an outstanding performance was observed. 

The concept of PSO algorithm was introduced by 
Kennedy and Eberhart [12] in 1995. It is a popula-
tion-based search algorithm, which is initialized with the 
population of random solutions, called particles, and the 
population is known as swarm. Several modifications in 
the PSO algorithm had been done by various researchers. 
Shi and Eberhert [13] introduced a new parameter called 
inertia weight into the original PSO algorithm, which 
played an important role in balancing the global and lo-
cal searches. Clerc and Kennedy [14] analyzed how a 
particle carries out its search in a complex problem space 
and modified the original PSO on the basis of this analy-
sis. Chen et al. [15] improved the PSO algorithm with 
adaptive inertia weight W and acceleration coefficients 
in order to maintain population diversity and sustain 
good convergence capacity to optimize back-propagation 
neural networks.  

PSO is simple in concept, as it has a few parameters 
only to be adjusted. It has found applications in various 
areas like constrained optimization problems, min-max 
problems, multi-objective optimization problems and 
many more. In addition to these application areas, it has 
been applied to evolve weights and structure of some 
neural networks (NNs). Han and Jiang [16] proposed an 
endpoint prediction model of Basic Oxygen Furnace 
(BOF) steelmaking based on PSO-tuned radial basis 
function neural network. Braik et al. [17] developed a 
mechanism to improve performance of NN in modeling a 
chemical process through PSO. Abe and Komuro [18] 
utilized an NN, tuned by PSO to save energy of the 
flexible manipulator for point-to-point motion. Joint an-
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gles generated by the NN suppressed the residual vibra-
tion and hence, minimized the motor torques, which was 
kept as the objective function. The authors conducted 
numerical studies and verified by the same with experi-
ments and concluded that PSO is an efficient optimizer.  

Although a considerable amount of work has been 
carried out in this field of research, there is still a need 
for an integrated scheme for obtaining optimal mechani-
cal structure and controllers with adaptive gain values of 
2-dof manipulator solving tracking problems. The aim of 
this study is to obtain an optimal mechanical structure of 
the manipulator along with adaptive controller that en-
ables high precision positioning. The links of the ma-
nipulator are treated as rigid bodies. To speed up opera-
tions, one needs powerful actuators and lightweight arm 
links. In positioning, however, the major issue is to 
minimize the settling time of the control system. The 
settling time depends on a broad range of design pa-
rameters including mass and stiffness properties of the 
links, gain values of the compensator, and others. These 
parameters are coupled to each other and have intricate 
interactions with respect to the robot’s settling time. For 
instance, increasing the structural stiffness alone does not 
always decrease the settling time. All the design pa-
rameters must be considered in an integrated manner in 
order to optimize the performance. In the present paper, 
an integrated scheme for obtaining optimal mechanical 
structure and controller of a 2-dof manipulator solving 
path tracking problems, has been proposed. Four ap-

proaches are developed, and their performances have 
been compared on two path tracking problems.  

The remaining part of this paper has been organized as 
follows: Section 2 deals with mathematical formulation 
of the problem. Tools and techniques used in the present 
work are discussed and the proposed algorithms have 
been explained in Section 3. Results are stated and dis-
cussed in the Section 4. Some concluding remarks are 
made in Section 5 and the scope for future work is indi-
cated in Section 6. 
 
2. Mathematical Formulation of the Problem 
 
This section deals with mathematical formulation of the 
problem. It has been posed as a constrained optimization 
problem 
 
2.1. Trajectory Analysis 
 
A two degrees of freedom serial manipulator with hollow 
circular cross-section links of lengths: 1  and 2  
(where 1  > 2 ) has been considered, as shown in 
Figure 1. A photograph of the set-up has been displayed 
Figure 2. The links are connected using rotary joints. 
The end-effector of the manipulator is directed to track 
one straight and another circular paths separately, start-
ing from initial position (

L L
L L

,i iX Y ) up to final position 
( ,f fX Y ) in time . The forward kinematics equations 
of the manipulator can be written as follows:  

t

 

 
(a)                                             (b) 

Figure 1. (a) A two degrees of freedom manipulator traversing a straight-line trajectory with torques applied at its joints; (b) 
load distributions on two links of the manipulator.  
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Figure 2. A set-up of the 2-dof manipulator. 
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The joint angles:  and  can be obtained 
by carrying out inverse kinematics, as given below: 
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2.2. Determination of Power Consumption 
 
Lagrange-Euler formulation [19] is used to determine 
energy consumption of the manipulator at its two joints. 
The manipulator’s joints torques:  1 t  and  2 t  
consist of inertia, centrifugal and Coriolis and gravity 
terms, as given below.  

            ( ) ,t D t t h t t c t         

1

2

 (3) 

where , , and  represent inertia, centrifugal and 
Coriolis, and gravity terms, respectively. Now, torques 
required at two joints of the manipulator (refer to Figure 
1) can be determined as follows: 

D h c
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    2 2 2 1 20.5 cosc m gL t t   . 

Now, energy consumed by the manipulator (kW) in 
tracing the trajectory can be determined as follows: 

 
100 2

2

1 1

1
0.025

100 ij j i ij
i j

E t 
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
 

   
 
 ,     (4) 

where the second part of this equation indicates the en-
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ergy dissipated by the motors connected at the joints [20]. 
It is important to mention that the cycle time has been 
assumed to be equal to 100 seconds and it is divided into 
100 instants. 
 
2.3. Structural Analysis: Bending of the Links 
 
Structural analysis [21] is confined to Hooke’s Law of 
analysis, for which the manipulator is used to verify its 
behavior while tracking the trajectory with minimum 
error. Due to the weight of the links and motors, there is 
a chance of bending and deflection of the links and thus, 
it may deviate from the desired trajectory. To prevent 
mechanical failure of the links, the developed stress 

 should be less than the allowable stress  
, that is, .  

developed
 allowable developed allowable

For minimum consumption of energy by the manipu-
lator, suitable hollow cross-section of the links possess-
ing sufficient strength and rigidity to withstand the 
bending and deflection is to be determined. The links are 
made up of aluminum. Figure 1(b) displays load distri-
bution, on two links of the manipulator, where 1  in-
dicates the weight of the second motor and second link, 
and load due to 1

 

W

 ; 2  denotes the load due to 2W  ; 
and w represents uniformly distributed load on the links 
due to self-weight. Link1 can be considered as a beam of 
hollow circular cross-section, which is subjected to , 

and a fixed moment of  
1W

w
   2

1 220.5 cos M wL t t    . Thus, it is to be de-
signed considering the effect of bending moment 1M , 
which can be determined as follows:  

   
    
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where 2m  represents the weight of second motor. As 
the two links are assumed to have same cross-section and 
link1 is more critical compared to the other one, an at-
tention has been focused on its safe design. The devel-
oped bending stress on link1 can be determined as fol-
lows: 

W

 
max

2 2

4

π
developed

M

R r


 
 

  
 ,           (6) 

where  and  represent the outer and inner radii of 
the hollow circular link and the maximum bending mo-
ment Mmax can be determined as follows : 

R r

 2 2
1 1 22 1max 1 20.5mM w w LW L L L      L . 

It is important to mention that linear relationships for 
elastic modulus (E) and yield strength ( y ) of aluminum 
with its density (ρ) have been established according to 
[22-28], as given below. 

1.92554 9 2.56675E e              (7) 

7.52288 7 30638.91191allowable E        (8) 

It is to be noted that allowable stress allowable  has 
been kept equal to y . 
 
2.4. Stability and Response Analysis in  

Trajectory Tracking 
 
The control problem of a robotic manipulator is that of 
determining the time history of joint inputs required to 
cause its end-effectors to execute a commanded motion 
typically specified either as a sequence of end-effector’s 
positions and orientations or as a continuous path. De-
pending on the controller design, the joints inputs may be 
in the form of joint forces, torques or inputs from actua-
tors. A particular controller design has a significant im-
pact on the performance of the manipulator and conse-
quently, on the range of its possible applications (either 
point-to-point or continuous). In addition, mechanical 
design of the manipulator itself will influence the type of 
control scheme needed. It is to be noted that permanent 
magnet DC motors with gear reduction are commonly 
used in robots. The design objective is to choose the 
compensator (either PD or PID) in such a way that the 
plant output tracks or follows a desired path. For set 
points, tracking is a problem of constant or step reference 
command d  that arises in point-to-point motion [29], 
[30]. For a PD compensator, the control input U(s) is 
given in the Laplace domain as follows: 

        d
p dU s K K s s s         (9) 

The resulting closed-loop system response is given by 
the following expression: 

       
 

p d d
K K s D s

s s
s s



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 

,      (10) 

where D(s) is the disturbance on the system (here, it has 
been assumed to be equal to zero), and  s  is the 
closed-loop characteristic polynomial given by 

   2
d ps Js B K s K            (11) 

The closed-loop system will be stable for positive 
values of pK , dK  and bounded disturbances, and the 
joint error is given by   d s s  . For the PD com-
pensator given in Equation (9), the step response is de-
termined by the closed-loop natural frequency   and 
damping ratio  . The compensator’s gain values: pK  
and dK  can be obtained as follows: 

2 ,

2 ,

p

d

K J

K J B





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            (12) 
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where J is the inertia of the links, motor and gear, which 
can be determined from the relationship: 21 J s   ; 

 represents effective damping of the system [31]; B   
indicates the natural frequency. Now, the joint errors can 
be calculated as follows: 

    ,  where 1,2,d
ijterror ii t t i          (13) 

The trajectory equations are found to be as follows af-
ter considering error in motors and deflection of links. 
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Therefore, the trajectory error can be calculated as fol-
lows: 

2 2

2 22

error

error

2X X X

Y Y Y

 
 

             (15) 

Total Trajectory error  can be determined like 
the following.  

totalErr

100 100

1 1
total error error

i i
Err X Y

 

   ,       (16) 

Now, average error ( ) can be obtained as fol-
lows:  

avgErr

2 100
total

avg
Err

Err 


,              (17) 

This problem can be posed as a constrained optimiza-
tion as given below. 

Minimize  

avgE Err  ,                (18) 
subject to 

developed allowable   

and  
0.001 0.0029t  , 

2600.0 2800.00  , 

5.0 < ω1 < 20.0, 

10.0 < ω2 < 15.0, 

1.0 < s1 < 1.0, 

1.0 < s2 < 1.0. 

 
3. Proposed Algorithm  
 
The said constrained optimization problem has been 
solved using a real-coded Genetic Algorithm (GA) [32], 
as the variables are real in nature. Moreover, a real-coded 
GA has some advantages over the binary-coded GA, 

such as its ability to provide more precise solutions and 
there is no hamming cliff problem [6]. A GA is a popula-
tion-based search and optimization technique, which 
works based on the mechanics of natural genetics and 
principle of natural selection [33,34]. It starts with a 
population of solutions created at random, which are 
further modified using the operators like reproduction, 
crossover and mutation. In the present study, tournament 
selection, polynomial mutation and simulated binary 
crossover have been used. Interested readers may refer to 
[6] for a detailed description of the algorithm.  

Particle Swarm Optimization (PSO), introduced by 
Kennedy and Eberhart in 1995 [12] is a stochastic popu-
lation-based evolutionary computation technique, which 
has also been used to solve the said optimization problem. 
It can be linked to bird flocking, fish schooling or socio-
logical behavior of a group of people. It has been used to 
solve a variety of optimization problems. In PSO, the 
population of solution is known as swarm. It uses a 
number of agents known as particles that constitute a 
swarm moving around in the search space looking for the 
best solution. Each particle is treated as a point in an 
N-dimensional space, which adjusts its flying according 
to its own flying experience and that of other particles. 
Each particle keeps track of its coordinates in the solu-
tion space, which are associated with the best solution in 
terms of fitness that has been achieved so far by it. This 
value is called personal best, Pbest. Another best value 
that is tracked by the PSO is the best value obtained so 
far by any particle lying in its neighborhood. This value 
is called global best, Gbest. The basic concept of PSO 
lies in accelerating each particle toward its Pbest and the 
Gbest locations, with a random weighted acceleration at 
each time step. Four approaches have been developed as 
explained below.  
 
3.1. Approach 1 
 
Optimization using a real-coded GA only 

Figure 3 shows the working cycle of a real-coded GA. 
A GA-solution carries real values of six variables, such 
as t , ρ, 1 , 2 , 1s , 2s . The constrained optimization 
problem has been solved using a penalty function ap-
proach [6]. As it is a minimization problem, a fixed posi-
tive penalty of P  100 has been added for each vio-
lated constraint (if any). Thus, the fitness ( f ) of the 
GA-solution can be represented as follows: 

= 

avgf E Err P                (19) 

The GA tries to find optimal solution iteratively. 
 
3.2. Approach 2 
 
Optimization using a combined neural network and  
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Figure 3. A schematic view representing working cycle of real-coded GA (that is, approach 1). 

 
real-coded GA 

In approach 1, one GA-solution supplies one set of 
values of 1 , 2 , 1s , 2s  for the entire cycle time of 
100 seconds. However, it may be required to adopt dif-
ferent sets of the said parameters for different instants of 
the cycle time to track the trajectory accurately. It has 
been tried in this approach. For each duration, error  
and error  are determined by comparing the calculated 
values of 

X
Y

X  and  with their corresponding target 
values, and these are fed as inputs to a feed-forward 
neural network (refer to Appendix A), which consists of 
three layers, namely input, hidden and output layers. 
There are two and four neurons in the input and output 
layers of the network, as decided by the number of inputs 
and outputs, respectively. A thorough parametric study 
has been carried out to determine the numbers of hidden 
neurons, which has come to be equal to four. The first 
and third output neurons have log-sigmoid transfer func-
tion, and the second and fourth neurons are assumed to 
have tan-sigmoid transfer function. The neurons of input 
and hidden layers are assumed to have linear and 
tan-sigmoid transfer functions, respectively. In this ap-
proach, the GA carries information of thickness of the 
links ( t ), density of the link material (

Y

  ) and thirty real 
variables related to the neural network, such as eight and 

sixteen connecting weights between the input and hidden 
layers (that is, [V]) and hidden and output layers (that is, 
[W]), respectively; bias and coefficients of transfer func-
tion of hidden neurons; four different coefficients of 
transfer functions of the output neurons. The values of 

1 , 2 , 1s  and 2s  are determined as the outputs of 
the neural network. Figure 4 displays the flowchart of 
approach 2. The fitness of a solution has been calculated 
using Equation (19). 
 
3.3. Approach 3 
 
Optimization using Particle Swarm Optimization 
(PSO) only 

Similar to other population-based optimization meth-
ods, such as GAs, the PSO starts with the random ini-
tialization of population particles in the search space. 
The PSO algorithm works based on the social behaviour 
of the particles in the swarm. Therefore, it finds the 
global best solution by simply adjusting the trajectory of 
each individual toward its own best location and toward 
the best particle of the entire swarm at each time step 
(generation) [12,14]. In PSO algorithm, the trajectory of 
each individual in the search space is adjusted by dy-
namically changing the veloci h particle, accord- ty of eac 
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Figure 4. Flowchart of approach 2.  
 
ing to its own flying experience and that of other parti-
cles in the search space. The position and velocity vec-
tors of  particle in the d-dimensional search space 
can be represented as 

thi
 1, ,i i idX x x   and  

i i id , respectively. The value of iV  vector 
can be varied in the range of 

 1, , V v v
 max max,v v  to reduce the 

tendency of particles to leave the search space. The value 
of ma  is usually chosen to be equal to maxxv ,k x  
where  [35]. According to a user defined 
fitness function, let us say that the best position of each 
particle (which corresponds to the best fitness value ob-
tained by that particle at time t) is 1i i  
and the fittest particle found so far at time t is  

0.1 1k  .0

 , , idpP p 

 1, ,g g gP p p  d . The new velocities and positions of 
the particles for the next fitness evaluation are calculated 
using the following two equations: 

      
    

1

,

id id

gd id

t b Rand p x t

and p x t

  

  

 

2

1

                

id idv t Wv

b R

 
   (20) 

    1 1id idx t v t idx t     ,        (21) 

where id  is the velocity of dth dimension of the ith 
particle, W is a constant known as inertia weight [36], 1  
and  denote the acceleration coefficients, and 

v

2b
b

 rand   and  Rand   are two separately generated 
uniformly distributed random numbers lying in the range 
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of  0,1 . The first part of Equation (20) represents the 
previous velocity, which provides the necessary mo-
mentum for the particles to roam across the search space. 
The second part of Equation (20) is known as the cogni-
tive component that represents the personal thinking of 
each particle. The cognitive component encourages the 
particles to move toward their own best positions found 
so far. The third part of Equation (20) is known as the 
social component, which indicates the collaborative ef-

fect of the particles in finding the global optimal solution. 
The social component always pulls the particles toward 
the global best particle found so far. The PSO is becom-
ing very popular due to its simple architecture, ease of 
implementation and ability to quickly converge to a rea-
sonably good solution. The flowchart of PSO algorithm 
is shown in Figure 5. The values of six variables, 
namely t ,  , 1 , 2 , 1s  and 2s  are supplied by 
the PSO during optimization and the fitness of a solution  

 

 

Figure 5. The flowchart of PSO algorithm.    
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has been determined using Equation (19). 
 
3.4. Approach 4 
 
Optimization using combined neural network and 
PSO algorithm  

In approach 3, one PSO-solution gives one set of val-
ues of ω1, ω2, s1, s2 for the entire cycle time of 100 sec-
onds. However, it may be required to choose separate 
sets of the said parameters for different instants of the 
cycle time to track the trajectory accurately. It has been 
attempted in this approach. For each duration, error  
and error  values are obtained by comparing the calcu-
lated values of 

X
Y

X  and  with their corresponding 
target values, and these are fed as inputs to a feed-for- 
ward neural network (refer to Appendix A), which con-
sists of three layers, namely input, hidden and output 
layers. The input and output layers of the network con-
tain two and four neurons, respectively. A detailed pa-
rametric study has been carried out to decide the num-
bers of hidden neurons, which has turned out to be equal 
to four. The first and third output neurons have log-sig- 
moid transfer function, and the second and fourth neu-
rons are assumed to have tan-sigmoid transfer function. 
The neurons of input and hidden layers are assumed to 
have linear and tan-sigmoid transfer functions, respec-
tively. In this approach, the PSO solution carries infor-
mation of the thickness of the links (t), density of the link 
material (ρ) and thirty real variables related to the neural 
network, such as eight and sixteen connecting weights 
between the input and hidden layers (that is, [V]) and 
hidden and output layers (that is, [W]), respectively; bias 
and coefficients of transfer function of hidden neurons; 
four different coefficients of transfer functions of the 
output neurons. The values of ω1, ω2, s1, and s2, are ob-
tained as the outputs of the neural network. The fitness of 
a solution has been determined using Equation (19). 

Y

 
4. Results and Discussion 
 
The performances of the developed four approaches have 
been tested through computer simulations. The lengths of 
two links: 1  and 2  are assumed to be equal to 0.3m 
and 0.2 m, respectively. The terms: B (effective damping) 
and 

L L

  (damping ratio) [31] of Equation (12) have been 
set equal to 0.02 and 1.0, respectively. The outer radius 
of two circular links is considered as R = 0.03 m. The 
motor connected to the second link weighs 0.568 kg. 
Simulations are conducted on a P-IV PC. Results of four 
developed approaches are stated and discussed below for 
tracking of one straight path and another circular path 
separately.  

4.1. Straight Path Tracking 
 
The 2-dof manipulator will have to track a straight path 
as accurately as possible after consuming minimum 
power and ensuring enough mechanical strength. Inverse 
kinematics calculations have been carried out using 
Equation (2) to determine joint angles corresponding to 
the movement of the end-effector along a straight path in 
Cartesian coordinate system. A fourth-order polynomial 
is found to be suitable to represent the trajectory of 

 1 t  as follows:   2 3
1 10 11 12 13 1t a a t a t a t a t      4

4 , 
where the values of the coefficients have turned out to be 
as a10 = 0.183987352, a11 = −0.008541301  
a12 = 0.000193741, a13 = −0.000001798 and  
a14 = 0.000000007. Similarly, the trajectory function 

 2 t  is seen to be a cubic polynomial as follows:  
  2 3

21 22 23a t a t 2 20t a a t  , where  
a20 = 2.279365512, a21 = −0.011757362,  
a22 = 0.000026833, a23  = −0.000000209. Angular velo- 
cities and accelerations have been determined for both 
the joints by differentiating angular displacement with 
respect to time (t) for once and twice, respectively. Re-
sults of the developed four approaches are stated, dis-
cussed and compared below. 
 
4.1.1. Results of Approach 1 
As the performance of a GA depends on its parameters, a 
thorough parametric study is carried out to determine the 
values of optimal GA-parameters.  

Figure 6 shows the results of the said parametric study, 
in which one parameter has been varied at a time keeping 
the others fixed. 

Thus, the following GA-parameters are found to yield 
the best results: c  = 0.76, m  = 0.0055, Population 
size  = 150, maximum number of generations max  
= 150. The optimized values of the parameters: 

P P
P G

t , ρ, 
1 , 1s , 2  and 2s  are found to be equal to 0.001m, 

2600.00 kg/m3, 5.002, −0.02612, 10.00 and −0.0141, 
respectively. The obtained results will be discussed in 
Figures 7 to 11, at the end of this section. 
 
4.1.2. Results of Approach 2 
The set of optimal GA-parameters has been obtained 
using an approach explained earlier. The following 
GA-parameters are found to give the best results: c  = 
0.86, m  = 0.0055, Population size  = 220, Maxi-
mum number of generations max  = 240. During opti-
mization, the ranges of 

P
P P

G
t  and ρ have been kept the 

same with those of approach 1. The connecting weights: 
 V ,  W  are varied in the range of −1.0 to 1.0. The 
coefficients of transfer functions of the hidden neurons 
( 1_ hid ) and those of first through fourth neurons of out-
ut layers (that is, , , , ) have  
a

p  2 _ outa 3 _ outa 4 _ outa 5 _ outa
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(a)                                                  (b) 

 

 
(c)                                                  (d) 

Figure 6. Results of GA-parametric study: (a) fitness vs Pc; (b) fitness vs Pm; (c) fitness vs population size P; (d) fitness vs 
maximum number of generations Gmax. 

 
been optimized in the ranges of (0.1, 1.0), (2.0, 3.0), (1.0, 
2.0), (1.0, 2.0) and (1.0, 2.0), respectively. Moreover, the 
bias value: b has been varied from 0.000001 to 0.0001. 
The optimized values of the variables, which are ob-
tained using this approach, are shown in Table 1. Results 
have been discussed and compared with those of other 
approaches with the help of Figures 7 to 11. 
 
4.1.3. Results of Approach 3 
In this approach, the following PSO-parameters are 
found to yield the best results: number of particles inter-
acting with each particle  = 3; dimension of the 
search space d = 6; number of runs =100; number of 
executions =1000. The optimized values of the parame-
ters: , ρ, 1

k

t  , 1s , 2 , and 2s  are found to be equal 
to 0.001m, 2600.00 kg/m3, 13.715, 0.078, 14.271, and 
0.00556, respectively. Results of this approach have been 
explained in detail with the help of Figures 7 to 11, at 
the end of this section. 

4.1.4. Results of Approach 4 
The following PSO-parameters are seen to give the best 
results:  = 3; d = 36; number of runs =100; number of 
executions = 1000. The optimal values of the parameters: 

k

t , ρ, 1 , 1s , 2  and 2s  are found to be equal to 
0.001 m, 2600.00 kg/m3, 11.715, 0.078, 10.271 and 
0.00551, respectively. Table 2 shows the optimized val-
ues of other variables obtained by the PSO algorithm in 
approach 4. Results of this approach have been compared 
with that of other approaches in Figures 7 to 11. 
 
4.1.5. Comparisons  
The paths tracked and energy consumed by the manipu-
lator using approaches 1, 2, 3 and 4 are compared here. 
The values of energy (kW) consumption, and average 
absolute percent deviation in trajectory tracking by four 
approaches are found to be equal to 0.241371, 0.241371, 
0.238906, 0.23859, and 0.000000763, 0.000000009, 

.000000585, 0.00000000128, respectively, while trac- 0 
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(a)                                                  (b) 

Figure 7. Variations of PD controller’s gain values: (a) Kd; (b) Kp for Joint 1. 
 

Table 1. Optimized values of the variables obtained by the GA in approach 2 for straight path tracking. 

Variable Range Optimized value Variable Range Optimized value 

t' 0.001, 0.03 0.001 W23 −1.0, 1.0 −1.00 

ρ 2600.0, 2800.0 2600.0 W24 −1.0, 1.0 −0.99 

V11 −1.0, 1.0 −1.00 W31 −1.0, 1.0 −0.99 

V12 −1.0, 1.0 −1.00 W32 −1.0, 1.0 −1.00 

V13 −1.0, 1.0 −1.00 W33 −1.0, 1.0 −0.99 

V14 −1.0, 1.0 −0.99 W34 −1.0, 1.0 0.89 

V21 −1.0, 1.0 −1.00 W41 −1.0, 1.0 −0.99 

V22 −1.0, 1.0 −1.00 W42 −1.0, 1.0 −0.99 

V23 −1.0, 1.0 −1.00 W43 −1.0, 1.0 −0.99 

V24 −1.0, 1.0 −1.00 W44 −1.0, 1.0 −0.99 

W11 −1.0, 1.0 −0.99 a1_hid 0.1, 1.0 0.099 

W12 −1.0, 1.0 −0.99 a2_out 2.0, 3.0 1.999999 

W13 −1.0, 1.0 −0.99 a3_out 1.0, 2.0 0.99999 

W14 −1.0, 1.0 −1.00 a4_out 1.0, 2.0 1.000 

W21 −1.0, 1.0 −0.99 a5_out 1.0, 2.0 0.999999 

W22 −1.0, 1.0 −0.99 b 0.000001 to 0.0001 0.00000023 

 
ing the straight path. Figures 7 and 8 show the variations 
of dK , pK  values for joint 1 and joint 2, respectively, 
while tracing the given straight trajectory. Comparisons 
of these approaches are shown on the entire trajectory in 
Figure 9(a), whereas Figure 9(b) displays the same 
comparison on a finer scale within the smaller ranges of 
X  and . Figures 10 and 11 display the variations of 

percent deviation in predictions of 

Y

X  and Y values in 
a cycle, respectively, for the four approaches. The devia-
tions in tracking the trajectory are found to be less in 
approaches 2 and 4 compared to that in approaches 1 and 
3. Approach 4 is found to perform better than other ap-
proaches in terms of accuracy in path tracking and power 
consumption. The better performance of approach 4  
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Table 2. Optimized values of the variables obtained by the PSO in approach 4 for straight path tracking. 

Variable Range Optimized value Variable Range Optimized value 

t' 0.001, 0.03 0.001 W23 −1.0, 1.0 1.00 

ρ 2600.0, 2800.0 2600.0 W24 −1.0, 1.0 −0.7125 

V11 −1.0, 1.0 −0.38296 W31 −1.0, 1.0 −0.9599 

V12 −1.0, 1.0 0.1 W32 −1.0, 1.0 0.911465 

V13 −1.0, 1.0 0.1 W33 −1.0, 1.0 0.62298 

V14 −1.0, 1.0 1.00 W34 −1.0, 1.0 −0.67631 

V21 −1.0, 1.0 1.00 W41 −1.0, 1.0 −0.049 

V22 −1.0, 1.0 0.622 W42 −1.0, 1.0 0.955 

V23 −1.0, 1.0 0.761 W43 −1.0, 1.0 −0.84 

V24 −1.0, 1.0 0.761 W44 −1.0, 1.0 0.8364 

W11 −1.0, 1.0 −0.84 a1_hid 0.1, 1.0 0.2437 

W12 −1.0, 1.0 −0.44 a2_out 2.0, 3.0 2.1013 

W13 −1.0, 1.0 −0.85 a3_out 1.0, 2.0 2.00 

W14 −1.0, 1.0 −0.35 a4_out 1.0, 2.0 2.00 

W21 −1.0,1.0 −0.71 a5_out 1.0, 2.0 1.744 

W22 −1.0, 1.0 −0.6924 b 0.000001 to 0.0001 0.000023 

 

 
(a)                                                  (b) 

Figure 8. Variations of PD controller’s gain values: (a) Kd; (b) Kp for Joint 2. 

 
could be due to the use of a PSO algorithm in place of a 
GA. The latter is a potential tool for global search only 
but its local search capability is poor, whereas the former 
carries out both the global and local searches simultane-
ously. Moreover, PSO is a greedier algorithm compared 
to the GA. 

4.2. Circular Path Tracking 
 
The end-effector of the manipulator will have to trace a 
circular path in Cartesian coordinate system. The corre-
sponding joint angle values are determined using Equa-
tion (2). A second-order polynomial is found to be suit-  
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(a)                                                  (b) 

Figure 9. Comparisons of the paths tracked by the robot using approaches 1, 2, 3 and 4: (a) entire trajectory; (b) a part of the 
trajectory shown on the finer scales. 
 

 

Figure 10. Variations of percent deviation in prediction of X 
values in a cycle for four approaches. 
 
able to represent the trajectory of  as  

, where 10  = −0.39713758259, 

11  = 0.01657138221, 12  = −0.0000095. Similarly, 
the trajectory function of 2  has been expressed 
using another second-order polynomial  
as 20 212

, where  
a20 = 0.92207514343, a21 = 0.00000008916,  
a22 = −0.00000000085.  

 1 t
a



  2
10 11 121

t a a t a t   
a

  22t a a t a   

a

2t

t

 
4.2.1. Results of Approach 1  
The following GA-parameters (obtained through a care-
ful parametric study as explained earlier) are found to  

 

Figure 11. Variations of percent deviation in prediction of Y 
values in a cycle for four approaches. 
 
yield the best results: c  = 0.96, m  = 0.0055, Popu-
lation size  = 180, Maximum number of generations 

ma  = 240. The optimized values of the parameters: 

P P
P

xG t , 
ρ, 1 , 1s , 2  and 2s  are seen to be equal to 0.001m, 
2600.00 kg/m3, 7.017, −0.02, 10.00, and −0.0116, re-
spectively.  
 
4.2.2. Results of Approach 2  
The best results have been obtained with the following 
GA-parameters: c  = 0.96, m  = 0.0055, Population 
size  = 150, Maximum number of generations max  

= 240. The optimized values of the parameters: 

P P
P G

t , ρ, 
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1 , 1s , 2  and 2s  are seen to be equal to 0.001 m, 
2600.00 kg/m3, 7.017, −0.02, 10.00, and −0.0116, re-
spectively. The optimized values of the variables ob-
tained by the GA are shown in Table 3. 
 
4.2.3. Results of Approach 3 
The following PSO-parameters (obtained through a 
careful parametric study as explained earlier) are found 
to yield the best results:  = 3; d = 6; number of runs = 
100; number of executions = 1000. The optimized values 
of the parameters: , ρ, 1

k

t  , 1s , 2  and 2s  are seen 
to be equal to 0.001 m, 2600.00 kg/m3, 20.00, −0032556, 
10.00 and 0.004085, respectively. 
 
4.2.4. Results of Approach 4 
The following PSO-parameters (obtained through a sys-
tematic study as explained earlier) are found to yield the 
best results: k = 3; d = 36; number of runs = 100; number 
of executions = 7000. The optimized values of the vari-
ables obtained by the PSO algorithm are shown in Table 
4. 
 
4.2.5. Comparisons 
Results of the above four approaches have been com-
pared here. The variations of dK  and pK  values for 
the joints: 1 and 2 are displayed in Figures 12 and 13, 
respectively. The manipulator is found to consume 

0.864591, 0.771185, 0.755222, 0.752206 kW of energy 
using approaches 1, 2, 3 and 4, respectively. Figure 14(a) 
shows the circular path tracked by the manipulator using 
the above four approaches. In order to clearly distinguish 
the path traced by the robot, a segment of this path has 
been displayed in Figure 14(b) The values of percent 
deviation in prediction of X- and Y-values have been de-
termined as obtained by the said four approaches and 
these are shown in Figures 15 and 16, respectively. Ap-
proaches 1, 2, 3 and 4 have yielded the values of average 
absolute percent deviation in prediction of the path as 
0.000001103, 0.00000032, 0.00000038, and 0.00000023, 
respectively. Once again, approach 4 has proved its su-
premacy over other approaches in terms of accuracy in 
path tracking and energy consumption. It has happened 
so, due to the reasons explained above. 
 
4.3. Comparisons with Others’ Studies 
 
Path tracking problems of a 2-dof manipulator had been 
solved by various researchers. In this connection, the 
studies of Qu [1], Homsup and Anderson [2], Kelly and 
Salgado [3] and Ouyang and Zhang [4] are worth men-
tioning. Soft computing-based approaches had also been 
developed for the said purpose [7,9,10]. This study also 
deals with trajectory tracking problems of a manipulator. 
In the present paper, an integrated scheme has been de- 

 
Table 3. Optimized values of the variables obtained by the GA in approach 2 for circular path tracking. 

Variable Range Optimized value Variable Range Optimized value 

t' 0.001, 0.03 0.001 W23 −1.0, 1.0 −1.00 

ρ 2600.0, 2800.0 2600.00 W24 −1.0, 1.0 −1.00 

V11 −1.0, 1.0 −0.906785 W31 −1.0, 1.0 −1.00 

V12 −1.0, 1.0 −0.861631 W32 −1.0, 1.0 −1.00 

V13 −1.0, 1.0 −1.00 W33 −1.0, 1.0 −1.00 

V14 −1.0, 1.0 −1.00 W34 −1.0, 1.0 −1.00 

V21 −1.0, 1.0 −1.00 W41 −1.0, 1.0 −1.00 

V22 −1.0, 1.0 −1.00 W42 −1.0, 1.0 −1.00 

V23 −1.0, 1.0 −1.00 W43 −1.0,1.0 −1.00 

V24 −1.0, 1.0 −1.00 W44 −1.0, 1.0 −1.0 

W11 −1.0,1.0 −1.00 a1_hid 0.1, 1.0 0.1 

W12 −1.0, 1.0 −1.00 a2_out 2.0, 3.0 2.00 

W13 −1.0,1.0 −1.00 a3_out 1.0, 2.0 0.999999 

W14 −1.0, 1.0 −1.00 a4_out 1.0, 2.0 1.00 

W21 −1.0, 1.0 −1.00 a5_out 1.0, 2.0 0.999999 

W22 −1.0, 1.0 −1.00 b 0.000001 to 0.0001 0.000003 
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Table 4. Optimized values of the variables obtained by the PSO in approach 4 for circular path tracking. 

Variable Range Optimized value Variable Range Optimized value 

t' 0.001, 0.03 0.001 W23 −1.0, 1.0 −0.99 

ρ 2600.0, 2800.0 2600.00 W24 −1.0, 1.0 −0.99 

V11 −1.0, 1.0 −0.999 W31 −1.0, 1.0 −1.00 

V12 −1.0, 1.0 −0.98 W32 −1.0, 1.0 −1.00 

V13 −1.0, 1.0 −0.99 W33 −1.0, 1.0 −1.00 

V14 −1.0, 1.0 −0.99 W34 −1.0, 1.0 −0.99 

V21 −1.0, 1.0 −0.99 W41 −1.0, 1.0 −0.99 

V22 −1.0, 1.0 −0.99 W42 −1.0, 1.0 −0.99 

V23 −1.0, 1.0 −1.00 W43 −1.0,1.0 −1.00 

V24 −1.0, 1.0 −0.99 W44 −1.0, 1.0 −1.00 

W11 −1.0,1.0 −0.99 a1_hid 0.1, 1.0 0.10 

W12 −1.0, 1.0 −0.99 a2_out 2.0, 3.0 2.00 

W13 −1.0, 1.0 −1.0 a3_out 1.0, 2.0 1.00 

W14 −1.0, 1.0 −.0.99 a4_out 1.0, 2.0 1.00 

W21 −1.0, 1.0 −0.99 a5_out 1.0, 2.0 1.00 

W22 −1.0, 1.0 −0.99 b 0.000001 to 0.0001 0.000 0001691 

 

 
(a)                                                  (b) 

Figure 12. Variations of PD controller’s gain values: (a) Kd; (b) Kp for Joint 1. 

 
veloped to obtain optimal mechanical structure and PD 
controllers simultaneously for a 2-dof manipulator, so 
that it can track the trajectories accurately after consum-
ing the minimum power. To the best of the authors’ 
knowledge, this study is unique for a rigid link manipu-
lator, although an attempt (not exactly the same) was 

made by Park and Asada [11] for a non-rigid link ma-
nipulator. It had been reported in Abe et al. [18], Braik et 
al. [17], Chen et al. [15] that computational cost of the 
PSO is less compared to that of a GA. The performance 
of PSO algorithm has been compared with that of a GA, 
in the present study. 
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(a)                                                  (b) 

Figure 13. Variations of PD controller’s gain values: (a) Kd; (b) Kp for Joint 2. 
 

 
(a)                                                  (b) 

Figure 14. Comparisons of the circular paths tracked by the robot in approaches 1, 2, 3 and 4: (a) entire trajectory; (b) a 
segment of the trajectory shown in finer scales. 
 
5. Conclusions 
 
An integrated scheme for obtaining optimal mechanical 
structures and adaptive PD controller for a 2-dof ma-
nipulator has been developed and its performance has 
been tested through computer simulations on two trajec-
tory tracking problems. The robot studied in this paper is 
a simple one. However, the main strength of this study 
lies with the design and development of the above inte-
grated scheme. The robot should be able to track the tra-
jectory accurately, after consuming the minimum power 

and ensuring no mechanical failure of the same. Four 
approaches have been developed. In approaches 1 and 3, 
natural frequency   and stability locus point s  have 
been kept constant throughout the cycle, whereas these 
values are selected adaptively in the cycle in approaches 
2 and 4. Approach 4 has outperformed other three ap-
proaches in terms of both power consumption as well as 
accuracy in trajectory tracking due to the reasons ex-
plained earlier. Moreover, approach 4 has yielded a more 
stable system compared to other approaches. The better 
performance of the PSO algorithm than that of the GA  
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Figure 15. Variations of percent deviation in prediction of X 
values in a cycle for four approaches. 
 

 

Figure 16. Variations of percent deviation in prediction of Y 
values in a cycle for four approaches. 
 
could be due to its inherent ability to carry out the global 
and local searches simultaneously. On the other hand, the 
GA is a potential tool for global search, although it may 
not be so much powerful in local search. 
 
6. Scope for Future Work 
 
In the present study, the performances of developed ap-
proaches have been tested through computer simulations. 
However, it will be more interesting to test their per-
formances in real-experiments. An improved version of 
PSO algorithm [37,38] may also be used in future to 

solve the said problem. The authors are working on these 
issues. 
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List of Symbols and Abbreviated Terms 
 

10 14, ,a a  Coefficients of fourth-order polynomial 

20 32, ,a a  Coefficients of cubic polynomial 

1_a hid  Coefficient of transfer function of hidden 
neurons 

2 _a out  Coefficient of transfer function for first 
output neuron 

3 _a out  Coefficient of transfer function for sec-
ond output neuron 

4 _a out  Coefficient of transfer function for third 
output neuron 

5 _a out  Coefficient of transfer function for fourth 
output neuron 

b    Bias value 

1 2,b b
B

  Acceleration coefficients 
   Effective damping value  

1 2,c c
d

  Gravity terms of torque 
   Dimension of search space 

D    Inertia term of torque 
 D s

E
  Disturbance on the system 

   Energy, kW 
E    Elastic Modulus, N/m2 

totalErr
Err

  Total error 

avg

   Fitness 

  Average error 
f
g    Acceleration due to gravity, m/s2 

Gbest  Swarm global best solution  

max

   Dynamic Coriolis term 
G
h

  Maximum number of generations 

I    Moment of inertia, kg.m2 
k  Number of particles interacting with each 

particle 
jterr   Joint error 
J    Inertia of links, motor and gear, kg·m2 

dK    Derivative gain   

pK    Proportional gain  

1 2L
m

,L   Length of the links, m 
   Mass of the link, kg  

1M    Bending moment of first link 
M    Moment, N-m 

cP
P

   Probability of crossover 

i    ith Particle best fitness 

gP    Swarm’s global best fitness 
 

mP
P

   Probability of mutation 
   Population size 

P    Penalty term 
Pbest   Particle best solution 
R    Outer radius of hollow circular link 
r    Inner radius of hollow circular link 
s    Stability locus point 
t    Time, s 
t    Thickness, m 
vid Particle’s updated velocity in dth dimen-

sion 
xid Particle’s updated position in dth dimen-

sion 
w   Uniformly distributed load, N/m 
U(s)   Control input  
Vi   Velocity Vector 
 V  Connecting weights between input and 

hidden layers 
 W  Connecting weights between hidden and 

output layers 
W    Inertia weight 

1W
W

   Concentrated load acting on first link, N     

2  Concentrated load acting on second link, 
N  

2mW    Weight of second motor 

iX    Position Vector 
,i iX Y
,

  Coordinates of initial position 

f fX Y ,  Coordinates of final position 

       Damping ratio 
 s   System response in Laplace Transform 

    Joint angle, rad 
 s   Angle in Laplace domain, rad 

    Density, kg/m3 

y    Yeild Stress, N/m2 
    Torque, N-m 
    Natural frequency  
 s   Closed-loop characteristic polynomial 

GA   Genetic Algorithm 
PD   Proportional Derivative 
PID   Proportional Integral Derivative 
PSO   Particle Swarm Optimization 
SBX   Simulated binary crossover 
Rand( ) Random number generator in the range 

of (0,1) 
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