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Abstract 
Global existence of classical solutions to the relativistic Vlasov-Maxwell sys-
tem, given sufficiently regular initial data, is a long-standing open problem. 
The aim of this project is to present in details the results of a paper published 
in 1986 by Robert Glassey and Walter Strauss. In that paper, a sufficient con-
dition for the global existence of a smooth solution to the relativistic Vla-
sov-Maxwell system is derived. In the following, the resulting theorem is 
proved by taking initial data 2

0f C∈ , 3
0 0,E B C∈ . A small data global exis-

tence result is presented as well.  
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1. Introduction and Preliminaries  
1.1. Introduction 
1.1.1. Collisionless Plasma 

Definition 1.1. A plasma is one of the four states of matter, which is a 
completely ionized gas.  

For this work, we assume the following. The plasma is:  
 at high temperature.  
 at low density.  
 collisions are unimportant (i.e. collisions between particles and external forces 

is negligible).  
The plasma is at high temperature implies that  

2
2 1 3eT e N

γ
−> ≅  
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where N is the total number of charges per unit volume, and 1 3Nγ −=  is the 
mean distance between the particles.  

Definition 1.2. We call the distance at which the coulomb field of a charge in 
the plasma is screened a Debye length denoted by a and is defined by:  

( )2 24πa N Z e
T α α

α

− = ∑  

But if we consider only one type of ion, 1Z = , then 
1 2

24π
Ta
Ne

 =  
 

. From 

2 1 3T e N>  we have that 
2 1 3 2 1 3 2

2 2 21, 1 or 1
4π 4π

e N e Ni.e.
T Ne a a

γ
< < <  we can  

interpret this inequality as, the mean distance between particles is small with 
respect to the Debye length. 

Generally speaking, a plasma is collision-less when the effective collision fre- 
quency ν ω< -that is the frequency of variation of E, B. In this case  

collision term.f
t

∂
>

∂
 

1.1.2. The Relativistic Vlasov-Maxwell System 
It is a kinetic field model for a collision-less plasma, that is a gas of charged 
particles which is sufficiently hot and dilute in order to ignore collision effect. 
Hence the particles are supposed to interact only through electromagnetic forces. 
In this work let us assume that the plasma is composed of n different particles, 
(i.e., ions, electrons) with the corresponding masses mα  and eα . According to 
statistical physics the set of the particles of this species is denoted by a 
distribution function  

( ), , 0f f t x pα α= ≥  

which is the probability density to find a particle at a time 0t > , at a position x 
with momentum p. Here in the vlasov Maxwell system the motion of the 
particles is governed by Vlasov’s equation;  

0t x p
vf v f e E B f
c
α

α α α α α
 ∂ + ⋅∇ + + × ⋅∇ = 
 

           (1.1) 

where vα  is the relativistic speed of a particle α , c is the speed of light and E 
and B are electric and magnetic fields respectively and p is momentum. Here  

2
2

2

pv
p

m
c

α

α

=

+

 is the relativistic velocity 

where mα  is the mass of the particle α . 
From this we can observe that v cα <  (hence relativistic system). 
The electric field ( ),E t x  and the magnetic field ( ),B t x  satisfies the fol- 

lowing Maxwell equations.  

;t x xE c B j E ρ∂ = ∇ × − ∇ ⋅ =                  (1.2) 
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; 0t xB E B∂ = −∇ × ∇ ⋅ =                     (1.3) 

where ρ  and j  are the densities of charge and current respectively, and 
hence they can be computed by:  

4π d , and 4π de f p j e f v pα α α α α
α α

ρ = =∑ ∑∫ ∫            (1.4) 

The coupled system of Equations (1.1), (1.2), (1.3) and (1.4) is what we call the 
Vlasov-Maxwell System which is represented as:  

0

4π d , and 4π d

;
; 0

t x p

t

t

vf v f e E B f
c

e f p j e f v p

E c B j E
B E B

α
α α α α α

α α α α α
α α

ρ

ρ

  ∂ + ⋅∇ + + × ⋅∇ =  
 

 = =

∂ = ∇× − ∇ ⋅ =
∂ = −∇× ∇ ⋅ =

∑ ∑∫ ∫            (1.5) 

In this system the Vlasov equation governs the motion of the particles and the 
interaction of the particles are described by the Maxwell equations. So, the aim 
of this work is to derive a sufficient condition for the global existence of a 
smooth solution to the system 1.5 with initial data ( ) ( )

0 0, ,f x p E xα  and 
( )0B x , which are supposed to satisfy  

0 0 0 0, 0 and d 0x xE B xρ ρ∇ ⋅ = ∇ ⋅ = =∫  

In the entire work, we are going to use, the partial derivatives with respect to 
( )1,2,3ix i =  will be denoted by 

ix∂ , while any derivative of order k with 
respect to t or x or p will be denoted by kD  that is tDf f= ∂  or 

ix f∂ ,  
2

i j

a b c
t x xD f f= ∂ ∂ ∂ , 2a b c+ + =  and so on with the convention oD f f= . 

1.1.3. A Short Review on the Cauchy Problem for the Vlasov-Maxwell  
Equations 

Now let us provide a short review on the Classical Cauchy problem on the 
Vlasov Maxwell System. 

Robert T.Glassey and Walter A. Strauss [1], under the title, “In singularity 
formulation in collision-less plasma could occur at high velocity”, they showed 
existence and uniqueness of a global smooth solutions in 1C  by taking initial 
data 0 0,E B  in 2C  and 1

0 0f C∈  by assuming existence of a continuous 
function ( )tβ  such that ( ), , 0f t x pα =  for ( )p tβ> . Here our work has 
many similarities with their work, the only difference is taking 0 0,E B  from 3C  
and 0f  is from 2

0C . In another work Robert T. Glassey and Walter A. Strauss 
[2], also showed uniqueness and existence of 1C  solution by taking sufficiently 
small 2C  initial data. The proof of this result is sketched in the following. 
Simone Calogero, [3], investigated global existence for Vlasov-Maxwell equation 
by modifying the system in which the usual Maxwell systems are replaced by 
their retarded parts. Sergiu Klainerman and Gigliola Staffilani, [4] showed a 
new approach to study VM system , that is they showed global existence of 
unique solution in 3D, under the assumptions of compactly supported particle 
density by using Fourier transformation of the classical Glassey-Strauss result. 
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Oliver Glass and Daniel Han-Kwan, [5], explained that existence of classical 
solutions, from which characteristics are well defined in 2D by using the concept 
of geometric control condition and strip assumption. Gerhard Rein, [6] 
investigated the behaviour of classical solutions of the relativistic Vlasov-Maxwell 
system under small perturbations of the initial data. More recently, Jonathan 
Luk and Robert Strain 2014, [7] derive a new continuation criterion for the 
relativistic Vlasov-Maxwell system. But the unconditional global existence in 3D 
remains an open problem. 

Organization of the project: Now let us describe how this project is organized. 
In chapter one, we state some definitions and terms which are related to Vlasov 
Maxwell system and we try to show the solutions of inhomogeneous wave 
equations with initial conditions in 3  and Gronwall’s lemma is stated and 
proved. In chapter two, the main theorem is stated and we see representations of 
the fields and used boundedness to prove the existence and uniqueness of the 
solution. To prove the theorem, we use an iterative scheme. We construct 
sequences, then using representations of the fields we showed that these 
sequences are bounded in 1C , and finally we try to show that the sequences are 
Cauchy sequences in 1C . In the last chapter, the main theorem is re-stated by 
changing the hypothesis (taking small initial data conditions) just to show the 
reader there is at least one case such that the sufficient condition in the main 
theorem of the latter chapter holds true. In this chapter, only the theorem is 
stated and the main steps to prove the theorem are described. 

1.2. Preliminaries 
1.2.1. Inhomogeneous Wave Equations 

Theorem 1.3. Kirchhoff’s Formula [8] Suppose 2, 2n m≥ ≥ , and  
[ )( )0,m nu∈ × ∞   solves the initial value problem:  

( )
{ }

0 0,

, on 0

n
tt

n
t

u u

u g u h t

 − ∆ = ∈ × ∞


= = × =




                 (1.6) 

Kirchhoff’s states that an explicit formula for u in terms of g and h in three 
dimensions is:  

( )
( )

( ) ( ) ( ) ( ) ( ) ( )3

,

, d , 0
B x t

u x t h y t g y Dg y y x S y x t
∂

= + + ⋅ − ∈ >∫ �  

where ( ),B x t∂  is a sphere in 3  centered at x and radius 0t > .  
Consider the initial value problem for the non homogeneous wave equation  

( )
{ }

0,

0, 0 on 0

n
tt

n
t

u u f

u u t

 − ∆ = ∈ × ∞


= = × =




 

We define ( ), ;u u x t s=  to be the solution of  

( ) ( ) ( )
( ) ( ) ( ) { }

.; .; 0 in ,

.; 0, .; ., on

n
tt

n
t

u s u s s

u s u s f s t s

 − ∆ = × ∞


= = × =




 

Now set  
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( ) ( ) ( )0
, , ; d , 0

t nu x t u x t s s x t= ∈ ≥∫                (1.7) 

Duhamel’s principle asserts that this is a solution of  

( )
{ }

0,

0, 0 on 0

n
tt

n
t

u u f

u u t

 − ∆ = ∈ × ∞


= = × =




 

To find ( ),u x t  explicitly let us consider the case 3n = . For 3n = , 
Kirchhoff’s formula implies,  

( ) ( ) ( ) ( )
,

, ; , d
B x t s

u x t s t s f y s S
∂ −

= − ∫  

so that  

( ) ( ) ( ) ( )( )
( )

( )
( )

( )
( )

0 ,

0 ,

0 ,

, , d d

,1 d d
4π

,1 d d
4π

t

B x t s

t

B x t s

t

B x r

u x t t s f y s S s

f y s
S s

t s

f y t r
S r

r

∂ −

∂ −

∂

= −

=
−

−
=

∫ ∫

∫ ∫

∫ ∫

 

Therefore  

( ) ( )

( ) ( )3
,

,1, d , 0
4π B x t

f y t y x
u x t y x t

y x
− −

= ∈ ≥
−∫   

If the initial data is not zero  

( ) ( ) ( )

( ) ( )3
0 ,

,1, , d , 0
4π B x t

f y t y x
u x t u x t y x t

y x
− −

= + ∈ ≥
−∫       (1.8) 

where ( )0 ,u x t  is the solution of the homogeneous equation 0ttu u− ∆ =  in 
( )0,n × ∞ , which is in 2C . 

1.2.2. Gronwall’s Inequality 
In estimating some norm of a solution of a partial differential equation, we are 
often led to a differential inequality for the norm from which we want to deduce 
an inequality for the norm itself. Gronwall’s inequality allows one to do this. 
Roughly speaking, it states that a solution of a differential inequality is bounded 
by the solution of the corresponding differential equality. There are both linear 
and non linear versions of Gronwalls’s inequality. We state here only the 
simplest version of the linear inequality that we are going to use.  

Lemma 1.4. Gronwall’s lemma [9]  
If :f + +→   is continuous and bounded above on each closed interval 

[ ]0,T  and satisfies  

( ) ( ) ( ) ( )
0

d
T

f T a T b t f t t≤ + ∫  

for increasing function ( )a t  and positive (integrable) function ( )b t  then  

( ) ( ) ( )( )0
exp d

T
f T a T b t t≤ ∫                   (1.9) 

In particular if ( ) 0a T = , then  
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( ) 0f T =  

Proof: Consider the function  

( ) ( ) ( ) ( )0 d

0
e d

t tb s sv t b s f s s−∫= ∫  

differentiating both sides with respect to t and applying 1.4, we have:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

0

d d

0

d d

0

d

0

d

d
e d e

d

e d e

e d

e

t t

t t

t

t

tb s s b s s

tb s s b s s

tb s s

b s s

v t
b t b s f s s b t f t

t

b t b s f s s a t b t

b t b s f s s

a t b t

− −

− −

−

−

∫ ∫

∫ ∫

∫

∫

= − +

≤ − +

+

=

∫

∫

∫
 

Integrating both sides and using the increasing property of the functions gives  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0 0

d

0

d

0

d d

0

e d

e

e d 1 e

T

t T

Tb t t

T tb s s

T b s s b s s

b t f t t

v T a t b t

a T b t t a T

−

−

− −

∫

∫

∫ ∫

= ≤

 ≤ = −  

∫

∫

∫

 

then using 1.9, and the above bound, we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )
0 0

0

d d

0

d

e 1 e

exp d

T t

T

b t t b s s

T

f T a T b t f t t

a T a T

a T b t t

−∫ ∫

≤ +

 ≤ + −  

=

∫

∫

 

Lemma 1.5 Partial Integration in n . [8]  
When the function ( ) ( )1

0
nf x C∈   and ( ) ( )1 ng x C∈   are given, we have  

( ) ( )( ) ( ) ( )( )d d , for 1, , 2, ,n n

i ix x

g x f x x f x g x x i n∂ ∂
= − =

∂ ∂∫ ∫ �
 

   (1.10) 

Proof: On account of the property ( ) ( )1
0

nf x C∈  , we find a radius 0r >  
such that ( ) 0f x =  and ( ) ( ) 0f x g x =  is true for all nx∈  with jx r≥  
for at least one index { }1,2,3, ,j n∈ � . Hence the fundamental theorem of 
differential and integral calculus yields:  

( ) ( )( )

( ) ( )( ) 1 2 1 1

d

d d d d d d = 0

n

i

i

x

r r r
i i i nr r r

x

f x g x x

f x g x x x x x x x
+ + +

− +− − −

∂
∂

 ∂
=  

∂  

∫

∫ ∫ ∫� � �



 

where 1 2 1 1d d d d d d
ii i n xx x x x x S− + =� � . Therefore,  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 d d dn n n

i i ix x x

f x g x x g x f x x f x g x x∂ ∂ ∂
= = +

∂ ∂ ∂∫ ∫ ∫  
 

hence the result.  
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Lemma 1.6, Let ( )u t  be a continuous function of t and ( ) ( )
0
sup

s t
u t u s

∞
≤ ≤

= . 

If ( ) ( ) 2
0 1u t c c u t≤ + , then ( )u t  is bounded provided that either 0c  or 

1c  is sufficiently small.  

2. Existence and Uniqueness of Global Smooth Solutions for  
Vlasov Maxwell Equations 

In this chapter, we are going to establish the existence and uniqueness of global 
smooth solutions for the system in 1.5 under a sufficient condition. To derive 
the sufficient condition, we shall consider the case of only one species of 
particles, then at the end we extend the result to the case of a plasma composed 
of many species. Let us set 1, 1, 1c e mα α= = =  and dropping the π factor, the 
system in 1.5 reduces to:  

( ) 0

d , and d

;
; 0

t x p

t

t

f v f E v B f

f p j fv p

E B j E
B E B

ρ

ρ

∂ + ⋅∇ + + × ⋅∇ =


= =

∂ = ∇× − ∇ ⋅ =
∂ = −∇× ∇ ⋅ =

∫ ∫              (2.1) 

The term E v B+ ×  can be represented by K .That is  

K E v B= + ×  

which we call Lorentz force.  
Theorem 2.1. [6] Let 2

0 0 0 00 , ,f C E B≤ ∈  in 3C  be the initial data which 
satisfy 2.1 above. Assume there exists a continuous function ( )tβ  such that for 
all ,x α ;  

( ) ( ), , 0 forf t x p p tα β= >  

Then there exists a unique 1C  solution for all t.  
To prove this theorem, we are going to use the concept of representation of 

the fields and their derivatives. The characteristics equations of the system 1.1 
are the solutions of:  

, , 0x v p K f= = =�� �                      (2.2) 

Hence the solution of this system is:  

( ) ( )( ), , , , , , ,X s t x p P s t x p  

such that at ,s t X x= =  and P p= . Therefore  

( ) ( ) ( )( )0, , 0, , , , 0, , , 0f t x p f X t x p P t x p= ≥  

Since  

( )0 00 maxf f≤ ≤ < ∞  

f remains bounded. 
For the next two sections, the reader can consult the material [10] for more 

details.  
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2.1. Representation of Electric and Magnetic Fields 

Theorem 2.2. Assume that the function ( )tβ  is as in Theorem 2.1 above. 
Let  

3

1
kt k x

k
S v

=

= ∂ + ∂∑  

Then for 1,2,3i = , iE  and iB  are represented by:  

( ) ( ) ( ) ( ) ( )
0

4π , , , ,i i i i
T SE t x E t x E t x E t x= + +  

( ) ( ) ( ) ( ) ( )
0

4π , , , ,i i i i
T SB t x B t x B t x B t x= + +  

where  

( )
( )( )

( )
( )

2

2 2

1 d, , , d
1

i ii
T

y x t

w v v yE t x f t y x y p p
v w y x− ≤

+ −
= − − −

+ ⋅ −
∫∫  

( ) ( )
( ) ( )( ) d, , , d
1

i ii
S

y x t

w v yE t x Sf t y x y p p
v w y x− ≤

+
= − − −

+ ⋅ −∫∫  

where  
y xw
y x
−

=
−

 

Just replacing i iw v+ , in each expression above by ( )iw v× , we can represent 
( ),iB t x  in a similar way.  

Proof: 
Using chain rule  

( )( ), ,
i iy y i tf t y x y p f w f∂ − − = ∂ − ∂  

Hence, let us denote this by iT f . That is 
ii y i tT f f w f= ∂ − ∂ . 

Here, iT  is the tangential derivative along the surface of a backward cha- 
racteristic cone. 

Now let us replace the usual operators t∂  and i∂  by iT  and S . From  
3

1
and , we get,i y i t t k ki

k
T f f w f S v x

=

= ∂ − ∂ = ∂ + ∂∑  

and
1t
S v T

v w
− ⋅

∂ =
+ ⋅

 

( ) ( ) ,
1

1 1

1 1

i
i i j j

i i
i

i ji
ij j

wT S v T v T v T
v w

w S w v TT
v w v w

w vw S T
v w v w

δ

∂ = + − ⋅ ⋅ = ⋅
+ ⋅

⋅
= + −

+ ⋅ + ⋅
 

= + − + ⋅ + ⋅ 

            (2.3) 

For relativistic Vlasov Maxwell system, the fields satisfy the inhomogeneous 
wave equation:  

( ) ( ) ( )2 i i i
t t i tE j jρ ρ∂ − ∆ = − ∇ + ∂ = − ∂ + ∂  

https://doi.org/10.4236/apm.2018.81005


L. D. Petros 
 

 

DOI: 10.4236/apm.2018.81005 53 Advances in Pure Mathematics 
 

But from  

d and di
if p j fv pρ = =∫ ∫  

we have  

( ) ( ) ( )2 di i
t i t i i tE j f v f pρ∂ − ∆ = − ∂ + ∂ = − ∂ + ∂∫          (2.4) 

Using 2.3 above  

( )

( ) ( )

1 1 1

1 1 1 1

1 1 1

1 1

i ji
i i t ij j i

i j i ji i
ij j

i j i ji i
ij j j

i i ji i
ij j

w vw S S v Tv T v
v w v w v w

w v v vw S v S T
v w v w v w v w

w v v vw v S
T T

v w v w v w

w v vw v S
T

v w v w

δ

δ

δ

δ

  − ⋅ ∂ + ∂ = + − +   + ⋅ + ⋅ + ⋅  
 

= + + − − + ⋅ + ⋅ + ⋅ + ⋅ 
+  

= + − − + ⋅ + ⋅ + ⋅ 
 ++

= + −  + ⋅ + ⋅ 

      (2.5) 

Hence, substituting 2.5 in to 2.4, we have  

( ) ( ) ( )2 d
1 1

i i ji ii
t ij j

w v vw v Sf
E T f p

v w v w
δ

  ++
∂ − ∆ = − + −   + ⋅ + ⋅   

∫       (2.6) 

By applying Equation (1.8) in chapter one, we have  

( ) ( ) ( ) ( ) ( )

( ) ( )( )

0

1 d, , , , d
4π 1

d, , d
1

i ii i
y x t

i i j
ij jy x t

w v Sf yE t x E t x t y x y p p
v w y x

w v v yT f t x y y p p
v w y x

δ

− ≤

− ≤

+
= − − −

+ ⋅ −

 +
− − − −  + ⋅ − 

∫ ∫

∫ ∫
 

This implies,  

( ) ( ) ( ) ( ) ( )

( ) ( )( )

0

d4π , , , , d
1

d, , d
1

i ii i
y x t

i i j
ij jy x t

w v Sf yE t x E t x t y x y p p
v w y x

w v v yT f t x y y p p
v w y x

δ

− ≤

− ≤

+
= − − −

+ ⋅ −

 +
− − − −  + ⋅ − 

∫ ∫

∫ ∫
 (2.7) 

where ( ) ( )
0

,iE t x  is the solution of the homogeneous wave equation. 
From this we can easily see that the second term is i

SE . Let  

( )
and

1
i i j

j ij

w v v
a y x

v w
δ γ
 +

= − = −  + ⋅ 
 

Hence, we can re-write the last integral as:  

( ), , d d
j

j

y x t
y

a
f t x y y p y p

γ− ≤

∂  − − − ∂∫ ∫  

Now let us integrate the last term using integration by parts in y. Hence, by 
applying lemma 1.5 in chapter one (integration by parts), this expression 
reduces to;  
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( )0, , d d d d
j

j j j
yy x t y x t

y

w a a
f y p S p f y p

γ γ− = − ≤

 ∂
− +  ∂  
∫ ∫ ∫ ∫  

where  

1 2 2 3 1 3
d d d , if 3, d d if 1 or d d if 2y y y y y y yS j j j= = = =  

But  

( )0, , d dj j
yy x t

w a
f y p S p

γ− =
−∫ ∫  

is part of ( ) ( )
0

,iE t x , hence the above integral reduces to:  

d d
j

j

y x t
y

a
f y p

γ− ≤

 ∂
 ∂  

∫ ∫                     (2.8) 

But  

( )( )
( )

2

22

1

1j

i ij

y

w v va

v wγ γ

+ − ∂
= ∂ + ⋅ 

                 (2.9) 

see the computation of this expression at the appendix part of [7]. Hence, 2.8 
becomes:  

( )( )
( )

( )
2

2 22

1 d, , d
1

i i

y x t

w v v yf t x y y p p
v w y xγ− ≤

+ −
− −

+ ⋅ −
∫ ∫        (2.10) 

Therefore, substituting 2.10 and ( ),i
SE t x  term in to 2.7,  

( ) ( ) ( ) ( ) ( )
0

4π , , , ,i i i i
T SE t x E t x E t x E t x= + +  

Similarly, by using the inhomogeneous wave equation for the field B, we have  

( ) ( )2 1
2 3 3 2 dt B v f v f p∂ − ∆ = ∂ − ∂∫  

and following the same step, we have  

( ) ( ) ( ) ( ) ( )
0

4π , , , ,i i i i
T SB t x B t x B t x B t x= + +  

This proves theorem 2.2 Proof of uniqueness of Theorem 2.1. 
To do this, let ( ) ( ) ( )( )1 1 1, ,f E B  and ( ) ( ) ( )( )2 2 2, ,f E B  be two different Classical 

solutions of 2.1 with the same Cauchy data given. Define  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2 1 2, , , ,

where i i i

f f f E E E B B B K K K

K E v B

= − = − = − = −

= + ×
 

From the Vlasov Equation,  
0t x pf v f K f∂ + ⋅∇ + ⋅∇ =  

we have  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

1 2

t x p p

p

v f Sf Kf K f K f

Kf K f

 ∂ + ⋅∇ = = −∇ ⋅ = ∇ ⋅ − + 
 = ∇ ⋅ − − 

 

Using theorem 2.2 above, we get  
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( ) ( ) ( )4π , , ,T SE t x E t x E t x= +                (2.11) 

where  

( )
( )( )
( )

( )
2

2 2

1 d, , , d
1

T y x t

w v v yE t x f t y x y p p
v w y x− ≤

+ −
= − − −

+ ⋅ −
∫ ∫  

( ) ( ) ( )( )1 2 d, d
1S p

y x t

w v yE t x Kf K f p
v w y x− ≤

+ = − ∇ ⋅ − − + ⋅ − ∫∫  

Here, in the i
SE  term using the fact that Sf  is a pure p divergent, we have 

integrated by parts in p. Similarly we can represent the field B as  

( ) ( ) ( )4π , , ,T SB t x B t x B t x= +                  (2.12) 

Since, f has a compact support in p, the expression 1 v w+ ⋅  is bounded away 
from zero. Now since the fields are bounded (from hypothesis), adding Equations 
(2.11) and (2.12), estimating using the support property, for t T≤  and using 
Equation (1.8), in chapter one, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( ) )

2 2
0 0 0 00 0 0

1
0 0 0

d

t
TE t B t C f E B f

E B f

ξ ξ ξ ξ

ξ ξ ξ ξ

 + ≤ + +  

+ +

∫
 

where, 0.  represents the maximum norm. 

Now ( ) ( )2 2,E B  and ( )1f  bounded implies that  

( ) ( ) ( ) ( ) ( )( )0 0 0 0 00
d

t
TE t B t C f E Bξ ξ ξ ξ+ ≤ + +∫      (2.13) 

Again from  

( ) ( ) ( )1 2
t x pv f Kf K f ∂ + ⋅∇ = ∇ ⋅ − −   

( ) ( )1 2 , thent x p pf v f K f K f∂ + ⋅∇ + ⋅∇ = − ⋅∇  

the characteristics of this equation are the solutions of:  
( ) ( )1 2, , px v p K f K f= = = − ⋅∇�� �  

Thus, from  
( )2

pf K f= − ⋅∇�  

when f is written as a line integral over such a characteristics curve, we have  

( ) ( ) ( )2
0 0 0

d
t

pf t C K f ξ ξ≤ ⋅∇∫  

Since, ( )2
p f∇  is bounded , we can write it as:  

( ) ( ) ( ) ( )( )0 0 0 00 0
d d

t t
T Tf t C K C E Bξ ξ ξ ξ ξ≤ ≤ +∫ ∫       (2.14) 

Now adding 2.13 and 2.14, we have  

( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 00
d

t
TE t B t f t C E B fξ ξ ξ ξ+ + ≤ + +∫  

Applying Gronwall lemma, we have 0E B f= = = . This implies the solution 
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is unique. This proves the uniqueness of theorem 2.1.  

2.2. Representations of Derivatives of Electric and Magnetic  
Fields 

Theorem 2.3. Assume that ( )tβ  exists as in the hypothesis of theorem 2.1. 
Then the derivatives of the fields can be represented as:  

( ) ( ) ( ) ( )

( )( ) ( )

3 10

2
2

d, d , , , d d

d d, d , d

i i
k k w

y x t

y x t y x t

yE E a w v f p d w v f t x p w p
y x

y yb w v Sf p c w v S f p
y xy x

=
− ≤

− ≤ − ≤

∂ = ∂ + +
−

+ +
−−

∫∫ ∫ ∫

∫∫ ∫∫
 

Note that 2, ,f Sf S f  without explicit arguments are evaluated at  
( ), ,t x y y p− −  and y x γ− = . Except at 1 v w+ ⋅ , the functions  
( ) ( ) ( ) ( ), , , , , , ,a w v b w v c w v d w v  are C∞ . Moreover  

( )
1

, d 0
w

a w v w
=

=∫  

In a similar way, we can represent i
k B∂ .  

Proof: 

Applying 
kx
∂
∂

 in to the field representation in theorem 2.2, we have  

( )
( )( )

( )
( )

( )
( ) ( )( )

( )
( )( )

( )
( )
( )

2

2 20

2

2 20

1 d4π , , d
1

d, , d
1

1 dd
1 11

1 1

i ii i
k k k

y x t

i i
k

y x t

i i k ji k
k jk j

y x t

k ji i
jk

y x t

w v v yE E f t y x y p p
v w y x

w v ySf t y x y p p
v w y x

w v v w v w S yE T f p
v w v wv w y x

w vw v
v w v w

δ

δ

− ≤

− ≤

− ≤

− ≤

+ −
∂ = ∂ − ∂ − −

+ ⋅ −

+
− ∂ − −

+ ⋅ −

+ −   
= ∂ − − +  + ⋅ + ⋅+ ⋅ −   

+
− −

+ ⋅ + ⋅

∫∫

∫∫

∫∫

∫∫ ( ) dd
1

k
j

w S yT Sf p
v w y x

  
+   + ⋅ −   

 

Now using the fact that jT  is a perfect jy  derivative, integrating the last 
integral using integration by parts in y, is equal to:  

( )
( ) ( )( )

( )
( )

( )

( )
( )

( )

2
2

2

1 , , d d
1 1

1 , , d d
1

1 0, , d d
1

k ji i
j jk

y x t

i i k

y x t

k i i
yt

w vw v
Sf t y x y p p y

v w v w

w v w
S f t y x y p p y

v w

w w v
Sf y p p S

t v wγ

δ
γ

γ

− ≤

− ≤

=

 +  
∂ − − −  + ⋅ + ⋅   

+
− − −

+ ⋅

+
−

+ ⋅

∫∫

∫∫

∫ ∫

 

Here the last expression is part of ( )0
iE . Hence ( ),c w v  is the term multi- 

plying 2S f , and ( ),b w v  is the term multiplying 2

Sf
γ

, which we can see it  

easily. Now let us determine ( ),d w v  and ( ),a w v . Here, the most singular 
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term is the jT  term, which appears in the first expression, it is:  

( )( )
( )

( )
2

0 22

1
lim , , d d

11

i i k j
TT jk j

t

w v v w v
E T f t y x y p p y

v wv wγ

δ
γ

→
≤ ≤

+ −  
= − − − − + ⋅+ ⋅  

∫∫


 

Simplifying this we get:  

( )( )
( )

( )

( )( )
( )

( )

( )( )
( )

( )

2

22

2

22

2

22

1
0, , d d

11

1
, , d d

11

1
, , d d

11

j i i k j
jk y

t

j i i k j
jk y

i i k j
j jk

y x t

w w v v w v
f y p p S

v wt v w

w w v v w v
f t y p p S

v wv w

w v v w v
f t y x y p p y

v wv w

γ

γ

δ

δ

δ
γ

=

=

< − <

+ −  
= − + ⋅+ ⋅  

+ −  
− − − + ⋅+ ⋅  

 + −   − ∂ − − −  + ⋅+ ⋅    

∫∫

∫∫

∫∫








 

since the first term depends only on initial data, hence part of ( )0
i

k E∂ . Now the 
second term simplifies as:  

( )( )
( )

( )
2

21

1
, , d d

11

j i i k j
jkw

w w v v w v
f t x p w p

v wv w
δ

=

+ −  
− − + ⋅+ ⋅  
∫ ∫  

Hence ( ),d w v  is known. Now from the last term of TTE ,  

( )( )
( )

( ) ( ) ( ) ( )

( ) ( )

2

22

2 2

243

1

11

3 1 1 1

1 1

i i k j
j jk

i i k k ik

w v v w v
v wv w

w v w v v v w v w

v w p

δ
γ

δ

γ

 + −   ∂ −  + ⋅+ ⋅    
 − + − + + ⋅ + + ⋅  =

+ ⋅ +

 

(see an elementary computation of this in the appendix part of [1]). Hence, 
this expression is the value of ( ),a w v . To show  

( )
1

, d 0
w

a w v w
=

=∫  

write ( ),a w v  as;  

( ) ( )

( ) ( )
( )

( )( )2 22 32 4 2

3 3
,

1 11 1 1

i i k k i i ikw v w v w v
a w v

p v wp v w p p w

δ− + +
= − +

 + + ⋅+ + ⋅ + + ⋅  

 

because  

( ) ( )( )
2

2 2 2 22

2
( 1 ) 1 1 1 1

1

p wp p w p p v w
p

 ⋅ + + ⋅ = + + = + + ⋅  + 

 

Hence  

( ) ( )

( ) ( )
( )

( )2 2 32 4
1 | | 1 1

2
21

3 3
, d d d

1 (1 )1 1

d
1

i i k k i i

w w w

ik

w

w v w v w v
a w v w w w

p v wp v w

w
p p w

δ

= = =

=

− + +
= −

+ + ⋅+ + ⋅

+
 + + ⋅  

∫ ∫ ∫

∫
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Now first compute the third term, we have:  

( ) ( )

( )

2
21

π 2π

2 2 20 0
1

π

2 2
0

d
1

d sin d d
11 1 cos

2π sin d 4π
1 1 cos

ik

w

ik

w

ik
ik

w
p p w

w
v wp v

p v

δ

δ φ θ φ
φ

δ φ φ δ
φ

=

=

 + + ⋅  

= =
+ ⋅+ +

= =
+ +

∫

∫ ∫ ∫

∫

       (2.15) 

Now the integrand in the first term simplifies as:  

( )

( ) ( )
( ) ( )

( )

( ) ( )

2 4 32 4 22

2 3
2 2

3 3

1 1 11

1 1

2 1 1

i

i k

k i i k i i k k k

p

k
p p

w w v w w v w v v

p v w p p wp p w

v
p p w p p w

 
 − + − + + −∂
 = =

∂   + + ⋅ + + ⋅+ + ⋅      
    
    ∂ ∂    = − +

∂ ∂    + + ⋅ + + ⋅        

 

Hence, 
( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

22 4
1

2 3
2 21

2

2 3
2 21 1

2

3
d

1 1

1 1 d
2 1 1

1 1 d d
2 1 1

1 4π 4π 4π
2

i k

i k i

i i

i i k

w

k
p pw

k

p p pw w

k ik
p k p

w v w
w

p v w

v w
p p w p p w

v
w w

p p w p p w

p
p

δ

=

=

= =

− +

+ + ⋅

    
    ∂ ∂    = − +

∂ ∂    + + ⋅ + + ⋅        
∂ ∂

= − −
∂ ∂ ∂

+ + ⋅ + + ⋅

∂ ∂
= − − = −

∂ ∂ ∂

∫

∫

∫ ∫

 (2.16) 

Now the second integral becomes:  

( )
( )( )

( )

( )

( )

( )
( )

2
32 3

21 1

2
2

21

2
2

21

2

3 3
d 1 d

1 1 1

3 11 d
2 1

3 d1
2 1

31 4π 0
2

i

i

k i i i i k

w w

k
iw

k
p w

k
p

v w v w v p
w p w

p p w p p w

p p w
p p p w

wp p
p p w

p p

= =

=

=

− + − +
= +

+ + ⋅ + + ⋅

 
 ∂  = +

∂  + + ⋅ 
 

∂
= +

∂
+ + ⋅

∂
= + =

∂

∫ ∫

∫

∫

(2.17) 
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Adding the Equations (2.15), (2.16) and (2.17), we get  

( )
1

, 0
w

a w v
=

=∫  

We can have the same result for the magnetic field see [1], in this case the 
singular term is TTB . This completes the proof of 2.3.  

2.3. Estimation of the Particle Density 

To estimate the particle density take  

( ) ( ) 2
0 00, , ,f x p f x p C= ∈  

and ( )0 ,supp f x k p k=  ≤ ≤   . The characteristics of the Vlasov equation are 
solutions of the sODE :  

, , 0x v p K f= = =�� �  

Hence  

( ) ( ) ( )( )0, , 0, , , , 0, , ,f t x p f X t x p P t x p=  

and since ( )0 00 maxf f≤ ≤ < ∞ , also ( )00 maxf f≤ ≤ , that is f is non-negative 
and bounded. 

Now, we claim that ( ), , 0f t x p =  if x t k> + . From the ODE above,  

( ) ( )
0

0, , , , , , d . Hence, if
t

X t x p x V s t x p s t x k t− = ≤ > +∫  

( ) ( )
( )

0, , , 0, , ,

this implies 0, , ,

x X t x p X t x p x t

X t x p x t k t t k

− ≤ − ≤

> − > + − =
 

Hence, ( ) ( ), , 0t x j t xρ = =  for x t k> + , provided that  

( )d , d and , , 0 forf p j fv p f t x p x kρ = = = >∫ ∫  

Now let us estimate the derivatives of the particle density. Let 
jx

Df ∂
=
∂

, for  

any j. Then we have;  

( )( )t x p pv K Df DK f∂ + ⋅∇ + ⋅∇ = − ⋅∇               (2.18) 

From ( )d
d pDf DK f

s
= − ⋅∇ , we get  

( ) ( )( )
( ) ( )( )

d , , , , , , , ,
d

, , , , , , , ,p

Df s X s t x p P s t x p
s

DK f s X s t x p P s t x p

  

= − ⋅∇
 

Integrating both sides we have  

( ) ( ) ( )( )

( ) ( )( )
0

, , 0, 0, , , , 0, , ,

, , , , , , , , d
t

p

Df t x p Df X t x p P t x p

DK f s X s t x p P s t x p s

≤

+ ⋅∇∫
     (2.19) 

Now let us define the following norms [1].  
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( ) ( ) ( )00 00
, , ,sup sup

x t T
B t B t x B B t

≤ ≤
= =  

( ) ( ) ( )
3

1
1

, , ,sup sup
kx t

x xk
B t B t x B t x

=

= ∂ + ∂∑  

( ) ( ) ( )1 1 00 ,
, , , ,sup sup

t T x p
B B t f t f t x p

≤ ≤
= =  

( ) ( )
3

1
1

,supsup
k kt x p

x p k
f t f f f

=

 = ∂ + ∂ + ∂ 
 

∑  

( ) ( )0 10 10 0
andsup sup

t T t T
f f t f f t

≤ ≤ ≤ ≤
= =  

A similar definition can be done for the electric field E. 
Now by applying the norm properties above, the expression in 2.3 can be 

reduced to  

( ) ( ) ( )( ) ( )00 1 1 10
d

t
Df t C C E B fξ ξ ξ ξ≤ + +∫          (2.20) 

Again by taking 
jp

D ∂
=
∂

, we can have a similar bound, since  

( )
j j

t x p x p
p p

v vv K Df f B f−∂ ∂ ∂ + ⋅∇ + ⋅∇ = ⋅∇ − × ⋅∇  ∂ ∂
 

Therefore, again by applying the norm properties above we have,  

( ) ( ) ( ) ( )01 1 1 10
1 d for

t
Tf t C C E B f t Tξ ξ ξ ξ ≤ + + + ≤ ∫     (2.21) 

2.4. Bounds on the Electric and Magnetic Fields 

We already proved in theorem 2.2 that the fields can be represented as:  

( )data term T SE E E= + +  

( )data term T SB B B= + +  

By our hypothesis we have ( ) Tp tβ β≤ ≤ , say on support of f for 0 t T≤ ≤ . 
Now  

( )
( )( )2 22

1. Therefore,
1 1 1

i iT
T

T

w v
v w C

p v w

β

β

+
⋅ ≤ < ≤

+ + + ⋅
 

Hence  

( ) ( ) 2

d, , , d
T

T T y x t p

yE t x C f t x y y p p
β γ− ≤ ≤

≤ − −∫ ∫  

Since  

3
20 0

dd d and
T T

T
p p y x t

yf p f p f Ct
y xβ β

β
≤ ≤ − <

≤ ≤ =
−

∫ ∫ ∫  

We have that  

( ) 3
0,T T TE t x C t fβ≤                     (2.22) 
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Similarly, for SE , we use ( )p pSf K f Kf= − ⋅∇ = −∇ ⋅ . Then integrating this 
by parts in p, we get:  

( )

( )

dd
1

dd
1

i i
S

i i
py x t

w v yE Sf p
v w y x

w v yE v B f p
v w y x− ≤

+
= −

+ ⋅ −

+ = ∇ ⋅ + × + ⋅ − 

∫∫

∫ ∫
         (2.23) 

By the support hypothesis, the v-gradient factor is bounded (say by TC ). 
Hence,  

( ) ( ) ( )( ) ( )
0 0 0

d, d
T

S T t p

yE t x C E t B t f t p
γ β γ≤ ≤

≤ +∫ ∫  

Therefore,  

( ) ( ) ( )( )0 0 00
d

t
T TE t C C E Bξ ξ ξ≤ + +∫             (2.24) 

A similar estimate holds for B, See ([1]). Hence  

( ) ( ) ( )( )0 0 00
d

t
T TB t C C E Bξ ξ ξ≤ + +∫             (2.25) 

Adding Equations (2.24) and (2.25), we have:  

( ) ( ) ( ) ( )( )0 0 0 00
d

t
T TE t B t C C E Bξ ξ ξ+ ≤ + +∫  

Applying Gronwall’s lemma, we obtain  

( ) ( )
0 0 TE t B t C+ ≤                     (2.26) 

2.5. Bounds on the Gradient of the Field 

Theorem 2.4. [1] Let  

* , 1
log

1 ln , 1
s s

s
s s
≤

=  + ≥
 

then  

( ) ( ) ( )*
1 1 1

1 log forsupT
t

E t B t C f t T
γ

ξ
≤

  
+ ≤ + ≤  

  
       (2.27) 

Proof: We can express i
k E∂  in the form of theorem 2.3 above as:  

( ) ( )data term 1i i i i i
k k TT k TS k ST k SSE E E E E O∂ = + ∂ − ∂ + ∂ − ∂ +  

where,  

( )
( )( ) 22 2

1 d d
11 1

k ji ii
k TT j jk

y x t

w vw v
E f p y

v wp v w
δ

γ− ≤

 +   ∂ = ∂ −  + ⋅+ + ⋅    
∫∫  

( )
( )( )2 3 2

d d
1 1

i i ki
k TS

y x t

w v w
E Sf p y

p v w γ− ≤

+
∂ =

+ + ⋅
∫∫  

( ) 1 d d
1 1

k ji ii
k ST j jk

y x t

w vw v
E Sf p y

v w v w
δ

γ− ≤

 +  
∂ = ∂ −  + ⋅ + ⋅   

∫∫  
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( )
( )

2
2 d d

1
i i ki

k SS
y x t

w v w
E S f p y

v w γ− ≤

+
∂ =

+ ⋅
∫∫  

Here the first term(data term) which is ( )0
i

k E∂  is bounded in 2C  since it is 
just depends on the derivative of the initial data. For the second term, i

k TTE∂ , a 
direct bound would leave a singularity 3x y −−  which is logarithmically diver- 
gent. Thus we must use the fact that the kernel has zero average. 

For simplicity write ( )y x t wξ= + − . 
From this the most singular term is the TTE  term. Hence  

( ) ( )( )
0

1 , , , d d d
t

i
k TTE a w v f x w t p p w

t
ξ ξ ξ

ξ
∂ = + −

−∫ ∫∫  

Here ω  is integrated over the unit sphere 2S  and p is over 3 . We break 
the ξ  integral into two integrals, over [ ]0, t c−  and over [ ],t c t− . Since the 
support of f is bounded in p, the kernel ( ),a w v  is bounded for Tp β< . 
Hence, for any , 0c c t< <   

( ) ( )( )
0

0
0

1 , , , d d d

d ln

t c

t c

T T

a w v f x w t p p w
t

tC f C
t c

ξ ξ ξ
ξ

ξ
ξ

−

−

+ −
−

 ≤ ≤  −  

∫ ∫∫

∫
         (2.28) 

Now the integral over [ ],t c t−  is equal to,  

( ) ( )( ) ( ) d, , , , , d d ,
t

t c

a w v f x w t p f x p w p
t
ξ

ξ ξ ξ
ξ−

 + − −  −∫ ∫∫  

because ( )
1

, d 0
w

a w v w
=

=∫ . 

Therefore 

( ) ( )( ) ( )

0 0
1

d, , , , , d d

d d d
T

t

t c

t

x T x
t c w p

a w v f x w t p f x p w p
t

C f p w C c f
β

ξ
ξ ξ ξ

ξ

ξ

−

− = ≤

 
+ − − − 

≤ ∇ ≤ ∇

∫ ∫∫

∫ ∫ ∫
   (2.29) 

Hence, from expressions 2.28 and 2.29, we have:  

( ) 0
, lni

k TT T x
tE t x C c f
c

  ∂ ≤ + ∇    
 

Now take 0

1
x f

c
= ∇ , we get  

( ) ( )*
0

, 1 logi
k TT T xE t x C f ∂ ≤ + ∇               (2.30) 

For the Sf  term, let us integrate by parts in p:  

( ) ( ) ( )

( )( )

( ) ( )( ) ( )

2 2

2

0 0 0
0

d d, d , d

d, d

d

pt t

pt

t

T

y yb w v Sf p b w v Kf p

yb w v Kf p

C E B f C

γ γ

γ

γ γ

γ

ξ ξ ξ ξ

≤ ≤

≤

= − ∇ ⋅

= ∇ ⋅ ⋅

≤ + ≤

∫ ∫ ∫ ∫

∫ ∫

∫
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That is  

( ) 2

d, d Tt

yb w v Sf p C
γ γ≤

≤∫ ∫                   (2.31) 

For the 2S  term, we write  

( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

2

21

k

k k j

j j

k
p t x p

k k
p t x p j x

jk j k k k
p x x

S f S Kf v fK

v fK v fK

v v
Kf f K K f

p

δ

 = − ∇ ⋅ = − ∂ + ⋅∇ ∂ 
 = −∂ ∂ + ⋅∇ + ∂ ∂ 

− ⋅
= −∇ ⋅ + ∂ + ∂

+

 

But we have; ( ) ( )
( )2,
1

k i iw w v
c w v

v w

− +
=

+ ⋅
. 

Thus,  

( )

( ) ( )

( ) ( )

2

2

d, d

d, d

d, d
1

j j

i
k SS t

pt

jk j k k k
x xt

yE c w v S f p

yc w v S Kf p

v v yc w v f K K f p
v

γ

γ

γ

γ

γ
δ

γ

≤

≤

≤

∂ =

= ∇ ⋅

− ⋅
+ ∂ + ∂

+

∫ ∫

∫ ∫

∫ ∫

 

Let  

( ) ( )
2

, ,
1

jk j k
jk

v v
c w v m w v

v

δ − ⋅
=

+
 

which is bounded and the y-integrals are over the ball y x t− ≤ . Now 

( ) ( )pS Kf KSf fSK K Kf fSK= + = − ∇ ⋅ +            (2.32) 

This implies  

d d d d

d d d d

respectively

j j

i
k SS p p p

t t

k k
jk x jk x

t t

p y p yE fK c K c fSK

p y p ym f K m K f

I II III IV

γ γ

γ γ

γ γ

γ γ

≤ ≤

≤ ≤

 ∂ = ⋅∇ ∇ ⋅ + ∇ ⋅ 

+ ∂ + ∂

= + + +

∫∫ ∫∫

∫∫ ∫∫        (2.33) 

Because p K B∇ ≤ ,  

( ) ( )( ) ( )
2

0 0 0
0

d
t

T TI C E B f Cξ ξ ξ ξ≤ + ≤∫  

( ) ( ) ( )( )0 1 1
0

d
t

TII C f E Bξ ξ ξ ξ≤ +∫             (2.34) 

and III satisfy the same bound as II. Now again split jx f∂  in IV. That is:  

( )
1 2

d d
1 1
j P j bk

jk jb bt

w Kf w v p yIV m K T f IV IV
v w v wγ

δ
γ≤

− ∇ ⋅  
= + − = +  + ⋅ + ⋅   
∫ ∫  
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For 1IV , integrating by parts in p, and the resulting kernel is bounded for v 
and p K B∇ ≤ , hence we have;  

( ) ( )( ) ( )
2

1 0 0 0
0

d
t

T TIV C E B f Cξ ξ ξ ξ≤ + ≤∫           (2.35) 

For 2IV , we recall in Section 2.1, jT  is a perfect y derivative, hence we can 
integrate by part in y. Since ( )1

yw O y x −∇ = − , the resulting kernel in 2IV  is 
bounded by 2C x y −− . Therefore  

( ) ( ) ( )( )2 0 1 1
0

d
t

TIV C f E Bξ ξ ξ ξ≤ +∫             (2.36) 

Combining these results, we get:  

( ) ( )( ) ( ) ( )( ) ( )
2

0 0 1 1 00
0

d
t

i
k SS TE C E B E B fξ ξ ξ ξ ξ ξ ∂ ≤ + + +  ∫  (2.37) 

Now adding 2.30, 2.31 and 2.37, we get:  

( ) ( ) ( )( )*
1 1 10 0

1 log dsup
t

i
k

t
E C f E B

ξ
ξ ξ ξ ξ

≤ ≤

  
∂ ≤ + + +  

  
∫  

To get the same result for B, we repeat the same process, (see [7]), and get:  

( ) ( ) ( ) ( )*
1 1 1 10 0

1 log dsup
t

T
t

E t B t C f K
ξ

ξ ξ ξ
≤ ≤

  
+ ≤ + +  

  
∫  

Now applying Gronwall’s lemma, we have  

( ) ( ) ( )*
1 1 10

1 log for 0sup
t

E t B t C f t T
ξ

ξ
≤ ≤

  
+ ≤ + ≤ ≤  

  
 

This proves theorem 2.5.  
Here putting 2.21 into this expression, we get:  

( ) ( ) ( )

( ) ( )

1 1 1
0

*
1 100

1 d

1 log dsup

t

T

t

T
s t

f t c C K f

c C f s f

ξ ξ ξ

ξ ξ
≤ ≤

 ≤ + + 

  ≤ + +     

∫

∫
 

Now let ( ) ( )
10

sup
s t

f s tρ
≤ ≤

= , then  

( ) ( ) ( ) ( )*

0

1 log d
t

Tt c C tρ ρ ξ ρ ξ ξ λ ≤ + + = ∫  

Therefore,  
( )

( )*
0

d
1 log

t

Ct
λ λ

λ λ
≤

+∫  

This indicates that ( )
1

f t  is bounded, and hence ( )
1

K t  is also bounded. 
Using this estimates, we will proof the existence of the solutions for theorem 2.1.  

2.6. Existence of Solutions 

From the hypothesis we have smooth initial data ( ) ( ) ( )2 3
0 0 0 0, , ,f x p C E x B x C∈ ∈ . 
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Now take ( )1E x  and ( )1B x  in 2C . Now we recursively define the solutions 
( ) ( ) ( ), , , , , ,n n nf t x p E t x B t x  as follows. 

Define ( ) ( ) ( ) ( ) ( ) ( )0 0
0 0, , , ,f t x p f x p E x E x= =  and ( ) ( ) ( )0

0B x B x= . 
Given that ( )1 thn −  iteration, we define nf  as the solution of  

( ) ( ) ( ) ( ) ( )1 1 0n n n n n
t x pf v f E v B f− − ∂ + ⋅∇ + + × ⋅∇ =          (2.38) 

( ) ( ) ( )0, , ,nf o x p f x p=                    (2.39) 

which is a linear equation (for a single unknown) of the form  

( ) ( ),, , 0t x pf c t x p f∂ + ⋅∇ =  

and with initial condition 0f , where c and 0f  are 2C  functions. Since ( )1nE −  
and ( )1nB −  are 2C , ( )nf  is also a ( )2C  function. 

The characteristics of 2.38 are the solutions of:  
( ) ( )1 1, , 0n nx v p E v B f− −= = + × =�� �  

Hence, ( )nf  is constant along the characteristics, hence ( )nf  has a compact 
support in p, therefore  

( ) ( ) ( ) ( )d and dn n n nf p j vf pρ = =∫ ∫  

are 2C -functions. 
Now given ( )nf , hence ( )nρ  and ( )nj , we define ( )nE  and ( )nB  as solu- 

tions of the system  

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

n n n
t x t

n n
t x

E j

B j

ρ∂ − ∆ = −∇ − ∂

∂ − ∆ = ∇ ×
                (2.40) 

with initial data ( ) ( ) ( ) ( )0 0 1 1, , ,E x B x B x E x .  
Lemma 2.5. [10]. Given that ( )nf  is a 2C  solution of 2.38, and ( )nE  and 
( )nB  are solutions of 2.40, then ( )nE  and ( )nB  are 2C  functions.  
Proof: From 2.40, since ( ) ( ),n njρ  are in 1C , hence the solutions given in 2.7 

are 1C . Now let us proceed by induction on n to show the solutions are 2C . 
From the representation theorem 2.2,  

( ) ( ) ( ) ( ) ( ) ( ) ( )04π , , , ,n n n
T SE t x E t x E t x E t x= + +  

where ( )0 ,E t x  is the solution of the homogeneous wave equation with the 
same Cauchy data, and  

( ) ( ) ( ) ( )( )( ) d, , , d
1

n n
S

y x t

w v yE t x Sf t y x y p p
v w y s− ≤

+
= − − −

+ ⋅ −∫∫  

( ) ( )
( )( )
( )

( ) ( )
2

2 2

1 d, , , d
1

n n
T

y x t

w v v yE t x f t y x y p p
v w y x− ≤

+ −
= − − −

+ ⋅ −
∫∫  

Here ( )0 ,E t x  is 2C  from 1.8. From ( ) ( ),n
SE t x ,  

( ) ( ) ( )( ) ( )1 1n n n n
pSf E v B f− − = −∇ ⋅ + × 
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Substituting this in to ( ) ( ),n
SE t x , we can integrate by parts in p. From the 

induction hypothesis ( )1nE −  and ( )1nB −  are 2C , hence ( )nE  is 2C . Similarly 
( )nB  is a 2C  function. This proves lemma 2.5. 
Now let us claim that the estimates 2.21 and 2.26 holds uniformly in n for 
( ) ( ),n nf E  and ( )nB . To show this we follow the same process as we did for 
,f E  and B , the only difference is replacing with the superscripts ( )1n −  and 

n . Thus,  
( ) ( )

0

nf Cξ ≤                       (2.41) 

and, the expression analogous to 2.21 is;  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1 1

0

1 d
t

n n n n
Tf t C C E B fξ ξ ξ ξ≤ + + +∫      (2.42) 

and the analogue of 2.26 is;  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0
0

d
t

n n n nE t B t C C B Bξ ξ ξ+ ≤ + +∫        (2.43) 

for 0 t T≤ ≤  with constants C depending on T. Now iterating 2.43, we have  

( ) ( ) ( ) ( )
2 2

0 0
1 e

2! !

n n
n n CtC t C tE t B t C Ct C

n
 

+ ≤ + + + + ≤ 
 

�      (2.44) 

This tells us that the fields ( ) ( ),n nE B  and ( )nf  are point wise bounded 
uniformly in n. Now by applying Gronwall’s lemma for 2.42, we get:  

( ) ( ) ( ) ( ) ( ) ( )( )1 1

1 1 1
0

exp d
t

n n nf t C C E Bξ ξ ξ− −≤ +∫          (2.45) 

Now an analogue of the result of theorem 2.5 is:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

*

1 1 10

1 1

1 1
0

log sup

d .

n n n
T T

t

t
n n

T

E t B t C C f

C E B

ξ
ξ

ξ ξ ξ

≤ ≤

− −

 
+ ≤ +  

 

+ +∫
     (2.46) 

Substituting 2.45 in to 2.46, we conclude that;  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1

1 1 1 1
0

d
t

n n n n
T TE t B t C C E Bξ ξ ξ− −+ ≤ + +∫     (2.47) 

Since { }*log max 1,1 lns s≤ + , iterating 2.47 as 2.44 above, we get uniform 
bound for  

( ) ( )
1 1

n nE B+                       (2.48) 

And from 2.43, we have a uniform bound for ( )
1

nf  for all n and 0 t T≤ ≤ . 
From this estimates, and compactness property, now it is easy to pass to the 

limit. But to get an optimal result, let us show that the sequences are Cauchy 
sequences in the 1C  norm. 

In the rest of this proof, to show the sequences are Cauchy, we used the 
materials ([2] [6]). 

https://doi.org/10.4236/apm.2018.81005


L. D. Petros 
 

 

DOI: 10.4236/apm.2018.81005 67 Advances in Pure Mathematics 
 

To show the sequences are Cauchy, let us fix two indices m and n. For j = 0, 1, 
let  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m n m nmn
j j j

d E t E t B t B t= − + −  

( ) ( ) ( ) ( ) ( ) ( )mn m n
j j

f t f t f t= −  

In the same way as derivations of 2.13 for ,n nE B , we have  

( ) ( ) ( )( )1, 1
0 0 0

0

d
t

mn m n mnd t C d fξ ξ ξ− −≤ +∫              (2.49) 

And the term analogous to 2.14 is;  

( ) ( )1, 1
0 0

0

d
t

mn m nf t C d ξ ξ− −≤ ∫                   (2.50) 

using the bounds already known, with C depending on T and 0 t T≤ ≤ . Now 
substituting 2.50 to 2.49, we obtain  

( ) ( )( )1, 1
0 1 0 1

0

d ,
t

mn m nd t C d C Cξ ξ− −≤ ≠∫             (2.51) 

Now iterating 2.51, we have;  

( ) ( ) ( ) ( )
( ) ( )

1
2 2, 2 ,

0 1 0 1 0
0 0

1

d d
1 !

, for ,
!

kt t
mn m n k m k n k

k k

t
d t C t d C d

k

aC t m k n k
k

ξ
ξ ξ ξ ξ ξ

−
− − − −−

≤ −
−

≤ ≥ ≥

∫ ∫�
 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0

m n m nmnd t E t E t B t B t a≤ + + + ≤  

Therefore, ( )nE  and ( )nB  are Cauchy sequences in the 0C  norm, and from 
2.50 ( )nf  is a Cauchy sequence in 0C  norm. Hence they converge uniformly in 

0C . 
Now let us claim that ( ) ( ),n nf E  and ( )nB  are Cauchy in 1C  norm. 
To prove this, let us split ( )nE∂  and ( )nB∂  as in such a way given in theorem 

2.5, and then subtract this expressions. We can write the TT term as written in 
2.28-2.30 and then estimate it, we have;  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1

0

d
t

n m n m
TT TTE t E t C f fξ ξ ξ∂ − ∂ ≤ −∫  

Similarly TS and ST terms are written as in 2.31 and then estimated as:  

( ) ( )( )1, 1
0 0

0

d
t

m n mnC d fξ ξ ξ− − +∫  

For the SS term, let us break up in to several pieces as in 2.33. Following the 
same procedure and using the known bound in 1C , we conclude that  

( ) ( ) ( ) ( ) ( ) ( )( )1, 1
1 00

0

d
t

n m m n mn
SS SSE t E t C d fξ ξ ξ− −∂ − ∂ ≤ +∫  
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Therefore,  

( ) ( ) ( )( )1, 1
1 1 1

0

d
t

mn m n mnd t C d fξ ξ ξ− −≤ +∫              (2.52) 

Let us now estimate 1
mnf . To do this recall the characteristics equations  

( ) ( )1, ,n
n n n nx v p K s x−= =� �                   (2.53) 

where  

( ) ( ) ( )1 1 1n n n
nK E v B− − −= + ×  

is evaluated at time s. 
Let ( ) ( ),n nx x p s  be the solutions of 2.53 with the initial values ,x p  at 

s t=  respectively. From n nx v=�  we have  

( )d
d n m n mx x v v

s
− ≤ −                     (2.54) 

because the derivative of the real function ( ) 1 221p p p
−

+�  is bounded by 
unity. From ( ) ( )1 ,n

n np K s x−=� , we have:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1 1 1

1 1

d
d

n m
n m n m

n n n m
n m m m

n m
n m m m

p p K x K x
s

K x K x K x K x

C x x K x K x

− −

− − − −

− −

− = −

≤ − + −

≤ − + −

 

this is because each ( )nK  has uniformly bounded 1C  norm. 
Now by the known bounds, we have  

( ) ( )( )( )1 1n m
m nmK K x δ− −− ≤  

say, where 0nmδ →  as ,n m →∞  uniformly on [ ]0,T . Therefore,  

( )( )
0

d
t

n m n m T nm n m n mx x p p C C v v x x sδ
 

− + − ≤ + − + − 
 

∫     (2.55) 

Hence by Gronwall’s lemma, the sequences ( ) ( ),n nx s p s  converges uniformly 
on 0 s T≤ ≤ . Here, on the parameter , ,t x p , the convergence is also uniform, 

3 30 , ,t T x p≤ ≤ ∈ ∈  . To estimate ( )1
mnf t , let us differentiate 2.38 with 

respect to x, hence the result is;  
( ) ( )( ) ( ) ( )1 1n n nn

t x n p pv K x f K f− −∂ + ⋅∇ + ⋅∇ ∂ = −∂ ⋅∇  

After integrating this along the characteristics, we have  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1
0

0

, , 0 , 0 , , d
t

n n n
n n n p n nf t x p f x p K x f s x p s− ∂ = ∂ − ∂ ⋅∇ ∫  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1
0

0

, , 0 , 0 , , d
t

m m m
m m m p m mf t x p f x p K x f s x p s− ∂ = ∂ − ∂ ⋅∇ ∫  

Subtracting the second from the first and estimating, we get:  
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( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

1 1

0

, ,

0 , 0 0 , 0

, , , , d

n m

n n m m

t
n n m m

n p n n m p m m

f f t x p

f x p f x p

K x f s x p K x f s x p s− −

∂ − ∂

≤ ∂ − ∂

+ ∂ ⋅∇ − ∂ ⋅∇∫

 

The first term goes to zero as ,n m →∞ , from the hypothesis on 0f . Hence, 
we can re-write the expression as:  

( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

1

0

1 1

0

1

0

, ,

, , , ,

, , d

, , , , d

n m

t
n n n

nm m p n n p m m

t
n m n

m m p m n

t
m n m

m p m m p m m

f f t x p

K x f s x p f s x p

K x K x f s x p s

K x f s x p f s x p s

−

− −

−

∂ − ∂

 ≤ + ∂ ⋅ ∇ −∇  

 + ∂ − ∂ ⋅∇  

 + ∂ ⋅ ∇ −∇  

∫

∫

∫



 

for 3,x p∈  and 0 ,0 , 0nms T t T≤ ≤ ≤ ≤ →  as ,m n →∞  uniformly. 
From 2.55 and the known bound in 1C , the first term goes to zero uniformly 

on [ ]0,T . The second term in the integrand is dominated by ( ) ( )1, 1
1

m nCd s− − , and 
similarly the last term in the integrand is dominated by ( ) ( )1

mnCf s . As we did in 
2.21, the p-derivative of the difference can be estimated in terms of the x- 
derivatives. Hence  

( ) ( ) ( ) ( ) ( ) ( )1, 1
1 1 1

0

d
t

mn m n mn
nmf t C d s f s s− − ′≤ + + ∫          (2.56) 

The nm′  converges to zero uniformly on [ ]0,T  as ,m n →∞ . Define,  

( ) ( )1
0

d
t

mn
nmH t f s s= ∫  

then using 2.56 we get, ( ) ( ) ( )1, 1
1

0

d
t

m n
nm nm nmH t cH t c d s s− −′− ≤ + ∫�   

Therefore,  

( ) ( ) ( ) ( )1, 1
1

0 0 0

e d e d d
t t s

c t s c t s m n
nm nmH t s c d sξ ξ− − − −′≤ +∫ ∫ ∫  

Substituting this in to 2.56 we get,  

( ) ( )1, 1
1 1

0

d
t

mn m n
nmf t C d s s− −′′≤ + ∫                 (2.57) 

where C depends on T, and 0nm′′ →  uniformly on [ ]0,T , as ,n m →∞ . Now 
substituting 2.57 in to 2.6, we get the inequality  

( ) ( )1, 1
1 1

0

d
t

mn m n
nmd t c d s sδ − −≤ + ∫                (2.58) 

with a different constant c, which depends on T, here nmδ  tends to zero uni- 
formly on [ ]0,T  as ,n m →∞ . Iterating 2.58 we get:  
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( ) ( ) ( ) ( ) ( )
2 2 1 1

1 ,
1 1

0

1 d
2! 1 ! 1 !

tk k k
kmn m k n k

nm
c t c t cd t ct t d

k k
δ ξ ξ ξ

− −
− − − 

≤ + + + + + −  − − 
∫�  

If u is an upper bound for the 1C  norm, of the field, we thus have  

( )1 e , 0 , ,
!

k k
mn ct

nm
uc Td t t T m n k

k
δ≤ + ≤ ≤ ≥  

Therefore ,n nE B  and nf , from 2.57 are Cauchy sequences in the 1C  norm. 
Hence ,n nE B  and nf  converges uniformly for [ ] 30, , ,t T x p∈ ∈  together 
with all their first derivatives in 1C , since 1C  is complete. Hence, let ,E B  
and f  be the limits of ,n nE B  and nf  respectively. Therefore ( ), ,E B f  
will be the unique solution of the system 2.1 for the simplified case of a single 
species. 

To generalize for n species, we need just a little modification. The operator S 
now depends on α .  

. .t xi e S vα α= ∂ + ∇  

In this case each fα  remains bounded. In the representations of the fields 
and their derivatives, ρ  and j  are written as  

4π d , 4π de f p j v e f pα α α α α
α α

ρ = =∑ ∑∫ ∫  

where eα  is the charge of particles of species α . Again n mf fα α−  are estimated 
for each α  separately. Hence, with these simple modifications, we conclude for 
several species case. 

3. Uniqueness and Existence with Small Initial Data 

In the previous chapter, we have seen that the sufficient condition for the 
existence of a global 1C  solution for the relativistic Vlasov Maxwell’s equations 
was the existence of a continuous function ( )tβ  such that any solution fα  
(or any iterative approximation nfα ) vanishes for ( )p tβ> . In this chapter, we 
verify this sufficient condition under a smallness assumption on the data, which 
we will see in the theorem below.  

Theorem 3.1. [2] For every positive k , there exists a constant 0>  and 0β >  
with the following property. Let ( )( )

0
, 1, 2, ,f x p Nα α = �  be a non-negative 

2C  function with supports in { },x k p k≤ ≤  and let ( ) ( )0 0,E x B x  be in 3C  
with supports in { }x k≤  which satisfy the constraints,  

0
3 3

0 0 0 04π d , 0, d 0E e f p B xα α
α

ρ ρ∇ ⋅ = = ∇ ⋅ = =∑∫ ∫
 

         (3.1) 

If the data satisfy  

3 320 0 0 0C CC
f E Bα

α
+ + ≤∑  , then,              (3.2) 

 there exists a unique solution ( ), ,f E Bα  of 1.5 for all 3x∈  and 3p∈  
and all times 0t ≥ , with 1, ,f E B Cα ∈  having initial data 

0 0 0, ,f E Bα  such 
that  

( ), , 0 for for all , andf t x p p t xα β α= >             (3.3) 
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 ( ) ( ), , 0E t x B t x= =  for x ct k> + .  
 For 0> , there exists 0o >  such that if 3.1 holds, then  

( ) ( )
( )( )

3, , ; 0,
1 2

E t x B t x t x
t ct x k

ε
+ ≤ ∀ ≥ ∈

+ − +
       (3.4) 

To prove this theorem, the key step is to show that the paths of the particles 
spread out with time. Since the paths of the particles are given by the equations  

( )1,x v p e E c v Bα α α
−= = + ×� �                   (3.5) 

the particles would move approximately in straight lines if E and B are small. 
Thus we need to prove that the electromagnetic field decays as t →∞ . Hence, 
to prove this theorem, let us introduce a weighted L∞  norm for the field, as was 
introduced by [11]. Therefore, we use the weight ( )( )2 2ct x k ct x k+ + − + .  

3.1. The Structure of the Proof 

The main structure of the proof is as established in the last chapter. To prove 
uniqueness, we use the same step as we did in chapter two, and for the existence, 
the following construction was used. For given functions ( ) ( )0 ,E t x  and 

( ) ( )0 ,B t x , we define ( ) ( ) ( ) ( ), , ,n nE t x B t x  and ( ) ( ),nf t xα  inductively as follows. 
That is given the ( )1 thn −  iteration, then we define ( ) ( ),nf t xα  as the solution 
of the linear equation  

( ) ( ) ( ) ( )( ) ( )1 1 0n n n n n
t x pf v f e E v B fα α α α α α

− −∂ + ⋅∇ + + × ⋅∇ =  

And with  
( ) ( ) ( )

0
0, , ,nf x p f x pα α=                     (3.6) 

By setting 1c = , we define  
( ) ( ) ( ) ( )4π d , 4π dn n n ne f p j v f pα α α α

α α
ρ = =∑ ∑∫ ∫            (3.7) 

Finally we define ( ) ( ),n nE B  as the solutions of the Maxwell’s equations,  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

, 0

n n n n n
t

n n n
t

E B j E

B E B

ρ∂ = ∇× − ∇ ⋅ =

∂ = −∇× ∇ ⋅ =
 

with data ( ) ( ) ( ) ( )0 00, , 0,n nE x E x B x B x= = . 
Hence, from 2.1, we deduce that if there exists 0β > , independent of , ,t x α  

and n , such that  
( ) ( ), , 0 fornf t x p pα β= >                     (3.8) 

then ( ) ( ) ( )( ), ,n n nf E Bα  converges to a 1C  solution ( ), ,f E Bα  of the system 
2.1. So to prove theorem 3.1, it is enough to show 3.8 under a smallness 
condition. 

Let ( ) ( ) ( )( ), , , ,F t x E t x B t x= . Define the norms  

( )( ) ( ) ( )0
,

2 2 , ,sup
x t

F t x k t x k E t x B t x = + + − + +   

( )( )
( ) ( ) ( )

2

1
,

2 2
, ,sup

ln 2 x x
x t

t x k t x k
F E t x B t x

t x k
+ + − +

 = ∇ + ∇ + +
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and 0 1F F F= + . 
Given 0>  and let  

{ }1: is , 0 for ,F F C F x t k F= = > + ≤   

Given F ∈ , we define the characteristics as the solutions  
( ) ( ), , , , , , ,X X s t x p P P s t x pα α= =  of 3.5, that is  

22

X pv
s m pα

∂
= =

∂ +
                     (3.9) 

( ) ( )( ), ,P e E s X v B s X
s α

∂
= + ×

∂
                (3.10) 

such that the initial conditions are ( ), , ,X t t x p xα =  and ( ), , ,P t t x p pα = . 
Now if we define  

( ) ( ) ( )( )0
, , 0, , , , 0, , ,f t x p f X t x p P t x pα α α α=           (3.11) 

then ( ), ,f t x pα  is the solution of the Vlasov equation,  

( ) 0t x pf v f e E v B fα α α α α∂ + ⋅∇ + + × ⋅∇ =  

with initial condition ( )
0

,f x pα . 
Now let ( )* * *,F E B=  be the solution of the Maxwell’s equations  

* * *

* * *

, ,

, 0
t

t

E B j E

B E B

ρ∂ = ∇× − ∇ ⋅ =

∂ = −∇× ∇ ⋅ =
 

with initial conditions ( ) ( ) ( ) ( )* *
0 00, , 0,E x E x B x B x= = . Therefore, the itera- 

tion process may be summarized as ( ) ( )*1n nF F −= . Hence, we begin the process 
by defining ( )0 0F =  (that is ( ) ( ) ( ) ( )0 0, , 0E t x B t x= = ).  

3.2. Characteristics 

Here the characteristics are curves defined by the solutions of the equations 3.9 
and 3.10. Because E and B are 1C , the solutions exist as 1C  functions of 

, , ,s t x p  for some time * *0 , 0t T s T≤ ≤ ≤ ≤ . Hence, since the characteristics 
exist, we define  

( ) ( ){ }sup ,0, , : , , 0 ,1u t P s x p x k p k s t Nα α= ≤ ≤ ≤ ≤ ≤ ≤  

“which is the largest momentum up to time t emanating from the support of 

0
fα ” [2]. Hence, ( )u t  is a continuous function of t for *0 t T≤ ≤ . 

Now let us drop the dependence on the species through the parameter α . 
Therefore, by the definitions above, we have  

( ) ( )( ),0, 0, , , , 0, , ,X t X t x p P t x p x=              (3.12) 

( ) ( )( ),0, 0, , , , 0, , ,P t X t x p P t x p p=              (3.13) 

Now by setting ( )0, , ,y X t x p=  and ( )0, , ,z P t x p= , Equations (3.12) and 
(3.13) give ( ),0, ,x X t y z=  and ( ),0, ,p P t y z= . Similarly by uniqueness, we 
have  
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( ) ( )( ) ( ),0, 0, , , , 0, , , , , ,X s X t x p P t s p X s t x p=          (3.14) 

( ) ( )( ) ( ),0, 0, , , , 0, , , , , ,P s X t x p P t s p P s t x p=           (3.15) 

Now since, f is constant on the characteristics, we have  

( ) ( ) ( )( )0, , 0, , , , 0, , ,f t x p f X t x p P t s p=  

Therefore,  

( ) ( ) ( ){ }
( ) ( ) ( )( ){ }

( ) ( )( ) ( ) ( )( )( ){
( ) ( )( ) }

3 3

3 3
0

0

, : , , 0

, : 0, , , , 0, , , 0

,0, 0, , , , 0, , , , ,0, 0, , , , 0, , , :

0, , , , 0, , , 0

supp f x p f t x p

x p f X t x p P t s p

X t X t x p P t x p P t X t x p P t x p

f X t x p P t s p

= ∈ × ≠

= ∈ × ≠

=

≠

 

 
 

This explains the extent of the p-support of f and the definition of ( )u t .  
Lemma 3.2. [2] Let 0 s t≤ ≤  and ( ), , 0f t x pα ≠ , then  

( )
( )( )2

, , , 2
2 1

k ss X s t x p k
u tα
+

− + ≥
+

 

Proof: Given that for ( )0 , , , 0s t f t x pα≤ ≤ ≠ , implies  
( ) ( ) ( )( )0

, , 0, , , , 0, , ,f t x p f X t x p P t x pα α α α= . Let ( )1 0, , ,y X t x pα=  and  
( )1 0, , ,z P t x pα= . 

Hence from the support property of f, ( )1 0, , ,y X t x p kα= ≤  and 
( )1 0, , ,z P t x p kα= ≤ . Now from the definition of ( )u t  and from Equation 

(3.14), ( ) ( ), , ,P s t x p u tα ≤ . This implies ( ) ( )1 1,0, ,p P t y z u tα= ≤  and 

( ) ( ) ( ) ( )
0

ˆ, , , 0, , , , , , d
s

X s t x p X t x p v t x p k su tα α α ξ ξ≤ + ≤ +∫     (3.16) 

where, assuming ( ) ( )
( )2

ˆ1, 1
1

u t
m e u t

u t
α α= = = <

+
. But  

( ) ( )
( )

( ) ( )
( ) ( )

2

22 2 2 2

1 1 1ˆ1 1
2 11 1 1 1

u t u tu t
u t

uu t u t u u u

+ −
− = − = = ≥

++ + + + +
 

hence, 
( ) ( )2

1 ˆ1
2 1

u t
u

− ≥
+

 

Now substituting this in to the expression 3.16, we have  

( ) ( )2
, , ,

2 1
sX s t x p k s

uα ≤ + −
+

 

That is ( )
( )( )2

, , , 2
2 1

k ss X s t x p k
u tα
+

− + ≥
+

. This proves the lemma. 

Lemma 3.3. [8] If F ∈  and   is sufficiently small, say 1<  , then the 
characteristics ( ) ( ),X s P sα α  exist for all s ( *T  is infinite) and ( )u t  is 
bounded, say ( )u t β≤ , where 1  and β  depend only on k . Therefore, if 

( ), , 0f t x pα ≠  for some ( ), ,t xα , then p β≤ .  
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Proof: For 0t ≥ , we have ( ) ( ), , ,X s X s t x pα=  and ( ) ( ), , ,P s P s t x pα= ,  

( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

( ) ( )( ) ( )

( )( )

0

1 1

0 0
0

2 2
0

0

2
0

0, , , , , d

2 2 d by definition of

2 2 d by lemma1 above

21

t

t

t

P t x p p E s X s v s B s X s s

F s X s k s X s k s F

F k s u t s

F u t
k

α

− −

−

− ≤ + ×

≤ + + − +

≤ + +

≤ +

∫

∫

∫
 

Hence, ( ) ( )( )2
0

21u t k F u t
k

≤ + + . 

Now if 0F  is sufficiently small, by lemma (1.6) in chapter one, ( )u t  is a 
bounded function of t. 

Now if ( ), , 0f t x pα ≠  for some ( ), , ,x t pα , then  

( )0, , ,y X t x p kα= ≤  and ( )0, , ,z P t x p kα= ≤  

provided that ( ) ( ) ( )( )0
, , 0, , , , 0, , ,f t x p f X t x p P t x pα α α α= . Hence, by defini-

tion of ( )u t , we have ( ) ( ),0, ,p V t y z u tα β= ≤ ≤ . This proves the lemma. 
Theorem 3.4. [10] If F ∈  and   is small enough, then there exists  

0β >  depending only on ,k   and o  such that ( ), , 0f t x pα =  for p β≥  
for all , ,x tα .  

Proof: From lemma 3.3 above, if ( ), , 0f t x pα ≠ , for some ( ), , ,x t pα , then 
we deduced that p β≤ , where β  is depending only on 0, ,k   . This implies, 

( ), , 0f t x pα =  for p β≥ . This proves the theorem.  
Theorem 3.5. If F ∈  and   is small enough, then *F ∈ .  
Proof: See [10]. 
Proof of Theorem 3.1. Define the sequences ,n nf Fα  as above. Since  
( )0F ∈ , by theorem 3.5 above, ( )nF ∈  for all n. Now by theorem 3.4 above, 

0nfα =  for p β≥ . Therefore from the result of chapter 3, ,n nf Fα  and their 
first derivatives converge point wise to f and F. This implies F ∈ . Therefore 
3.4 is true. 

Hence, ( ),f F  is the solution of the RVM equations. This proves the 
theorem. 

Therefore, under a smallness condition we achieved the same result as of the 
sufficient condition that we used in chapter two to get a smooth global 1C  
solution. We thus conclude that the sufficient condition that we used in theorem 
2.1 holds true under a small initial data.  

3.3. Conclusions 

In this project, we have seen that if ( )
0

,f x pα  in ( ) ( )2
0 0, ,C E x B x  in 3C  are 

initial data to the Vlasov-Maxwell equations and if there exists a continuous 
function ( )tβ , such that ( ), , 0f t x pα =  for ( ) , ,p t xβ α≥ ∀ , then there 
exists a unique 1C  solution ( ), ,f E Bα  for all t to the VMEs. And we also seen 
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in chapter three that, the same result that we obtained in chapter two could be 
achieved if the sufficient condition is replaced by small initial data for the system 
and we proved that the sufficient condition is true. 

The result that we obtained is for the relativistic Vlasov-Maxwell system. But 
in the small data case, the same technique that we used, provide the result for the  

non relativistic VMEs except, we replace vα  by 
p

mα

. In chapter two in the  

decompositions of the field, it was necessary that the term 1 v w+ ⋅  could be 
bounded away from zero, in the non-relativistic case the corresponding expression 
is 1 p w+ ⋅ , hence, singularities may occur in a larger set of momentum. Therefore, 
smooth global existence in the non-relativistic case seems problematic.  

Future Work 
In this paper, existence and uniqueness of global smooth solutions for Vlasov- 
Maxwell equations by taking initial data 0 2 0 0 3, ,f C E B C∈ ∈  is shown. In the 
future, the same problem will be solved by taking initial data  

0 3 0 0 3, ,f C E B C∈ ∈ .  
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