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Abstract 
This paper deals with deriving the properties of updated neural network mod-
el that is exploited to identify an unknown nonlinear system via the standard 
gradient learning algorithm. The convergence of this algorithm for online 
training the three-layer neural networks in stochastic environment is studied. 
A special case where an unknown nonlinearity can exactly be approximated 
by some neural network with a nonlinear activation function for its output 
layer is considered. To analyze the asymptotic behavior of the learning 
processes, the so-called Lyapunov-like approach is utilized. As the Lyapunov 
function, the expected value of the square of approximation error depending 
on network parameters is chosen. Within this approach, sufficient conditions 
guaranteeing the convergence of learning algorithm with probability 1 are de-
rived. Simulation results are presented to support the theoretical analysis. 
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1. Introduction 

Design of mathematical models for technical, economic, social and other sys-
tems with uncertainties is the important problem from both theoretical and 
practical points of view. This problem attracts close attention of many researches. 
The significant progress in this scientific area has been achieved last time. Within 
this area, new methods and modern intelligent algorithms dealing with uncertain 
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systems have recently been proposed in [1] [2] [3] [4]. They include some new 
optimization approaches advanced, in particular, in the papers [2] [4]. 

Over the past decades, interest has been increasing toward the use multilayer 
neural networks applied among other as models for the adaptive identification of 
nonlinearly parameterized dynamic systems [5] [6] [7] [8]. This has been moti-
vated by the theoretical works of several researches [9] [10] who proved that, 
even with one hidden layer, neural network can uniformly approximate any 
continuous mapping over a compact domain, provided that the network has suf-
ficient number of neurons with corresponding weights. The theoretical back-
ground on neural network modeling may be found in the book [11]. 

Different learning methods for updating the weights of neural networks have 
been reported in literature. Most of these methods rely on the gradient concept 
[8]. One of these methods is based on utilizing the Lyapunov stability theory [6] 
[12]. 

The convergence of the online gradient training procedure dealing with input 
signals that have deterministic (non-stochastic) nature was studied by many au-
thors [13]-[23]. Several of these authors assumed that training set must be finite 
whereas in online identification schemes, this set is theoretically infinite. Never-
theless, recently we observed a non-stochastic learning process when this pro-
cedure did not converge for certain infinite sequence of training examples [24]. 

The probabilistic asymptotic analysis on convergence of the online gradient 
training algorithms has been conducted in [25]-[33]. Several of their results 
make it possible to employ a constant learning rate [28] [30]. To the best of au-
thor’s knowledge, there are no general results in literature concerning the global 
convergence properties of training procedures with a fixed learning rate applica-
ble to the case of infinite learning set. 

A popular approach to analyze the asymptotic behavior of online gradient al-
gorithms in stochastic case is based on Martingale convergence theory [34]. This 
approach has been exploited by the authors in [24] to derive some local conver-
gence in stochastic framework for standard online gradient algorithms with the 
constant learning rate. 

The difficulties associated with convergence properties of online gradient 
learning algorithms are how to guarantee the boundedness of the network 
weights biases assuming the learning process to be theoretically infinite. To 
overcome these difficulties, the penalty term to an error function has been in-
troduced in [33]. Recently we however established in [35] that the global con-
vergence of these algorithms with probability 1 can be achieved without any ad-
ditional term, at least, in the case when the activation function of the network 
output layer is linear. 

This work has been motivated by the fact that the standard gradient algorithm 
is widely exploited for online updating the neural network weights in accordance 
with the gradient-descent principle whereas the following important question 
related to its ultimate properties remained in part open as yet: when does the 
sequential procedure based on this algorithm converge if the learning rate is 
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constant? As pointed out in [23], the answer to the question on convergence 
properties of this standard algorithm which should shed some light on asymp-
totic features of multilayer neural networks using the gradient-like training 
technique is the first step toward a full understanding of other more generic 
training algorithms based on regularization, conjugate gradient, and Newton 
optimization methods, etc. 

Novelty of this paper which extends the basic ideas of [35] to the case where 
the activation function of the output layer is nonlinear, consists in establishing 
sufficient conditions under which the gradient algorithm for learning neural 
networks will globally converge in the sense almost sure for the case when the 
learning rate can be constant. The proposed approach to deriving these conver-
gence results is based on utilizing the Lyapunov methodology [36]. They make it 
possible to reveal some new features of the multilayer neural networks with non-
linear activation function in output layer which use the online gradient-type 
training algorithms having a constant learning rate. 

2. Description of Learning Neural Network System: Problem 
Formulation 

Consider the typical three-layer feedforward neural network containing a hidden 
layer and p inputs, q hidden neurons, and one output neuron. Denote by 

( ) T
1, ,ij qq p

W w w w
×

 = =    

with 
T

1, , , 1, ,p
i i ipw w w i q = ∈ =  R  

the weight matrix connecting the input and hidden layers, and define the 
so-called bias vector 0w  as 

T
0 01 0, , ,q

qw w w = ∈  R  

which is the threshold in the hidden-layer output. Further, let 
T

1, , ,q
qω ω ω = ∈  R  

be the weight vector between the hidden and output layers, and 0ω  be the bias 
in the output layer. As in [33], the activation functions used in the hidden neu-
rons are all the same denoted by :g →R R , and the activation function for the 
output layer is :f →R R . 

Now, denoting by 

( ) ( ) ( ) T

1 , , qG z g z g z =    

the vector-valued function which depends on the vector 
T

1, , q
qz z z = ∈  R , 

introduce the extended matrix [ ] ( )1
0

q pW W w × += ∈

 R  by adding the column 0w  
to W and the extended vector 

TT 1
0, qω ω ω + = ∈  R , and also the function 

( ) ( ) ( ) T

1 , , ,1qG z g z g z =  


  of z. Then the for an input vector 
T

1, , ,p
px x x = ∈  R  

https://doi.org/10.4236/jamp.2018.61024


L. S. Zhiteckii et al. 
 

 

DOI: 10.4236/jamp.2018.61024 250 Journal of Applied Mathematics and Physics 
 

the output vector of hidden layer can be written as ( )G W x 

 , where the notation 
TT ,1x x =    of the extended vector 1px +∈ R  is used, and the final output 

NNy ∈R  of the neural network can be expressed as follows: 

( )( )T
NN .y f G Wxω=  

                        (1) 

Let 

( )y xϕ=                            (2) 

with : pϕ →R R  be an unknown and bounded nonlinearity given over the 
bounded either finite or infinite sets pX ⊂ R  which are depicted in Figure 1 
for the case 2p = . This function needs to be approximated by the neural net-
work (1) via suitable choice of ω  and W . By virtue of (2) the approximation 
error 

( ) ( )( )T, , ,e W x y y f G Wxω ω= −  

                      (3) 

depends on x for any fixed ( ),Wω 

 . 
Now, suppose that some complex system to be identified is described at each 

nth time instant by the equation 

( ) ( )0,1,2,n ny x nϕ= =                       (4) 

in which nx X∈  and ny ∈R  are its input and output signals, respectively 
available for measurement. 

Based on the infinite sequence of the training examples { }
0

,n n

n
x y

∞

=
 that is  

generated by (4), the outline learning algorithm for updating the weight and bi-
ases in (1) is defined as the standard gradient-descent iteration procedure 

( )1 2 , ; , ,n n n n n n
n e W y xωω ω η ω+ = − ∇





                    (5) 

( )1 2 , ; , ,
i

n n n n n n
i i n ww w e W y xη ω+ = − ∇





                  (6) 

1, , , 0,1, .i q n= =   

In these equations, ( )2 , ; ,eω∇ ⋅ ⋅ ⋅ ⋅


 and ( )2 , ; ,
iw e∇ ⋅ ⋅ ⋅ ⋅


 denote the current gra-
dients of the error function ( )2 , ; ,e W y xω 

   with respect to ω  and iw , 
 

 
Figure 1. Training sets: (a) X is an infinite set of xs; (b) X is a finite set of xs. 
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respectively, obtained after substituting nω ω=  , nW W=  , ny y= , and nx x=   
into (3), and 0nη >  represents the step size (the learning rate). Note that the 
expressions of ( )2 , ; ,n n n ne W y xω ω∇





   and ( )2 , ; ,
i

n n n n
w e W y xω∇




   may be writ-
ten in detail similar to that in [23] [33]. (Due to space limitation, they are here 
omitted.) 

Introducing the notation 
TT T T T

1 0, , , ,qw w wθ ω =  
  

of the extended weight and bias vector ( )1q pθ +∈R , and considering the Equa-
tions (5) and (6) in conjunction, rewrite the online gradient learning algorithm 
for updating nθ  in a general form (as in [33]) 

( )1 2 ; , ,n n n n n
n e y xθθ θ η θ+ = − ∇                    (7) 

where ( )2 ; ,eθ∇ ⋅ ⋅ ⋅  represents the gradient of ( )2 ; ,n n ne y xθ   with respect to θ  
calculated at the nth time instant. 

Thus, the Equation (7) together with the expression 

( ) NN; ,n n n n ne y x y yθ = −  

in which ny  is given by (4), and 

( )NN ,n n ny xψ θ=  

describe the learning neural network system necessary to identify the nonlinear-
ity (2). For better understanding the performance of this system, its structure is 
depicted in Figure 2, where the notation ( ); ,n n n ne e y xθ=  is used. 

The problem formulated in this paper consists in analyzing asymptotic prop-
erties of the learning neural network system presented above. More certainly, it 
is required to derive conditions under which the learning procedure will be 
convergent meaning the existence of a limit 

lim n

n
θ θ ∞

→∞
=                             (8) 

in some sense [24]. 

3. Preliminaries 

Suppose that there is a multilayer neural network described by 

( )NN , ,y xψ θ≡  

where θ  is some fixed parameter vector. According to [9] [10], the require-
ment 

( ) ( )max ,
x X

x xϕ ψ θ ε
∈

− ≤  

evaluating an accuracy of the approximation of ( )xϕ  by ( ), xψ θ  can be sa-
tisfied for any 0ε >  via suitable choice of θ  and the number of the neurons 
in its layers. On the other hand, the performance index of the neural network 
model with a fixed number of these neurons defining its approximation capabil-
ity might naturally be expressed as follows: 
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Figure 2. Configuration of learning neural network 
system. 

 
( ) ( ) ( )0 max , .

x X
J x xθ ϕ ψ θ

∈
= −                 (9) 

In fact, the desired (optimal) vector *
0θ θ=  will then be specified from (9) as 

the variable θ  minimizing ( )0J θ : 

( ) ( )*
0 arg min max , .

x X
x x

θ
θ ϕ ψ θ

∈
= −                 (10) 

Nevertheless, all researches which employ online learning procedures in sto-
chastic environment “silently” replace ( )0J θ  by 

( ) ( ){ }2 ; , ,xJ E e y xθ θ=   

where ( ){ }2 ; ,xE e y xθ   denotes the expected value of ( )2 ; ,e y xθ  . 
Indeed, the learning algorithm (7) does not minimize (9): namely, it minimiz-

es ( )J θ  (instead of ( )0J θ ) [37]. This observation means that (7) will at best 
yield 

( )* : arg min .J
θ

θ θ=  

but not *
0θ  given by (10) as n →∞ . 

Now, consider a special case when the unknown function (2) can exactly be 
approximated by the neural network ( ), xψ θ   implying 

( ) ( )*, .x x x Xϕ ψ θ≡ ∀ ∈                     (11) 

In this case called in ([8], p. 304) by the ideal case, we have ( )*, 0e xθ ≡  for 
any x from X and, consequently, ( )* 0J θ = . 

If the condition given in identity (11) is satisfied, then the learning rate nη  in 
(7) may be constant: 

const 0;nη η≡ = >  

see ([37], sect. 3.13). 
Note that the property (11) may take place, in particular, when 

( ) ( ){ }1 , , KX x x=   contains certain number cardK X=  of training examples 
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provided that their number does not exceed the dimension of θ . To understand 
this fact, according to (11) write the set of K equations 

( )( ) ( )

( )( ) ( )

1 1,

, K K

x y

x y

ψ θ

ψ θ

=




= 







 

with respect to the unknown θ . They are compatible if ( )2 1K q p≤ + + . Due 
to (2) together with the definition of *θ  it can be concluded that their solution 
is just *θ θ=  yielding ( )* 0J θ =  because in this special case, 

( )( ) ( )*, k kx yψ θ =  for all 1, ,k K=  . 

4. Main Results 

4.1. Some Feature of Multilayer Neural Network 

It turns out that if the activation functions g of the hidden layer are nonlinear, 
then for an arbitrary fixed vector θ ′  there is, at least, one vector θ ′′  such that 
the network outputs for these different vectors are the same even though the 
output activation function f is linear, i.e. if ( )f ζ ζ= : 

( ) ( ), , .x x x Xψ θ ψ θ′ ′′≡ ∀ ∈                    (12) 

The feature (12) gives that in the presence of nonlinear g there exist, at least, 
two different *sθ . For example, let 1, 1p q= =  and 

( ) ( )1
1

1
1 exp

g z
z

=
+ −

 

in which 1 11 1 01z w x w= + , and ( )f ζ ζ=  with ( )1 1 0g zζ ω ω= + . Fix a 
[ ]T11 01 1 0, , ,w wθ ω ω′ ′ ′ ′ ′= . Then [ ]T11 01 1 1 0, , ,w wθ ω ω ω′′ ′ ′ ′ ′ ′= − − − +  will also satisfy (12); 

see [35]. Therefore, the set of *sθ  will be not one-point if g is nonlinear. 

4.2. An Observation 

To study some asymptotic properties of sequence { }nθ  caused by the learning 
algorithm (7) in the non-stochastic case, simulation experiments with the scalar 
nonlinear system (2) having the nonlinearity 

( ) ( )
( )

3.75 0.05exp 7.15
1 0.19exp 7.15

x
x

x
ϕ

+ −
=

+ −
 

were conducted. This nonlinearity can explicitly be approximated by the 
two-layer neural network model described by ( )*, xψ θ   as in Subsection 4.1 
with ( ) [ ]T1 7.15,1.65,3.45,0.3θ ∗ =  and ( ) [ ]T2 7.15, 1.65, 3.45,3.75θ ∗ = − − − . 

Figure 3 illustrates the results of the one simulation experiment with 
0.01η = , where { }nx  was chosen as a non-stochastic sequence. It can be ob-

served that in this example, the variable ( )*
1,2min i n

i θ θ= −  shown in Figure 
3(b) has no limit implying that the learning algorithm (7) may not be conver-
gent: in this case, the limit (8) does not exist, see Figure 3(c). 
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(a) 

 
(b) 

 
(c) 

Figure 3. Behaviour of learning algorithm (7) in non-stochastic case: (a) inputs 

ne ; (b) the variable ( ) ( ){ }* 1 * 2min ,n nθ θ θ θ− − ; (c) current model error 
ne . 

4.3. Sufficient Conditions for the Probabilistic Convergence of 
Learning Procedure 

The following basic assumption concerning { }
0

n

n
x

∞

=
 which is bounded stochas-

tic sequence (since X is bounded) is made: 
(A1) snx  arise randomly in accordance with a probability distribution 
( )P x  if X is finite, and with probability density ( )p x  if X is infinite. 
Within assumption (A1), the expected value (mean) of  
( ) ( )( )22 ; , ,e y x y xθ ψ θ= −   is given by 

( ){ }
( ) ( )

( ) ( )

2

2

2

; , if  is finite set,
; ,

; , d if  is infinite set.
x X

x

X

e y x P x X
E e y x

e y x p x x X

θ
θ

θ
∈


= 


∑

∫







 

To derive the main theoretical result we need Assumption (A1) and the fol-
lowing additional assumptions: 

(A2) the identity (11) holds; 
(A3) the activation functions used in the hidden neurons and output neuron 

are the same ( ) ( )( )f g⋅ = ⋅ , twice continuously differentiable on R  and also 
uniformly bounded on R . 

Further, we introduce a scalar function ( )V θ  playing a role of the Lyapunov 
function [36] with the features: 

(a) ( )V θ  is nonnegative, i.e., 
( ) 0;V θ ≥  (13) 

(b) ( )V θ  is the Lipschitz function in the sense that 
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( ) ( )V V Lθ θ θ θ′ ′′ ′ ′′∇ −∇ ≤ −                 (14) 

for any ,θ θ′ ′′  from ( )1q p+R , where ( )V θ∇  denotes its gradient, and 0L >  
represents the Lipschitz constant. 

Now, the global stochastic convergence analysis of the gradient learning algo-
rithm (7) is based on employing the fundamental convergence conditions estab-
lished in the following Key Technical Lemma which is the slightly reformulated 
Theorem 3 of [36]. 

Key Technical Lemma. Let ( )V θ  be a function satisfying (13) and (14). 
Define the scalar variable 

( ) ( ) ( ){ }T ,H V E Q xθ θθ θ θ= ∇ ∇                   (16) 

with some ( ), 0Q x θ ≥ , and denote  

( ) ( ) ( ){ }T
: , .n n

nH V E Q xθ θθ θ θ= ∇ ∇  

Suppose: 
1) ( ) ( )1 , 0,n

n n nH Vθ θ −≥ Θ Θ >  

2) ( ){ } ( )2
, , 0.n n

n nE Q x Vθ θ τ θ τ∇ ≤ ≥   

Introduce the additional variable 

( )2 .n n n n nLν η η τ= Θ −                       (17) 

Then the algorithm (7) yields 
lim 0nn

V
→∞

=  a.s., 
where ( ): n

nV V θ=  provided that { }0E θ < ∞  and 

0 1,nν≤ ≤                             (18) 

0
.n

n
v

∞

=

= ∞∑                             (19) 

Related results followed from the Theorem 3’ of [36] are: 
Corollary. Under the conditions of the Key Technical Lemma, if 

constnΘ ≡ Θ =  and constnτ τ≡ = , and constnη η≡ = , then 0n nV →∞→  

with probability 1 provided that 

( ) ( )0 2 0Lη ε τ ε< ≤ Θ − < < Θ                   (20) 

is satisfied.  
Next, we are able to present the convergence result summarized in the theo-

rem below. 
Theorem. Suppose Assumption (A2) holds. Then the gradient algorithm (7) 

with a constant learning rate, nη η≡ , will converge with probability 1 (in the  
sense that 0n nV →∞→  a.s.) and 

( )lim ; , 0n n n

n
e y xθ

→∞
=                    a.s. (21) 

for any initial 0θ  chosen randomly so that ( ){ }0,E Q x θ < ∞  if η  satisfies  

the conditions (20) with Θ  and τ  determined by 
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( ){ }
( ){ }

2
,

: inf 0,
,

E Q x

E Q x
θ

θ

θ

θ

∇
Θ = >                      (22) 

( ){ }
( ){ }

2
,

: sup .
,

E Q x

E Q x
θ

θ

θ
τ

θ

∇
= < ∞                      (23) 

Proof. Set ( ) ( ){ },V E Q xθ θ= . Then condition (13) and (14) can be shown 
to be valid. This indicates that this function may be taken as the Lyapunov func-
tion. By virtue of (16) such a choice of ( )V θ  gives ( ) ( ){ } 2

,H E Q xθθ θ= ∇ . 
Putting nΘ ≡ Θ  and nτ τ≡  with Θ  and τ  determined by (22) and (23), 
respectively, we can conclude that the conditions 1), 2) of the Key Technical 
Lemma are satisfied. Applying its Corollary it proves that lim 0n nV→∞ =  with 
probability 1. 

Due to the fact that ( ) ( ){ }2 ; ,xV E e y xθ θ=   together with Assumption (A2), 
result (21) follows.  

4.4. Simulations and a Discussion 

To demonstrate theoretical result given in Subsection 4.3, several simulations 
were conducted. First, we dealt with the same neural network and the same 
training samples as in ([33], p. 1052). Namely, they were chosen as follows: 

( ) [ ] ( )T1 10,0 , 1;x y= =  

( ) [ ] ( )T2 20,1 , 0;x y= =  

( ) [ ] ( )T3 31,0 , 0;x y= =  

( ) [ ] ( )T4 41,1 , 1.x y= =  

The two numerical examples with different initial 0θ  were considered. In 
Example 1 we set 0

11 0.95w = , 0
12 0.084w = − , 0

21 0.079w = , 0
22 0.079w = − , 

0
01 0.089w = − , 0

02 0.075w = , 0
1 0.357ω = , 0

2 0.357ω = − , 0
0 0.354ω = . In Example 

2 we set 0
11 0.090w = − , 0

12 0.225w = , 0
21 0.138w = − , 0

22 0.139w = , 0
01 0.222w = , 

0
02 0.084w = − , 0

1 0.356ω = − , 0
2 0.357ω = , 0

0 0.353ω = . 
Contrary to [33] the learning rate was chosen as 0.01η =  in order to imple-

ment the algorithms (5), (6) with no penalty term. 
Results of two simulation experiments whose durations were 10000 iteration 

steps are presented in Figure 4 and Figure 5 in which the components of nθ  
and ( )nJ θ  are shown. 

Further, another simulation experiments were also conducted. In contrast 
with previous experiments, they dealt with an infinite training sets X Namely, 
the two simulations with the same nonlinear function as in Subsection 4.2 were 
first conducted, provided that X is the infinite bounded set given by [ ]2,2X ∈ − . 
However, { }nx  was now chosen as the stochastic sequence. Namely, it was 
generated as a pseudorandom i.i.d. sequence. 

Two numerical examples were considered. In Example 3, the initial values of 
neural network weights and biases were taken as follows: 0

1 0.529w = ,  
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Figure 4. Behavior of gradient learning algorithm (7) in Example 1. 

 

 
Figure 5. Behavior of gradient learning algorithm (2) in Example 2. 
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0
2 0.5012w = − , 0

1 0.9168ω = − , 0
2 1.0409ω = . In Example 4 we set 

0
1 0.3756w = − , 0

2 0.572w = − , 0
1 0.9798ω = − , 0

2 1.1436ω = . Figure 6 and Figure 
7 demonstrate results of the two simulation experiments conducted with the ini-
tial estimates 0θ  given above. In both experiments, nη  was also chosen as 

0.01nη η≡ = . 
Next, another nonlinearity 

( )
( ) ( )1 2

1
1 exp 1

x
a x a x

ϕ =
+ − − −  

 

with ( ) ( ) 1
1 1 exp 10 5a x x

−
= + − −    and ( ) ( ) 1

2 1 exp 10 5a x x
−

= + − +    to be 
exactly approximated by a suitable neural network was chosen as in [11, p. 12-4]. 
The following initial estimates were taken: 0

1 2.8w = , 0
2 5.6w = − , 0

3 2.8w = − , 
0
4 5.6w = − , 0

1 5.33ω = , 0
2 1.71ω = , 0

3 3.52ω = −  (Example 5), and 0
1 0.27w = , 

0
2 0.19w = , 0

3 3.09w = − , 0
4 3.96w = , 0

1 1.64ω = , 0
2 0.72ω = , 0

3 2.21ω = −  (Ex-
ample 6). 

Results of the two simulation experiments conducted with the initial estimates 
0θ  given above are depicted in Figure 8 and Figure 9. 
From Figures 4-9 we can see that the learning processes converge and the 

performance index ( )nJ θ  tends to zero while the penalty term is absent. It can 
be observed that if the initial vectors 0sθ  are different then the sequences 
{ }nθ  may converge to different final sθ ∞ . 

The simulation experiments show that the penalty term is not necessary, in 
principle, to achieve the convergence of the online gradient learning procedure 
in the three-layer neural networks if certain conditions given by Assumption 
(A1)-(A3) are satisfied. This fact supports our theoretical results. 

 

 
Figure 6. Behavior of gradient learning algorithm (7) 
in Example 3. 
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Figure 7. Behavior of gradient learning algorithm (7) 
in Example 4. 

 

 
Figure 8. Behavior of gradient learning algorithm (7) 
in Example 5. 
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Figure 9. Behavior of gradient learning algorithm (7) 
in Example 6. 

5. Conclusion 

In this paper, some important features of multilayer neural networks which are 
utilized as nonlinearly parameterized models of unknown nonlinear systems to 
be identified have been derived. A special case where the nonlinearity can exactly 
be approximated by a three-layer neural network has been studied. Contrary to 
previous author’s papers we dealt with the neural network having a nonlinear 
activation function for its output layer. It was shown that if the activation func-
tion of the hidden layer is nonlinear, then, for any input variables, there are, at 
least, two different network parameter vectors under which the network outputs 
will be the same even though the output activation function is linear. This fea-
ture gives that the standard gradient online training algorithm with a constant 
learning rate may not be convergent if the training sequence is non-stochastic. 
Nevertheless, provided that this sequence is stochastic, it has theoretically been 
established that, under certain conditions, such algorithm will converge with 
probability one. However, ultimate values of network parameters may be differ-
ent. These facts were confirmed by simulation experiments. 
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