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ABSTRACT 
A recent work has shown that using an ion trap quantum processor can speed up the deci-
sion making of a reinforcement learning agent. Its quantum advantage is observed when the 
external environment changes, and then agent needs to relearn again. One character of this 
quantum hardware system discovered in this study is that it tends to overestimate the values 
used to determine the actions the agent will take. IBM’s five qubit superconducting quan-
tum processor is a popular quantum platform. The aims of our study are twofold. First we 
want to identify the hardware characteristic features of IBM’s 5Q quantum computer when 
running this learning agent, compared with the ion trap processor. Second, through careful 
analysis, we observe that the quantum circuit employed in the ion trap processor for this 
agent could be simplified. Furthermore, when tested on IBM’s 5Q quantum processor, our 
simplified circuit demonstrates its enhanced performance over the original circuit on one of 
the hard learning tasks investigated in the previous work. We also use IBM’s quantum si-
mulator when a good baseline is needed to compare the performances. As more and more 
quantum hardware devices are moving out of the laboratory and becoming generally avail-
able to public use, our work emphasizes the fact that the features and constraints of the 
quantum hardware could take a toll on the performance of quantum algorithms.  

 

1. INTRODUCTION 
Traditional computers have reached their limits of processing the ever growing data today. Quantum 

computing created from computer science and quantum physics emerges as a new computation paradigm, 
holding the promise to generate the next computing revolution. While classical computers can only store 
or process one of the two bits “0” or “1”, quantum computers can make use of the superposition of two 
quantum states 0  and 1 . As such they can store classically exponential size of data as linear size and 
can explore many qubits simultaneously. Put it in another way, a quantum computer can store all the bi-
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nary numbers of the form 10,1, , , 2, ni −
   simultaneously while a classical computer can only store one 

of them. As a result, a quantum computer can calculate multiple function f(x) values simultaneously, but a 
classical computer can only do one at a time. However, due to the laws of quantum mechanics, in general 
we cannot get all these function values by one single measurement. Rather, the key challenge in quantum 
algorithm design is to be creative in getting more information out through one measurement. 

In certain areas such as machining learning, big data, and artificial intelligence, quantum computing 
has demonstrated dramatic speedups. The peculiar features of quantum computing such as super position, 
entanglement, and interference of quantum states are generally considered resources for this speed up. 
Examples of quantum machine learning algorithms can be found in [1-9].  

Reinforcement learning is an area of machine learning in which a learning agent can learn from its 
actions taken in an environment. The nature of this kind of learning is illustrated in how the agent adjusts 
its actions in order to achieve its goal, say getting the maximum of reward. This is different from a super-
vised learning where the model learns from data directly. In this sense, we can say that reinforcement 
learning is learning from its actions and their feedback from the environment, so it learns from data (of 
interactions with the environment) indirectly (Figure 1). Some of the well-known reinforcement learning 
algorithms are Q-learning and SARSA [10-12]. 

A new model of reinforcement learning based on projective simulation is proposed in [13] and 
another variant of it, reflecting projective simulation, is shown to gain a quadratic speed up in the agent’s 
deliberation time when it needs to adapt to rapidly changing environments [14].  

As quantum machine learning is an emerging new field, it is very necessary to understand the cha-
racteristics of different quantum computing implementations and how they affect the performance of 
quantum algorithms. IBM recently released the Quantum Experience to make quantum computing availa-
ble to the public. It allows users to connect to IBM’s quantum processor via the IBM Cloud to learn the 
nature of quantum computing and to create and test different quantum algorithms on a real quantum 
processor [15]. One recent work [16] investigates the impact on a quantum classifier caused by the rou-
tinely used swap operation between two qubits on IBM’s 5Q because of its star topology (Figure 2). Some 
other work using IBM’s 5Q can be found in [17, 18], and a good textbook on quantum computing is [19].  
 

 
Figure 1. An illustration of the general idea of reinforcement learning: the learning of an agent is 
through its interactions with its environment. It takes an action and then the environment gives the 
feedback to the agent, and then agent learns to do better next time. 
 

 
Figure 2. A schematic demonstration of the five qubits in IBM’s 5Q chip, an image taken from 
https://quantumexperience.ng.bluemix.net/qx/editor. 
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2. REFLECTING PROJECTIVE SIMULATION 
2.1. General Description 

In projective simulation, a learning agent receives a sensory input from its environment, that is, a 
percept (from some set of percepts { }1 2S , ,s s=  ) and, based on the percept, it takes an action from the 
possible set of actions { }1 2A , , , Na a a=   This learning model uses a memory for its previous sequences 
of percept-action events, helping the agent to simulate future action before real action is taken. In a sense, 
the reflection on the percept-action history or memory helps the agent to choose a better action. 

The process of the internal memory could be modeled as a Markov chain, and therefore can be con-
ducted by discrete-time stochastic diffusion processes. They can be realized in a variety of physical sys-
tems, say in a quantum computing system. The deliberation process of the agent is based on these diffu-
sion processes, in which the relevant Markov chain is diffused a particular number of times until a desired 
action is output. The choice of the action is dictated by the probability distribution from a Markov chain 
realized by the diffusion process.  

The projective simulation learning also allows for many additional structures, which can be some 
percept-specific flags that are subsets of actions assigned to each percept to represent the agent’s 
short-term memory, a feature that significantly improves the performance of the model [14]. 

In reflecting projective simulation (RPS), the reflection process of the agent is defined as many repeti-
tions of the diffusion processes, where the agent takes its actions based on a specific probability distribu-
tion that can be updated during the learning process. This can helps the agent to react to the changing en-
vironment. In another word, there are two kinds of time quantities 1/δ and 1/ε, where the first measures 
time needed to generate the specified distribution in the agent’s internal memory and the second is the 
time to sample a desirable action from it.  

The work in [20] creates a quantum algorithm for an ion trap quantum processor that reduces the de-
liberation time to 1 δε , compared with the 1/(δε) time in the classical case. It studies a simplified ver-
sion of RPS that uses rank-one Markov chains. In this special case, the entire Markov chain can converge 
in one step (δ = 1). So the time efficient issue of learning only has to deal with the time to sample the cor-
rect actions from the converged probability distribution which serves as like a policy for the agent in 
Q-learning or SARSA. The general algorithm can be modified as follows. First assume there are n flagged 
actions out of N actions ( n N ) and use 1 2, , , na a a

 to denote the initial probability distribution for 
these flagged actions, and 1 2, , , nb b b

 to represent the final stationary probability distribution for these  
flagged actions. In the initialization stage, the state 1, , ii N a iα == ∑



 is prepared and the optimal 

number of k diffusion steps is carried out [21], with k = round π 1
24 ε

 − 
 

 where 1, , ii n bε == ∑


 is  

the probability to sample a flagged action from the final stationary distribution. The reflection over these 
actions can be defined as: 

Α 12 n
iref i i I== −∑  

After running the diffusion step a few time, a sample is taken from the distribution and if the sampled 
action is marked with a flag then the agent will take it as its action, otherwise the algorithm starts over 
again. The diffusion process consists of two reflections, over the flagged actions and over the distribution. 
The findings from [20] suggest that their quantum RPS (Q-RPS) agents requires an average of ( )1O ε  
samples until obtaining a flagged action while classical agents need O (1/ε) samples. 

The goal of Q-RPS algorithm is to increase the probability of obtaining a flagged action such that 
1, ,b a ii n aε ε => = ∑


 while maintaining the relative probabilities of the flagged actions according to the 
initial distribution, i.e., j k j ka a b b=  for any { }  , 1,2, ,j k n∈  . Therefore, the main focus of the study 
in [20] is how to increase bε  and maintain the same ratios of j ka a  and j kb b  given the initial dis-
tribution of ia . One way to illustrate the application of Q-RPS is through a simple example. Next we will 
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explain a toy game that demonstrates the situations where this quantum learning agent can used. 

2.2. Invasion Game 

Let us introduce a simple game called invasion (see Figure 3). It has two parties, an attacker (A) and a 
defender (D). The goal of the attacker A is to enter the other side of the wall by going through a hole in the 
wall, which are placed at equal distances. The defender D will try to block a hole and thereby prevent A 
from invasion. 

Assume that the attacker A uses a strategy that is unknown to the defender D, but, before each move, 
A shows some symbol that indicates its next move. In this case, it could be an arrow pointing right or left, 
indicating the direction of the subsequent move. The meaning of the symbols is priori unknown to D, but 
the symbols can be perceived and distinguished by D. In order for D to win the game, it needs to learn the 
meaning of the symbols during the game time. Here we also assume that the meaning of the symbols could 
be changed after some time, say to switch the meaning of the arrows so the right arrow means going to 
left. In summary, there are at least two learning tasks for D. One is to learn the meaning of the symbols 
and the other is to relearn the meaning if they get changed.  

The main purpose of our work is to empirically study the quantum advantage for the defender D if it 
chooses to use some quantum algorithms for its learning as already illustrated in [20]. 

2.3. Quantum Circuit Design for Q-RPS 

The ion trap quantum system in [20] uses two qubits to represent four action states: 00 , 01 , 
10 , and 11 , two of which are flagged: 00  and 01 . The initial probability distribution of ia  is 

prepared in this state:  

( ) ( )1, 1 2, 2 0y yR Rα θ θ=                                 (1) 

here ( ), exp
2j y jR i Yθθ = − 

 
 

, jY  is the Pauli matrix Y for qubit j. ( ), exp
2j z jR i Zθθ = − 

 
 

, jZ  is the 

Pauli matrix Z for qubit j. Given 00 01a a aε = + , 1θ  and 2θ  can be obtained via 2 1cos
2a
θε  =  
 

 and  

2 2
00 cos

2aa θε  =  
 

 respectively.  

The reflection over the flagged actions is defined as: 

( )Α 1, πzref R= −                                    (2) 

and the reflection over the initial probability distribution of ia  is represented as: 

( ) ( )1, 1 2, 2 1, 1 2, 2
π ππ π
2 2y y CNOT y yref R R U R Rα θ θ θ θ = − + − −  

   
   

−                  (3) 

where CNOTU  is the unitary matrix for the controlled not gate. The whole Q-RPS is encoded in the fol-
lowing quantum circuit (see Figure 4).  
 

 
Figure 3. An illustration of the invasion game [13]: the Attacker agent A tries to go to the other side 
of the wall by entering one of the holes in the wall, while the Defender agent D tries to guess A’s next 
move from learning the meaning of a symbol shown. 
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Figure 4. An implementation of the circuit in [20] for the Q-RPS in IBM’s quantum composer, where 
θ1 = 2.0394 and θ2 = 1.5694 as used in the experiments in [20]. The first two U3 gates prepare the 
input states, the U1 gate serves as refA and the gates after U1 make up refα.  

3. RESULTS 
There is a randomness in quantum computing, therefore, a quantum algorithm has to repeat multiple 

times in order to get a stable reading of its results. IBM’s quantum experience calls each such time a shot. 
Since the experimental results from [20] is based on 1600 shots, we decide to run the Q-RPS algorithm on 
IBM’s 5Q using 1000 shots or multiples of 1000 to set up a fair base for comparison. Another reason is that 
a maximum of 1024 shots is the limit with our current credit. We use 1000 shots on IBM’s simulator to 
match the same number of shots on IBM’s 5Q, and also the maximally allowed 8192 shots on the simulator 
to get the best possible results. Because quantum computing involves randomness, all our experiments are 
conducted with various shots on IBM’s 5Q or IBM’s quantum simulator and the averaged results are re-
ported here. 

3.1. Running the Experiments in [20] on IBM’s 5Q Processor and IBM’s Quantum Simulator 

The major task of the work in [20] is to elucidate the two characteristic features of rank-one Q-RPS: 
1) given aε , how much can bε  be increased while maintaining the same ratio value 1br =  during the 
whole process (Table 1) 2) how does the ratio of b j kr b b=  depend on that of a j kr a a=  in the process 
of increasing bε  (Table 2). The first experiment is to fix 1ar =  and let aε  vary so the optimal k value 
moves from 1 to 7 and the second fix aε  to two values so the optimal k = 1 in one case and k = 3 in the 
other case and let ar  change. Our purpose here is to run the same experiments as those reported in [20] 
on their ion trap quantum processor, but on IBM’s 5Q computer. Hopefully different behaviors of these 
kinds of quantum hardware systems can be observed. The findings in [20] imply that their ion trap system 
tends to overestimate the values it computes for the Q-RPS agent. Using IBM’s simulator as a baseline es-
timator, Table 1 shows that the bε  values generated by IBM’s 5Q (1000 shots) are closer to the true val-
ues of aε  than those by the ion trap system (1600 shots) from [20] but the theoretical analysis indicates 
that the two ratios are supposed to be the same. However, due to the noise and decoherence of quantum 
computing, it is not observed here. To visualize the quantum hardware difference between the ion trap 
system and IBM’s 5Q, we also display the bar charts of the two (Figures 5-7). Numerically, there is no 
clear difference between 1000 shots and 10x1000 shots for IBM’s 5Q, implied by Table 1 and Figures 5-7.  

Table 2 and Figure 6 and Figure 7 highlight that IBM’s 5Q is more accurate in the case for k = 1 and 
underestimate in the case for k = 3, remembering that the ion trap system shows overestimate in both cas-
es [20]. More specifically, the br  values from IBM’s 5Q are closer to the ar  values than those from the  
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Figure 5. Bar chart to visualize the key numerical values in Table 1. The theoretical εb value is 1, so 
all other εb values should get close to 1. 
 
Table 1. Experiment that changes input εa and see how well ion trap, 5Q, or simulator can increase εa. 
In this case γa remains 1.  

 Theory Theory IBM’s simulator (10 × 1000 shots) 

k a00 a01 εa b00 b01 εb b00 b01 εb 

1 0.1371 0.1371 0.2742 0.4966 0.49 0.99 0.49 0.5 0.99 

2 0.0493 0.0493 0.0986 0.4996 0.49 0.99 0.49 0.5 0.99 

3 0.252 0.252 0.504 0.4999 0.49 0.99 0.5 0.5 0.99 

4 0.0152 0.0152 0.0304 0.5 0.5 1 0.49 0.5 1.0 

5 0.0102 0.0102 0.0204 0.5 0.5 1 0.50 0.5 1.0 

6 0.0073 0.0073 0.0146 0.5 0.5 1 0.49 0.5 1.0 

7 0.0055 0.0055 0.011 0.5 0.5 1 0.5 0.5 1.0 

 Ion trap processor (1600 shots) IBM’s 5Q (1000 shots) IBM’s 5Q (10 × 1000 shots) 

k a00 a01 εa b00 b01 εb b00 b01 εb 

1 0.449 0.44 0.889 0.449 0.505 0.954 0.4671 0.4802 0.9473 

2 0.347 0.353 0.7 0.414 0.508 0.922 0.424 0.5053 0.9293 

3 0.438 0.334 0.772 0.396 0.505 0.901 0.4036 0.5039 0.9075 

4 0.422 0.336 0.758 0.397 0.507 0.904 0.3765 0.5147 0.8912 

5 0.407 0.331 0.738 0.347 0.566 0.913 0.3637 0.529 0.8927 

6 0.431 0.324 0.755 0.316 0.533 0.849 0.3289 0.5466 0.8755 

7 0.365 0.299 0.664 0.297 0.561 0.858 0.3158 0.5425 0.8583 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

Success probabilities ϵb for k = 1 - 7 with various shots for ion trap, IBM 5Q, IBM 
simulator, compared with theory (from Table 1)

Theory Ion trap (1600 shots) IBM 5Q (1000 shots) IBM 5Q (10x1000 shots) IBM Simulator (10x1000 shots)

 

https://doi.org/10.4236/ns.2018.101004 50 Natural Science 
 

https://doi.org/10.4236/ns.2018.101004


 

Table 2. Experiment that changes ra and see how well rb can keep close to ra. The theory suggests that 
they should be the same.  

 Theory 
IBM’s simulator  
(10 × 1000 shots) 

IBM’s simulator  
(10 × 8192) shots) 

k a00 a01 ra b00 b01 rb b00 b01 rb 

1 0.0027 0.2714 0.0099 0.0098 0.9829 0.009 0.0094 0.9837 0.0095 

1 0.0725 0.2015 0.3599 0.2625 0.7316 0.3588 0.2657 0.7277 0.3651 

1 0.1138 0.1603 0.7100 0.4066 0.5841 0.6961 0.4104 0.5826 0.7044 

1 0.1410 0.1330 1.0599 0.5108 0.4817 1.0604 0.5121 0.4807 1.0653 

1 0.1604 0.1137 1.4099 0.5854 0.4077 1.435 0.5814 0.4121 1.4106 

1 0.1748 0.0993 1.7599 0.6289 0.3647 1.7244 0.6336 0.3601 1.7593 

1 0.1370 0.1370 1 0.4987 0.4949 1.0076 0.4955 0.4977 0.9956 

3 0.0045 0.0457 0.1000 0.0913 0.9084 0.1005 0.0922 0.9075 0.1016 

3 0.0163 0.0340 0.4800 0.3217 0.6781 0.4744 0.3261 0.6736 0.4841 

3 0.0232 0.0270 0.8599 0.4517 0.5478 0.8245 0.4616 0.5381 0.8579 

3 0.0278 0.0224 1.2402 0.5545 0.4454 1.2449 0.5526 0.4472 1.2356 

3 0.0311 0.0192 1.6201 0.6196 0.3803 1.629 0.6177 0.3820 1.6168 

3 0.0335 0.0167 1.9994 0.655 0.3447 1.9002 0.6652 0.3346 1.9878 

 Ion trap processor (1600 shots) IBM’s 5Q (1000 shots) IBM’s 5Q (10 × 1000 shots) 

k b00 b01 rb b00 b01 rb b00 b01 rb 

1 0.061 0.809 0.0754 0.047 0.904 0.05199115 0.0414 0.908 0.04564 

1 0.29 0.583 0.4974 0.25 0.694 0.360230548 0.258 0.6896 0.37445 

1 0.415 0.466 0.8905 0.369 0.566 0.651943463 0.3889 0.5575 0.69891 

1 0.488 0.389 1.2544 0.456 0.503 0.906560636 0.4726 0.4762 0.99449 

1 0.519 0.351 1.4786 0.571 0.383 1.490861619 0.5571 0.3941 1.41713 

1 0.566 0.305 1.8557 0.606 0.349 1.736389685 0.5926 0.3573 1.66588 

1 0.468 0.401 1.1670 0.452 0.491 0.920570265 0.4681 0.4768 0.98310 

3 0.127 0.718 0.1768 0.08 0.831 0.09627 0.0875 0.8198 0.10673 

3 0.301 0.518 0.5810 0.253 0.67 0.377612 0.257 0.6614 0.38857 

3 0.442 0.451 0.9800 0.404 0.523 0.772467 0.3739 0.5409 0.69125 

3 0.51 0.354 1.4406 0.462 0.444 1.040541 0.4546 0.4567 0.99540 

3 0.551 0.305 1.8065 0.515 0.393 1.310433 0.5098 0.4006 1.27259 

3 0.586 0.268 2.1865 0.569 0.355 1.602817 0.5548 0.3573 1.55275 
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Figure 6. Bar chart to visualize the key numerical values in Table 2 for k = 1. The values in the x-axis 
represent the seven different inputs in Table 2 for k = 1. This plot shows ion trap tends to overesti-
mate and IBM’s 5Q is more accurate. 
 

 
Figure 7. Bar chart to visualize the key numerical values in Table 2 for k = 3. The values in the x-axis 
represent the six different inputs in Table 2 for k = 3. This plot shows ion trap tends to overestimate 
and IBM’s 5Q tends to underestimate. 
 
ion trap (k = 1 in this case), and the br  values from IBM’s 5Q show underestimate while those from ion 
trap display overestimate.  

Here we show the results from IBM simulator with 1000 shots to illustrate the best possible outcome 
for the results from IBM 5Q with 1000 shots. The case of 00 0.0335a =  and 01 0.0167a =  is a difficult 
learning task as IBM’s simulator runs 10 times of the maximum shots of 8192 and can only get 1.98 with 
the target of 1.9994. Also, with 10 × 1000 shots, it gets 1.90002.  

It would be informative if we could run the experiment for the case of 00 0.0335a =  and 
01 0.0167a =  in Table 2 on IBM’s simulator to see the whole process of br  values approaching to its final 
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number 1.98 using various shots from 20 to 8192. The result of this run is shown in Figure 7 with br  
values along with their standard deviations. We also run the same experiment on IBM’s 5Q with various 
shots from 20 to 1000, see Figure 8. It is interesting to see that std = 0.0981 for IBM’s 5Q and std = 0.1204 
for IBM’s simulator at 1000 shots, and the real device’s std value is even smaller than that of the simulator. 
In order for the simulator to reduce its std value to std = 0.0974, it needs to run up to 2000 shots. The br  
values in Figure 8 and Figure 9 are all based 10 repetitions of each run since we need to take a standard 
deviation of these values.  
 

  

 
Figure 8. Curve for rb and curve for its standard deviation for input a00 = 0.03357, a01 = 0.01679 from 
IBM simulator with different shots 20 - 8192. 
 

  

 
Figure 9. Curve for rb and curve for its standard deviation for input a00 = 0.03357, a01 = 0.01679 from 
IBM 5Q with different shots 20 - 1000. 
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To summarize our results in this section, we can say that using IBM’s simulator as a baseline, IBM 5Q 
is more accurate than the ion trap quantum system in calculating the probabilities for the flagged actions 
for the agent and also tends to underestimate if any.  

3.2. Comparing the Quantum Circuits with and without Pi Rotation on IBM’s 5Q Processor and 
IBM’s Quantum Simulator 

From the geometric meaning of 1, yR , we can simplify the reflection equation in (3) by removing the 
pi rotation: 

( ) ( )1, 1 2, 2 1, 1 2, 2
π π
2 2y y CNOT y yref R R U R Rα θ θ θ θ= + − −   

   
   

                   (4) 

We first show that these two circuits are equivalent empirically by running the same experiment us-
ing IBM’s quantum simulator with maximum 8192 shots, which show that they produce the same out-
come.  Then we test them on IBM’s 5Q. For this purpose we select one of the hard learning tasks in expe-
riment shown in Table 1, which requires k = 7 to achieve the optimal result.  

It also allows us to run the experiment for various k values before and after k = 7 to gain the whole 
picture of their work. Surprisingly enough, our simplified circuit outperforms the original one. Note that 
in this run, we use the same 00a  and 01a  for each k in the range of 1 to 7, showing the gradual ap-
proaching to the limit values of 00 0.5b =  and 01 0.5b = .  

For each k from 1 to 7, the two circuits produce the same results on IBM’s simulator, minus the ran-
domness of quantum computing. The reason to choose maximum of 8192 shots in this run is to ensure the 
randomness effects of quantum computing is reduced to a possible minimum. Table 3 shows that our 
simplified circuit is equivalent to the original one, and the natural question is how they differ on a real 
quantum device? For this end, we first run them on IBM’s simulator to establish a baseline line for subse-
quent comparison (Figure 10), then run them on IBM’s 5Q, and the results are displayed in Figures 
11-13, which indicate that the performance of the simplified circuit is much closer to the best possible re-
sult of the original circuit in [20]. To get a bigger picture, we intentionally run our experiment from k = 1 
up to k = 9 to reveal their performance before and after the optimal value k = 7.  
 
Table 3. Experiment to show that the performances of the original circuit and our simplified one on 
IBM’s simulator are the same for input a00 = 0.0055 and a01 = 0.0055 which is used in Table 1.  

 Theory Theory 
Circuit with pi rotation  

IBM’s 5Q (10 × 8192 shots) 
Circuit without pi rotation  
IBM’s 5Q (10 × 8192 shots) 

k a00 a01 ea b00 b01 eb b00 b01 eb b00 b01 eb 

1 0.0055 0.0055 0.011 0.5 0.5 1 0.049133 0.048022 1.023132 0.048352 0.048584 0.995226 

2 0.0055 0.0055 0.011 0.5 0.5 1 0.123694 0.125464 0.985892 0.12771 0.12616 1.012288 

3 0.0055 0.0055 0.011 0.5 0.5 1 0.22406 0.222791 1.005698 0.22533 0.227039 0.992473 

4 0.0055 0.0055 0.011 0.5 0.5 1 0.326379 0.331323 0.985078 0.330566 0.32843 1.006504 

5 0.0055 0.0055 0.011 0.5 0.5 1 0.419922 0.419153 1.001835 0.421594 0.418201 1.008115 

6 0.0055 0.0055 0.011 0.5 0.5 1 0.479578 0.480054 0.999008 0.478076 0.480798 0.994338 

7 0.0055 0.0055 0.011 0.5 0.5 1 0.500281 0.499707 1.001148 0.498096 0.501855 0.992508 
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Figure 10. Bar chart to visualize the key numerical values in Table 3, which serves as a baseline for 
the performance comparison in Figures 11-13. In this plot, the values in the x-axis are the k values 
from 1 to 9. The optimal k value is 7, but here we show many k values before and after 7 to reveal the 
whole picture. This plot also shows that the optimal k value is 7. 
 

 
Figure 11. Run the original circuit on IBM’s 5Q with 10 × 1000 shots. In this plot, the values in the 
x-axis are the k values from 1 to 9. The bar charts in this figure are quite different from the simulator 
in Figure 10. 
 

 
Figure 12. This figure is the same as Figure 11 with one extra: we have added the result from the ion 
trap in [20] for k = 7 here to visually show the behaviors. We place this result at position 10 and we 
should not think it is for k = 10. It is the run for k = 7 from [20]. The goal of this experiment is to 
increase εb value, so we can see that at k = 7, IBM’s 5Q is better than that of the ion trap at position 
10. 
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Figure 13. This is the same figure as Figure 11 but for the results from our simplified circuit. We can 
see that at each k, the 50 - 50 ratio of b00 and b01 is well maintained and k = 6 is the best result. This is 
expected as the round off formula for k in section 2.1 can be off by one. The patterns of the bar 
charts in this figure are similar to the best possible results from the simulator in Figure 10, which 
suggests that the results in this figure from our simplified circuit are better than those from the 
original one in [20]. 

4. CONCLUSION 
As we are having more data and facing more complex problems today than yesterday, reaching the 

limits of the capability of classical computers, the call for advancement of quantum computation hardware 
and quantum algorithms is so clear and urgent. Quantum machine learning has become a matter of inter-
est recently due to its great potential as a possible solution to some hard computing challenges. Research 
has shown that artificial intelligence, and in particular machine learning can benefit from quantum com-
puting. 

In a typical reinforcement learning, a learning agent needs to learn from its interactions with its en-
vironment. But the environment could change in the real world. Consequently, the agent needs to react to 
this change. How a quantum processor can speed up the decision making for the agent in this case is the 
focus of the study in [20], which also suggests that their ion trap system tends to overestimate. Our study 
investigates how IBM’s 5Q computer enables the learning of this AI agent.  

Our work uses IBM’s simulator as a baseline and demonstrates that IBM’s 5Q is more accurate than 
the ion trap system and tends to underestimate if any, during the decision making of this agent. Further-
more, our analysis reveals that the quantum circuit used in [20] could be simplified. When tested on IBM’s 
5Q, our simplified circuit performs better than the ion trap system on one of the hard learning tasks re-
ported in Table 1. 

Quantum computing relies on multiple repetitions of the same experiment to get a high accurate an-
swer. In this direction, our analysis seems to demonstrate that the current quantum computing technolo-
gies do not provide highly accurate calculation when needed, compared with the accuracy that the classical 
computing offers today. 

As more and more quantum machine learning algorithms are being developed and tested on different 
quantum hardware systems, it is desirable to learn the influence of quantum hardware on the performance 
of these quantum algorithms. Our work helps to understand the potential of a quantum computer in the 
field of artificial intelligence and has developed new insight into how the features and constraints of quan-
tum hardware affect the quantum algorithms. 
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