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Abstract 
Objective: Epstein-Barr virus (EBV), a herpes virus which persists in memory 
B cells in the peripheral blood for the lifetime of a person, is accused to be as-
sociated with several malignancies. Hodgkin’s lymphoma (HL) has long been 
suspected to have an Epstein-Barr virus infection as a causal agent. Some re-
cent studies identified an EBV latent infection to a high degree in Hodgkin’s 
lymphoma. However, despite intensive study, the role of Epstein-Barr virus 
infection in Hodgkin lymphoma remains enigmatic. Methods: To explore the 
cause-effect relationship between EBV and HL and so to understand the role 
of EBV in HL etiology more clearly, a systematic review and re-analysis of 
studies published is performed. The method of the conditio per quam rela-
tionship was used to proof the hypothesis if Epstein-Barr virus infection 
(DNA) in human lymph nodes is present then Hodgkin lymphoma is present 
too. The mathematical formula of the causal relationship k was used to proof 
the hypothesis, whether there is a cause effect relationship between an Eps-
tein-Barr virus infection (EBV DNA) and Hodgkin lymphoma. Significance 
was indicated by a p-value of less than 0.05. Result: The data analyzed support 
the Null-hypotheses that if Epstein-Barr virus infection (EBV DNA) is present 
in human lymph nodes then Hodgkin lymphoma is present too. In the same 
respect, the studies analyzed provide highly significant evidence that Eps-
tein-Barr virus the cause of Hodgkin lymphoma. Conclusion: The findings of 
this study suggest that Epstein-Barr virus is the cause of Hodgkin’s lymphoma 
besides of the complexity of Hodgkin’s disease.  
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1. Introduction 

In 1964, Epstein [1], Barr, and Achong discovered viral particles in lymphoblasts 
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isolated from a patient with Burkitt’s lymphoma, meanwhile known as Eps-
tein-Bar virus. Historically, EBV was the first human cancer virus to be de-
scribed. This fundamental discovery paved the way for further investigations in-
to the oncogenic potential of viruses. Epstein-Barr virus (EBV), also called hu-
man herpes virus 4 (HHV-4), is a ubiquitous double-stranded DNA gamma-1 
human herpes virus which infects more than 90% of the world population. EBV 
can be transmitted from person to person in several ways. After the primary in-
fection, EBV persists for life [2] in memory B cells in the peripheral blood of 
human host while well controlled by host’s immune system. Primarily resting 
memory B cells in peripheral blood are the infected cells which provide a per-
manent reservoir for the virus. Similar to other herpes viruses, an EBV reactiva-
tion [3] reflected by aberrant IgG, IgM, IgA antibody responses can occur. The 
spectrum of diseases which are associated with Epstein-Barr virus includes Bur-
kitt’s [1] lymphoma (BL), nasopharyngeal [4] carcinoma, infectious mononucle-
osis [5] (IM), Hodgkin’s [6] disease and many other too. Hodgkin lymphoma 
(HL) itself, named after the English physician Thomas Hodgkin [7], who first 
described this malignancy in 1832, is characterized by the presence of a minority 
of malignant Hodgkin/Reed-Sternberg (HRS) cells and the disruption of normal 
lymph node [8] architecture. The Sternberg-Reed cells [9] [10] which are pa-
thognomonic for Hodgkin lymphoma (HL) were described over a century ago 
and origin from B lymphocytes [11]. Several environmental factors have been 
discussed in the etiology of Hodgkin’s disease [12]. Among them viruses like 
herpes simplex, cytomegalovirus [13] or EBV [14]. The detection of raised anti-
body titers to EBV [15] antigens in HL patients compared with other lymphoma 
patients provided the first evidence that EBV might be involved in the pathoge-
nesis of HL. Finally, Weiss et al. [16] examined for the presence of Epstein-Barr 
virus (EBV) in tissue specimens of Hodgkin’s disease and were able to detect 
EBV DNA in Hodgkin’s disease. 

2. Material and Methods 

Hodgkin lymphoma (HL) is a deadly disease too. Identifying the cause of Hodg-
kin’s lymphoma has the potential to spare a lot of lives. 

2.1. Study of Veronique Dinad et al. (2007) 

Dinand et al. [17] conducted a case control study to investigate the prevalence 
and significance of Epstein-Barr virus in Hodgkin’s and Reed-Sternberg cells in 
children. EBV detection was performed by immunohistochemistry (IHC) and in 
situ hybridization (ISH). Dinand et al. [17] detected EBV by ISH in 126/135 
(93.3%) out of 135 cases, and in none 0/25 (0%) of the control lymph node ex-
amined. The data as obtained 2007 by Dinand et al. are presented by the 2 by 
2-table (Table 1). 

Novel and modern laboratory techniques [18] such as Southern Blot hybridi-
zation, Immunohistochemistry (IHC), In-situ hybridization (ISH), Fluorescent  
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Table 1. Epstein-Barr virus (EBV) and Hodgkin’s lymphoma according to Dinand et al. 
(2007). 

  
Hodgkin’s lymphoma 

Total 
yes no 

EBV DNA 
(ISH) 

yes 126 0 126 

no 9 25 34 

 Total 135 25 160 

 
ISH (FISH), RNA in situ hybridization (RNA ISH), Polymerase chain reaction 
(PCR), Nested PCR, Quantitative polymerase chain reaction (QPCR) have fueled 
us to change our understanding of the pathogenesis of cancer development. 
Immunohistochemistry (IHC), introduced by Coons [19] in 1941, is useful in 
distinguishing between benign and malignant cell populations. Still, a 
cross-reactivity with cellular proteins is possible which has impact on the specif-
ity of this method. In situ hybridization (ISH) is a fundamental technique, de-
scribed in the year 1969 by Joseph G. Gall [20] is used commonly for research 
purposes especially to distinguish virus in tumor cells from virus in non-tumor 
cells. Despite of numerous advantages, the use of the ISH technique is associated 
with certain and severe limitations. The skill of the personnel involved in per-
forming and interpreting ISH has influence on the reproducibility and accuracy 
of this procedure. In situ hybridization (ISH) even if regarded as superior to 
PCR depend on the target used which has impact on the sensitivity and specific-
ity of this methods. Even the In situ hybridization (ISH) can produce false posi-
tive or false negative results. 

2.2. Study of Veronique Dinad et al. (2015) 

Veronique Dinand et al. [21] conducted a study to measure circulating EBV 
DNA in 30 children with Hodgkin lymphoma (HL) and in 70 controls, with 
prospective follow-up of the Hodgkin lymphoma cohort (2007-2012). Over the 
same time period, a cohort study monitored the HL cohort’s response to therapy, 
EBV load and long-term remission status. Pre-treatment quantitative EBV-DNA 
PCR was positive in 19 out of 30 children with Hodgkin lymphoma cases while 
all 70 controls were tested EBV quantitative PCR negative. The highest EBV load 
was 430,000 copies/mL. Out of 19 quantitative EBV-DNA PCR was positive 
children, one died of advanced disease before starting chemotherapy. The data 
as obtained 2015 by Dinand et al. are presented by the 2 by 2-table (Table 2). 

2.3. Statistical Analysis 

All statistical analyses were performed with Microsoft Excel version 
14.0.7166.5000 (32-Bit) software (Microsoft GmbH, Munich, Germany).  

2.3.1. Bernoulli Trials 
Among some discrete distributions like the hypergeometric distribution, the  
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Table 2. Epstein-Barr virus (EBV) and Hodgkin’s lymphoma according to Dinand et al. 
(2015). 

  
Hodgkin’s lymphoma 

Total 
yes no 

EBV DNA 
yes 19 0 19 

no 11 70 81 

 Total 30 70 100 

 
Poisson distribution et cetera the binomial distribution is of special interest. 
Sometimes, the binomial distribution is called the Bernoulli distribution in hon-
or of the Swiss mathematician Jakob Bernoulli (1654 - 1705), who derived the 
same. Bernoulli trials are an essential part of the Bernoulli distribution. Thus far, 
let us assume two fair coins named as 0Wt and as RUt. In our model, heads of 
such a coin are considered as success T (i.e. true) and labeled as +1 while tails 
may be considered as failure F (i.e. false) and are labeled as +0. Such a coin is 
called a Bernoulli-Boole coin. The probability of success of RUt at one single 
Bernoulli trial t is denoted as 

( ) ( )1R t R tp U p U= + ≡                        (1) 

The probability of failure of RUt at one single Bernoulli trial t is denoted as 

( ) ( ) ( )0 1R t R t R tp U p U p U= + ≡ ≡ −                  (2) 

Furthermore, no matter how many times an experiment is repeated, let the 
probability of a head or the tail remain the same. The trials are independent 
which implies that no matter how many times an experiment is repeated, the 
probability of a single event at a single trial remain the same. Repeated indepen-
dent trials which are determined by the characteristic that there are always only 
two possible outcomes, either +1 or +0 and that the probability of an event 
(outcome) remain the same at each single trial for all trials are called Bernoulli 
trials. The definition of Bernoulli trials provides a theoretical model which is of 
further use. However, in many practical applications, we may by confronted by 
circumstances which may be considered as approximately satisfying Bernoulli 
trials. Thus far, let us perform an experiment of tossing two fair coins simulta-
neously. Suppose two fair coins are tossed twice. Then there are 22 = 4 possible 
outcomes (the sample space), which may be shown as 

[ ] [ ]( ) [ ] [ ]( )
[ ]( ) [ ]( )

0 0

0 0

1 , 1 , 1 , 0 ,

0, 1 , 0, 0
R t t R t t

R t t R t t

U W U W

U W U W

= + = + = + = +

= + = + = + = +
 

This may also be shown as a 2-dimensional sample space in the form of a con-
tingency table (Table 3). 

In the following, the contingency table is defined more precisely (Table 4). 
In general it is ( ) 0 ta c W+ = , ( ) R ta b U+ = , ( ) 0 tc d W+ = , ( ) R tb d U+ =  

and R ta b c d N W+ + + = = . Equally, it is 0 0t t R t R t R tW W U U W N+ = + = = . 
Thus far, if one fair coin is tossed n times, we have n repeated Bernoulli trials  
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Table 3. The sample space of a contingency table. 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes =+1 ([RUt = +1], [0Wt = +1]) ([RUt = +1], [0Wt = +0]) RUt 

No = +0 ([RUt = +0], [0Wt = +1]) ([RUt = +0], [0Wt = +0]) RUt 

 Total 0Wt 0Wt RWt 

 
Table 4. The sample space of a contingency table. 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes = +1 a b RUt 

No = +0 c d RUt 

 Total 0Wt 0Wt N = RWt 

 
and an n dimensional sample space with 2n sample points is generated. In gener-
al, when given n Bernoulli trials with k successes, the probability to obtain ex-
actly k successes in n Bernoulli trials is given by  

( ) ( ) ( )( )1 1 1
n kk

R t R t

n
p k p U p U

k
− 

= × = + × − = + 
 

            (3) 

The random variable k is sometimes called a binomial variable. The probabil-
ity to obtain k events or more (at least k events) in n trials is calculated as 

( ) ( ) ( )

( ) ( )( )1 1 1
k n n kk

R t R t
k X

p k X p k X p k X

n
p U p U

k

= −

=

≥ = = + >

  
= × = + × − = +  

  
∑

       (4) 

The probability to obtain less than k events in n Bernoulli trials is calculated 
as 

( ) ( )

( ) ( )( )

1

1 1 1 1
k n n kk

R t R t
k X

p k X p k X

n
p U p U

k

= −

=

< = − ≥

  
= − × = + × − = +  

  
∑

     (5) 

2.3.2. Sufficient Condition (Conditio per Quam) 
The formula of the conditio per quam [22]-[35] relationship was derived as 

( )EBV DNA Hodgkin s lymphoma a c dp
N

+ +
→ ≡’             (6) 

and used to proof the hypothesis: if presence of EBV infection (EBV DNA) then 
presence of Hodgkin’s lymphoma. 

2.3.3. Necessary Condition (Conditio Sine Qua Non) 
The formula of the conditio per quam [22]-[35] relationship was derived as 

( )EBV DNA Hodgkin s lymphoma a b dp
N

+ +
← ≡’             (7) 
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and used to proof the hypothesis: without presence of EBV infection (EBV DNA) 
no presence of Hodgkin’s lymphoma. 

2.3.4. Necessary and Sufficient Condition 
The necessary and sufficient condition relationship was defined [22]-[35] as 

( )EBV DNA Hodgkin s lymphoma a dp
N
+

←→ ≡’             (8) 

Scholium. 
Historically, the notion sufficient condition is known since thousands of years. 

Many authors testified original contributions of the notion material implication 
only for Diodorus Cronus. Still, Philo the Logician (~300 BC), a member of a 
group of early Hellenistic philosophers (the Dialectical school), is the main 
forerunner of the notion material implication and has made some groundbreak-
ing contributions [36] to the basics of this relationship. As it turns out, it is very 
hard to think of the “conditio per quam” relationship without considering the 
historical background of this concept. Remarkable as it is, Philo’s concept of the 
material implications came very close to that of modern concept material impli-
cation. In propositional logic, a conditional is generally symbolized as “p → q” or 
in spoken language “if p then q”. Both q and p are statements, with q the conse-
quent and p the antecedent. Many times, the logical relation between the conse-
quent and the antecedent is called a material implication. In general, a condi-
tional “if p then q” is false only if p is true and q is false otherwise, in the three 
other possible combinations, the conditional is always true. In other words, to 
say that p is a sufficient condition for q is to say that the presence of p guarantees 
the presence of q. In particular, it is impossible to have p without q. If p is 
present, then q must be present too. To show that p is not sufficient for q, we 
come up with cases where p is present but q is not. It is well-known that the no-
tion of a necessary condition can be used in defining what a sufficient condition 
is (and vice versa). In general, p is a necessary condition for q if it is impossible 
to have q without p. In fact, the absence of p guarantees the absence of q. Exam-
ple (Condition: Our earth), without oxygen no fire. Table 5 may demonstrate 
this relationship. 

In contrast to such a point of view, the opposite point of view is correct too. 
Thus far, there is a straightforward way to give a precise and comprehensive ac-
count of the meaning of the term necessary or sufficient condition itself. In other 
words, if fire is present then oxygen is present too. Table 6 may demonstrate 
this relationship. 
 
Table 5. Without oxygen no fire (on our planet earth). 

  
Fire 

Total 
Yes = +1 No = +0 

Oxygen 
Yes = +1 a b RUt 

No = +0 0 d RUt 

 Total 0Wt 0Wt N = RWt 
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Table 6. If fire is present then oxygen is present too (on our planet earth). 

  
Oxygen 

Total 
Yes = +1 No = +0 

Fire 
Yes = +1 a 0 RUt 

No = +0 c d RUt 

 Total 0Wt 0Wt N = RWt 

 
Especially, necessary and sufficient conditions are converses of each other. 

Still, the fire is not the cause of oxygen and vice versa. Oxygen is note the cause 
of fire. In this example before, oxygen is a necessary condition, a conditio sine 
qua non, of fire. A necessary condition is sometimes also called “an essential 
condition” or a conditio sine qua non. In propositional logic, a necessary condi-
tion, a condition sine qua non, is generally symbolized as “p ← q” or in spoken 
language “without p no q”. Both q and p are statements, with p the antecedent 
and q the consequent. To show that p is not a necessary condition for q, it is ne-
cessary to find an event or circumstances where q is present (i.e. an illness) but p 
(i.e. a risk factor) is not. On any view, (classical) logic has as one of its goals to 
characterize the most basic, the most simple and the most general laws of objec-
tive reality. Especially, in classical logic, the notions of necessary conditions, of 
sufficient conditions of necessary and sufficient conditions et cetera are defined 
very precisely for a single event, for a single Bernoulli trial t. In point of fact, no 
matter how many times an experiment is repeated, the relationship of the condi-
tio sine qua or of the conditio per quam which is defined for every single event 
will remain the same. Under conditions of independent trials this implies that no 
matter how many times an experiment is repeated, the probability of the condi-
tio sine qua or of the conditio per quam of a single event at a single trial t remain 
the same which transfers the relationship of the conditio sine qua or of the con-
ditio per quam et cetera into the sphere of (Bio-) statistics. Consequently, (Bio) 
statistics generalizes the notions of a sufficient or of a necessary condition from 
one single Bernoulli trial to N Bernoulli trials. However, in many practical ap-
plications, we may by confronted by circumstances which may be considered as 
approximately satisfying the notions of a sufficient or of a necessary condition. 
Thus far, under these circumstances, we will need to perform some tests to in-
vestigate, can we rely on our investigation. 

2.3.5. The Central Limit Theorem 
Many times, for some reason or other it is not possible to study exhaustively a 
whole population. Still, sometimes it is possible to draw a sample from such a 
population which itself can be studied in detail and used to convince us about 
the properties of the population. Roughly speaking, statistical inference derived 
from a randomly selected subset of a population (a sample) can lead to errone-
ous results. The question raised is how to deal with the uncertainty inherent in 
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such results? The concept of confidence intervals, closely related to statistical 
significance testing, was formulated to provide an answer to this problem.  

Confidence intervals, introduced to statistics by Jerzy Neyman in a paper pub-
lished in 1937 [37], specifies a range within a parameter, i.e. the population 
proportion π, with a certain probability, contain the desired parameter value. 
Most commonly, the 95% confidence interval is used. Interpreting a confidence 
interval involves a couple of important but subtle issues. In general, a 95% con-
fidence interval for the value of a random number means that there is a 95% 
probability that the “true” value of the value of a random number is within the 
interval. Confidence intervals for proportions or a population mean of random 
variables which are not normally distributed in the population can be con-
structed while relying on the central limit theorem as long as the sample sizes 
and counts are big enough (i.e. a sample size of n = 30 and more). A formula, 
justified by the central limit theorem, is known as 

( )2
Alpha 2

1 1Crit Calc Calc Calcp p z p p
N

  
= ± × × × −      

          (9) 

where pCalc is the sample proportion of successes in a Bernoulli trial process with 
N trials yielding X successes and N-X failures and z is i.e. the 1 − (Alpha/2) 
quantile of a standard normal distribution corresponding to the significance lev-
el alpha. For example, for a 95% confidence level alpha = 0.05 and z is z = 1.96. A 
very common technique for calculating binomial confidence intervals was pub-
lished by Clopper-Pearson [38]. Agresti-Coull proposed another different me-
thod [39] for calculating binomial confidence intervals. A faster and an alterna-
tive way to determine the lower and upper “exact” confidence interval is justified 
by the F distribution [40].  

2.3.6. The Rule of Three 
Furthermore, an approximate and conservative (one sided) confidence interval 
was developed by Louis [41], Hanley et al. [42] and Jovanovic [43] known as the 
rule of three. Briefly sketched, the rule of three can be derived from the binomial 
model. Let πU denote the upper limit of the one-sided 100 × (1 − α)% confidence 
interval for the unknown proportion when in N independent trials no events 
occur [43]. Then πU is the value such that 

( )ln 3
U n n

α
π

−   = ≈   
  

                  (10) 

assuming that α = 0.05. In other words, an one-sided approximate upper 95% 
confidence bound for the true binomial population proportion π, the rate of oc-
currences in the population, based on a sample of size n where no successes are 
observed (p = 0) is 3/n [43] or given approximately by [0 < π < (3/n)]. The rule 
of three is a useful tool especially in the analysis of medical studies. Table 7 will 
illustrate this relationship. 

Under conditions where a certain event did not occur [41] in a sample with 
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n subjects (i.e. p = 0) the interval from 0 to (−ln(α)/n) is called a 100 × (1 − α)%  
confidence interval for the binomial parameter for the rate of occurrences in the 
population.  

Another special case of the binomial distribution is based on a sample of size 
n where only successes are observed (p = 1). Accordingly, the lower limit of a 
one-sided 100 × (1 − α)% confidence interval for a binomial probability πL, the 
rate of occurrences in the population, based on a sample of size n where only 
successes are observed is given approximately by [(1− (−ln(α)/n)) < π < +1] or 
(assuming α = 0.05) 

( )ln 31 1L n n
α

π
−   = − ≈ −   

  
                   (11) 

Table 8 may illustrate this relationship. 
To construct a two-sided 100 × (1 − (α))% interval according to the rule of 

three, it is necessary to take a one-sided 100 × (1 − (α/2))% confidence interval. 
In this study, we will use the rule of three [44] too, to calculate the confidence 
interval for the value of a random number. 
 
Table 7. The one-sided approximate upper 100 × (1 − α)% confidence bound where no 
successes (p = 0) are observed. 

0         1 

 p = 0         

          

          

          

  πU      

          

0  −ln(α)/n     n 

          

 
Table 8. The one-sided approximate upper 100 × (1 − α)% confidence bound where only 
successes are observed. 

0         +1 

        p = 1  

          

          

          

     πL   

          

0     1 − (−ln(α)/n)  n 
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2.3.7. Fisher’s Exact Test 
A test statistics of independent and more or less normally distributed data which 
follow a chi-squared distribution is valid as with many statistical tests due to the 
central limit theorem. Especially, with large samples, a chi-squared distribution 
can be used. A sample is considered as large when the sample size n is n = 30 or 
more. With a small sample (n < 30), the central limit theorem does not apply 
and erroneous results could potentially be obtained from the few observations if 
the same is applied. Thus far, when the number of observations obtained from a 
population is too small, a more appropriate test for of analysis of categorical data 
i.e. contingency tables is R. A. Fisher’s exact test [45]. Fisher’s exact test is valid 
for all sample sizes and calculates the significance of the p-value (i.e. the devia-
tion from a null hypothesis) exactly even if in practice it is employed when sam-
ple size is small. Fisher’s exact test is called exact because the same uses the exact 
hypergeometric distribution to compute the p-value rather than the approximate 
chi-square distribution. Still, computations involved in Fisher’s exact test can be 
time consuming to calculate by hand.  

2.3.8. Hypergeometric Distribution 
The hypergeometric distribution, illustrated in a table (Table 9), is a discrete 
probability distribution which describes the probability of a events/successes in a 
sample with the size 0Wt, without replacement, from a finite population of the 
size N which contains exactly RUt objects with a certain feature while each event 
is either a success or a failure. The formula for the hypergeometric distribution, 
a discrete probability distribution, is 

( ) 0

0

R tR t

t

t

N UU
W aa

p a
N
W

−  
×   −   =
 
 
 

                   (12) 

The hypergeometric distribution has a wide range of applications. The 
Hypergeometric distribution can be approximated by a Binomial distribution. 
The elements of the population being sampled are classified into one of two 
mutually exclusive categories: either conditio sine qua non or no conditio sine 
qua non relationship. We are sampling without replacement from a finite popu-
lation. How probable is it to draw specific c events/successes out of 0Wt total 
draws from an aforementioned population of the size N? The hypergeometric 
distribution, as shown in a table (Table 10) is of use to calculate how probable is 
it to obtain c = (0Wt − a) events out of N events.  
 
Table 9. The hypergeometric distribution. 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes = +1 a b =(RUt – a) RUt 

No = +0 c = (0Wt − a) N − RUt − 0Wt + a N − RUt 

 Total 0Wt N − 0Wt N 
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Table 10. The hypergeometric distribution and conditio sine qua non. 

  
Conditioned 

Total 
Yes = +1 No = +0 

No Condition 
Yes =+1 c = (0Wt − a) N − RUt − 0Wt + a N − RUt 

No = +0 a b = (RUt − a) RUt 

 Total 0Wt N - 0Wt N 

2.3.9. Statistical Hypothesis Testing 
A statistical hypothesis test is a method to extract some inferences from data. A 
hypothesis is compared as an alternative hypothesis. Under which conditions 
does the outcomes of a study lead to a rejection of the null hypothesis for a 
pre-specified level of significance. According to the rules of a proof by contra-
diction, a null hypothesis (H0) is a statement which one seeks to disproof. The 
related specific alternative hypothesis (HA) is opposed to the null hypothesis 
such that if null hypothesis (H0) is true, the alternative hypothesis (HA) is false 
and vice versa. If the alternative hypothesis (HA) is true then the null hypothesis 
(H0) is false. In principle, a null hypothesis that is true can be rejected (type I er-
ror) which lead us to falsely infer the existence of something which is not given. 
The significance level, also denoted as α (alpha) is the probability of rejecting a 
null hypothesis when the same is true. A type II error is given, if we falsely infer 
the absence of something which in reality is given. A null hypothesis can be false 
but a statistical test may fail to reject such a false null hypothesis. The probability 
of accepting a null hypothesis when the same is false (type II error), is denoted 
by the Greek letter β (beta) and related to the power of a test (which equals 1 − 
β). The power of a test indicates the probability by which the test correctly re-
jects the null hypothesis (H0) when a specific alternative hypothesis (HA) is true. 
Most investigator assess the power of a tests using 1 − β = 0.80 as a standard for 
adequacy. A tabularized relation between truth/falseness of the null hypothesis 
and outcomes of the test are shown precisely within a table (Table 11).  

In general, it is 1 − α + α = 1 or (1 − α − β) + α = 1− β. Figure 1 may illustrate 
these relationships. 

2.3.10. The Mathematical Formula of the Causal Relationship k 
The mathematical formula of the causal relationship k [22]-[35] defined as  

( )
( ) ( )( )
( ) ( )

0
0

2
0 0

, R t t
R t t

R t R t t

N a U W
k U W

U U W W

× − ×
≡

× × ×
             (13) 

and the chi-square distribution [46] were applied to determine the significance 
of causal relationship between a EBV and HL. A one-tailed test makes it much 
easier to reject a null hypothesis (no causal relationship) while a two-tailed test 
makes it more difficult to reject a null hypothesis and is more conservative on 
this account. For this reason, in causal relationship testing, a two-tailed test is 
preferred. In general, a p value of less than 0.05 is considered as significant. In 
this context, what is the necessary connection between a cause and effect? What  
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Figure 1. The relationship between error types. 

 
Table 11. Table of error types. 

  
Null Hypothesis (H0) is 

Total 
True False 

Null Hypothesis 
(H0) 

Accepted 1 − α β 1 −α + β 

Rejected α 1 − β 1 +α − β 

 Total 1 1 2 

 
ties a cause and its own effect together? Is there a necessary connection between 
a cause and effect at all? Theoretically, it is neither justified nor necessary to re-
duce causation as such to an act of observation or measurement. Sill, 
case-control studies, experiments, observations et cetera can help us to recognize 
cause effect relationships. In this context it is necessary to stress out that every 
single event (effect) has its own cause, which is the logical foundation of the 
mathematical formula of the causal relationship k. It is therefore entirely clear 
that this is the fundamental difference to Pearson’s methodological approach. 
Obviously, although under some certain specified circumstances Pearson’s 
product-moment correlation coefficient [47] or Pearson’s Phi [48] coefficient 
can yield the same numerical result as the mathematical formula of the causal 
relationship k, there is nothing truly exciting about such a coincidence. Never-
theless, when conducting experiments and analyzing data, views in which corre-
lation and causation are brought very close together are incorrect and worthless. 
The mathematical formula of the causal relationship k is neither identical nor 
can the same mathematical formula be reduced to Pearson’s product-moment 
correlation coefficient [47] or to Pearson’s Phi [48] Coefficient (Mean Square 
Contingency Coefficient). In contrast to Pearson’s product-moment correlation 
coefficient and to Pearson’s Phi Coefficient (Mean Square Contingency Coeffi-
cient) the mathematical formula of the causal relationship k is defined and valid 
at every single Bernoulli trial t or at every single event. Sir Austin Bradford Hill 
(1897-1991), an English epidemiologist, proposed 1965 a set of nine criteria 
(Strength, Consistency, Specificity, Temporality, Biological gradient, Plausibility, 
Coherence, Experiment, Analogy) [49] to establish epidemiologic evidence of a 
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causal relationship (Bradford Hill criteria). In point of fact, Bredford’s “fourth 
characteristic is the temporal relationship of the association” [49] and in last 
consequence the “post hoc ergo propter hoc” logical fallacy. Causation cannot be 
derived from the “post hoc ergo propter hoc” [35] logical fallacy. Consequently, 
the Mathematical Formula of the causal relationship k can neither be reduced to 
the Bradford Hill criteria nor is the same just a mathematization of Bradford Hill 
criteria. 

2.3.11. The Chi Square Distribution 
The chi-squared distribution [46] is a widely known distribution and used in 
hypothesis testing, in inferential statistics or in construction of confidence in-
tervals. The critical values of the chi square distribution are visualized by Table 
12. 

2.3.12. The X2 Goodness of Fit Test 
A chi-square goodness of fit test can be applied to determine whether sample 
data are consistent with a hypothesized distribution. The chi-square goodness of 
fit test is appropriate when some conditions are met. A view of these conditions 
are simple random sampling, categorical variables and an expected value of the 
number of sample observations which is at least 5. The null hypothesis (H0) and 
its own alternative hypothesis (HA) are stated in such a way that they are mu-
tually exclusive. In point of fact, if the null hypothesis (H0) is true, the other, al-
ternative hypothesis (HA), must be false; and vice versa. For a chi-square good-
ness of fit test, the hypotheses can take the following form. 
 
Table 12. The critical values of the chi square distribution (degrees of freedom: 1). 

 p-Value One sided X2 Two sided X2 

The chi square 
distribution 

0.1000000000 1.642374415 2.705543454 

0.0500000000 2.705543454 3.841458821 

0.0400000000 3.06490172 4.217884588 

0.0300000000 3.537384596 4.709292247 

0.0200000000 4.217884588 5.411894431 

0.0100000000 5.411894431 6.634896601 

0.0010000000 9.549535706 10.82756617 

0.0001000000 13.83108362 15.13670523 

0.0000100000 18.18929348 19.51142096 

0.0000010000 22.59504266 23.92812698 

0.0000001000 27.03311129 28.37398736 

0.0000000100 31.49455797 32.84125335 

0.0000000010 35.97368894 37.32489311 

0.0000000001 40.46665791 41.82145620 
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H0: The sample distribution agrees with the hypothetical (theoretical) distri-
bution. 

HA: The sample distribution does not agree with the hypothetical (theoretical) 
distribution. 

The X2 Goodness-of-Fit Test can be shown schematically as  

( )2
2

1

Observed Expected
Expected

t N
t t

t t

χ
=+

=+

 −
 ≡
 
 

∑               (14) 

The degrees of freedom are calculated as N − 1. If there is no discrepancy be-
tween an observed and a theoretical distribution, then X2 = 0. As the discrepancy 
between an observed and a theoretical distribution becomes larger, the X2 be-
comes larger. This X2 values are evaluated by the known X2 distribution. 

The original X2 values are calculated from an original theoretical distribution, 
which is continuous, whereas the approximation by the X2 Goodness of fit test 
we are using is discrete. Thus far, there is a tendency to underestimate the prob-
ability, which means that the number of rejections of the null hypothesis can in-
crease too much and must be corrected downward. Such an adjustment (Yate’s 
correction for continuity) is used only when there is one degree of freedom. 
When there is more than one degree of freedom, the same adjustment is not 
used. Applying this to the formula above, we find the X2 Goodness-of-Fit Test 
with continuity correction shown schematically as  

2

2

1

1Observed Expected
2

Expected

t tt N

t t

χ
=+

=+

    − −      ≡  
 
 
 

∑            (15) 

When the term (|Observedt − Expectedt|) is less than 1/2, the continuity cor-
rection should be omitted. 

1) The X² Goodness of Fit Test of a Sufficient Condition 
The theoretical (hypothetical) distribution of a sufficient condition is shown 

schematically by the 2 × 2 table (Table 13). 
The theoretical distribution of a sufficient condition (conditio pre quam) is 

determined by the fact that b = 0. The X2 Goodness-of-Fit Test with continuity 
correction of a sufficient condition (conditio per quam) is calculated as  
 
Table 13. The theoretical distribution of a sufficient condition (conditio pre quam). 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes = +1 a b = 0 (a + b) 

No = +0 c d (c + d) 

 Total (a + c) (b + d) (a + b + c + d) 
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( )
( )

( )

( ) ( )

( )

( )

( )

2 2

2

2

1 1
2 2

IMP

1
2

0

a a b c d c d

a b c d

a a b

a b

χ

            − + − + − + −               ≡ +   + +   
   
   
    − + −      = + + 
 
 

    (16) 

or more simplified as 

( ) ( )

2

2

1
2

IMP 0
b

a b
χ

    − −      ≡ + + 
 
 

                  (17) 

Under these circumstances, the degree of freedom is d.f. = 1 2 1 1N − = − = . 
2) The X2 goodness of fit test of a necessary condition 
The theoretical (hypothetical) distribution of a necessary condition is shown 

schematically by the 2 × 2 table (Table 14). 
The theoretical distribution of a necessary condition (conditio sine qua non) 

is determined by the fact that c = 0. The X2 Goodness-of-Fit Test with continuity 
correction of a necessary condition (conditio sine qua non) is calculated as  

( )
( ) ( )

( )

( ) ( )

( )

( )

( )

2 2

2

2

1 1
2 2

SINE

1
2

0

a b a b d c d

a b c d

d c d

c d

χ

            + − + − − + −               ≡ +   + +   
   
   

    − + −      = +  + 
 
 

  (18) 

or more simplified as 

( ) ( )

2

2

1
2

SINE 0
c

c d
χ

    − −      ≡ + + 
 
 

                  (19) 

 
Table 14. The theoretical distribution of a necessary condition (conditio sine qua non). 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes = +1 a b (a + b) 

No = +0 c = 0 d (c + d) 

 Total (a + c) (b + d) (a + b + c + d) 

https://doi.org/10.4236/jbm.2018.61008


I. Barukčić 
 

 

DOI: 10.4236/jbm.2018.61008 90 Journal of Biosciences and Medicines 
 

Under these circumstances, the degree of freedom is d.f. = 1 2 1 1N − = − = . 
3) The X2 goodness of fit test of a necessary and sufficient condition 
The theoretical (hypothetical) distribution of a necessary and sufficient condi-

tion is shown schematically by the 2 × 2 table (Table 15). 
The theoretical distribution of a necessary and sufficient condition is deter-

mined by the fact that b = 0 and that c = 0. The X2 Goodness-of-Fit Test with 
continuity correction of a necessary and sufficient condition is calculated as  

( )

( ) ( )

( )

( ) ( )

( )

2

2 2

Necessary AND Sufficient

1 1
2 2

a a b d c d

a b c d

χ

            − + − − + −               ≡ +   + +   
   
   

         (20) 

or more simplified as 

( ) ( ) ( )

2 2

2

1 1
2 2

Necessary AND Sufficient
b c

a b c d
χ

            − − − −               ≡ +   + +   
   
   

   (21) 

Under these circumstances, the degree of freedom is d.f. = 1 2 1 1N − = − = . 

3. Results 
3.1. Epstein-Bar Virus Is a Conditio sine qua Non of Hodgkin’s  

Lymphoma 

Claims. 
Null hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is a conditio sine 

qua non of Hodgkin’s lymphoma.  
Alternative hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is not a conditio 

sine qua non of Hodgkin’s lymphoma.  
Significance level (Alpha) below which the null hypothesis will be rejected: 

0.05.  
Proof.  
The data of an infection by Epstein-Bar virus and Hodgkin’s lymphoma are 

viewed in the 2 × 2 table (Table 1). The X2 Goodness-of-Fit Test with continuity  
 
Table 15. The theoretical distribution of a necessary and sufficient condition. 

  
Conditioned 

Total 
Yes = +1 No = +0 

Condition 
Yes = +1 a b = 0 (a + b) 

No = +0 c = 0 d (c + d) 

 Total (a + c) (b + d) (a + b + c + d) 
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correction of a necessary condition (conditio sine qua non) known to be defined 
as p (Epstein-Bar virus DNA ← Hodgkin’s lymphoma) is calculated as 

( ) ( ) ( )

2 2

2

1 19
2 2

SINE 0 2.125
9 25

c

c d
χ

            − − − −               ≡ + = =   + +   
   
   

 

Under these circumstances, the degree of freedom is d.f. = 1 2 1 1N − = − = . 
The critical X2 (significance level alpha = 0.05) is known to be 3.841458821 
(Table 12). The calculated X2 value = 2.125 and less than the critical X2 = 
3.841458821. Hence, our calculated X2 value = 2.125 is not significant and we 
accept our null hypothesis. Due to this evidence, we do not reject the null hypo-
thesis in favor of the alternative hypotheses. In other words, the sample distribu-
tion agrees with the hypothetical (theoretical) distribution. Our hypothetical 
distribution was the distribution of the necessary condition. Thus far, the data as 
published by Dinand et al. [17] do support our null hypothesis that an infection 
of human lymph nodes by Epstein-Bar virus is a conditio sine qua non of Hodg-
kin’s lymphoma. In other words, without an infection of human lymph nodes by 
Epstein-Bar virus no Hodgkin’s lymphoma. 

Q.e.d. 

3.2. Epstein-Bar Virus Is a Conditio per quam of Hodgkin’s  
Lymphoma 

Claims. 
Null hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is a conditio per 

quam of Hodgkin’s lymphoma.  
(p0 > pCrit).  
Alternative hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is not a conditio per 

quam of Hodgkin’s lymphoma. 
(p0 < pCrit).  
Significance level (Alpha) below which the null hypothesis will be rejected: 

0.05.  
Proof.  
The data of an infection by Epstein-Bar virus and Hodgkin’s lymphoma are 

viewed in the 2 × 2 table (Table 1). The proportion of successes in the sample of 
a conditio per quam relationship p (Epstein-Bar virus DNA → Hodgkin’s lym-
phoma) is calculated [22]-[35] as 

( ) ( )126 9 25 160EBV DNA Hodgkin s lymphoma 1
160 160

p
+ +

→ = = =’  

The critical value pCrit (significance level alpha = 0.05) is calculated [39]-[44] 
as  
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31 0.981276673
160Critp = − =  

The critical value is pCrit = 0.981276673 and is less than the proportion of suc-
cesses calculated as p (Epstein-Bar virus DNA → Hodgkin’s lymphoma) = 1. Due 
to this evidence, we do not reject the null hypothesis in favor of the alternative 
hypotheses. The data as published by Dinand et al. [17] do support our Null hy-
pothesis that an infection of human lymph nodes by Epstein-Bar virus is a con-
ditio per quam of Hodgkin’s lymphoma. In other words, if an infection of hu-
man lymph nodes by Epstein-Bar virus is present then Hodgkin’s lymphoma is 
present too. 

Q.e.d. 

3.3. Epstein-Bar Virus Is the Cause of Hodgkin’s Lymphoma  

Claims. 
Null hypothesis: (no causal relationship) 
There is no causal relationship between an infection of human lymph nodes 

by Epstein-Bar virus and Hodgkin’s lymphoma. 
Alternative hypothesis: (causal relationship) 
There is a causal relationship between an infection of human lymph nodes by 

Epstein-Bar virus and Hodgkin’s lymphoma. 
(k <> 0).  
Conditions.  
Alpha level = 5%. 
The two tailed critical Chi square value (degrees of freedom = 1) for alpha lev-

el 5% is 3.841458821. 
Proof.  
The data for this hypothesis test are illustrated in the 2 × 2 table (Table 1). 

The causal relationship k (EBV DNA, Hodgkin’s lymphoma) is calculated 
[22]-[35] as 

( )
( ) ( )( )
( ) ( )2

EBV DNA, Hodgkin s lymphoma

160 126 126 135
0.82841687

126 34 135 25

k

× − ×
= = +

× × ×

’

 

The value of the test statistic k = +0.82841687 is equivalent to a calculated 
[22]-[35] chi-square value of  

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

2
Calculated

2 2

2
Calculated
2
Calculated

160 126 126 135 160 126 126 135
160

126 34 135 25 126 34 135 25

160 0.82841687 0.82841687

109.8039216

χ

χ

χ

   × − × × − ×
   = × ×
   × × × × × ×   

= × ×

=

 

The chi-square statistic, uncorrected for continuity, is calculated as X2 = 
109.8039216 and thus far equivalent to a P value of  
0.000000000000000000000000108179. The calculated chi-square statistic exceeds 
the critical chi-square value of 3.841458821 (Table 12). Consequently, we reject 
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the null hypothesis and accept the alternative hypotheses. There is a highly sig-
nificant causal relationship between an infection of human lymph nodes by Eps-
tein-Bar virus and Hodgkin’s lymphoma (k = +0.82841687, p Value =  
0.000000000000000000000000108179). The result is significant at p < 0.001.  

Q.e.d. 

3.4. Epstein-Bar Virus Is a Conditio sine qua Non of Hodgkin’s  
Lymphoma 

Claims. 
Null hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is a conditio sine 

qua non of Hodgkin’s lymphoma.  
Alternative hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is not a conditio 

sine qua non of Hodgkin’s lymphoma.  
Significance level (Alpha) below which the null hypothesis will be rejected: 

0.05.  
Proof.  
The data of an infection by Epstein-Bar virus and Hodgkin’s lymphoma are 

viewed in the 2 × 2 table (Table 2). The X2 Goodness-of-Fit Test with continuity 
correction of a necessary condition (conditio sine qua non) known to be defined 
as p (Epstein-Bar virus DNA ← Hodgkin’s lymphoma) [22]-[35] is calculated as 

( ) ( ) ( )

2 2

2

1 111
2 2

SINE 0 1.361111111
11 70

c

c d
χ

            − − − −               ≡ + = =   + +   
   
   

   (22) 

Under these circumstances, the degree of freedom is d.f. = 1 2 1 1N − = − = . 
The critical X2 (significance level alpha = 0.05) is known to be 3.841458821 
(Table 12). The calculated X2 value is 1.361111111and is less than the critical 
X2 = 3.841458821. Hence, our calculated X2 value is 1.361111111 and is not sig-
nificant and we accept the null hypothesis. Due to this evidence, we do not reject 
the null hypothesis in favor of the alternative hypotheses. In other words, the 
sample distribution agrees with the hypothetical (theoretical) distribution. Our 
hypothetical distribution was the distribution of the necessary condition. Thus 
far, the data as published by Dinand et al. [21] do support our null hypothesis 
that an infection of human lymph nodes by Epstein-Bar virus is a conditio sine 
qua non of Hodgkin’s lymphoma. In other words, without an infection of hu-
man lymph nodes by Epstein-Bar virus no Hodgkin’s lymphoma. 

Q.e.d. 

3.5. An Infection of Human Lymph Nodes by Epstein-Bar Virus Is a  
Conditio per quam of Hodgkin’s Lymphoma 

Claims. 
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Null hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is a conditio per 

quam of Hodgkin’s lymphoma.  
(p0 > pCrit).  
Alternative hypothesis:  
An infection of human lymph nodes by Epstein-Bar virus is not a conditio per 

quam of Hodgkin’s lymphoma.  
(p0 < pCrit).  
Significance level (Alpha) below which the null hypothesis will be rejected: 

0.05.  
Proof.  
The data of an infection by Epstein-Bar virus and Hodgkin’s lymphoma are 

viewed in the 2 × 2 table (Table 2). The proportion of successes in the sample of 
a conditio per quam relationship p(Epstein-Bar virus DNA → Hodgkin’s lym-
phoma) is calculated [22]-[35] as 

( ) ( )19 11 70 100EBV DNA Hodgkin s lymphoma 1
100 100

p
+ +

→ = = =’  

The critical value pCrit (significance level alpha = 0.05) is calculated [39]-[44] 
as  

31 0.97
100Critp = − =  

The critical value is pCrit = 0.97 and is less than the proportion of successes 
calculated as p(Epstein-Bar virus DNA → Hodgkin’s lymphoma) = 1. Due to this 
evidence, we do not reject the null hypothesis in favor of the alternative hypo-
theses. The data as published by Dinand et al. [21] do support our Null hypothe-
sis that an infection of human lymph nodes by Epstein-Bar virus is a conditio 
per quam of Hodgkin’s lymphoma. In other words, if an infection of human 
lymph nodes by Epstein-Bar virus then Hodgkin’s lymphoma. 

Q.e.d. 

3.6. Epstein-Bar Virus Is the Cause of Hodgkin’s Lymphoma  

Claims. 
Null hypothesis: (no causal relationship) 
There is no causal relationship between an infection of human lymph nodes 

by Epstein-Bar virus and Hodgkin’s lymphoma. 
Alternative hypothesis: (causal relationship) 
There is a causal relationship between an infection of human lymph nodes by 

Epstein-Bar virus and Hodgkin’s lymphoma. 
(k<>0).  
Conditions.  
Alpha level = 5%. 
The two tailed critical Chi square value (degrees of freedom = 1) for alpha lev-

el 5% is 3.841458821. 
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Proof. 
The data for this hypothesis test are illustrated in the 2 × 2 table (Table 2). 

The causal relationship k (EBV DNA, Hodgkin’s lymphoma) is calculated 
[22]-[35] as 

( )
( ) ( )( )
( ) ( )2

EBV DNA, Hodgkin s lymphoma

100 19 30 19
0.739814235

30 70 19 81

k

× − ×
= = +

× × ×

’

 

The value of the test statistic k = +0.739814235 is equivalent to a calculated 
[22]-[35] chi-square value of  

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

2
Calculated

2 2

2
Calculated
2
Calculated

100 19 30 19 100 19 30 19
100

30 70 19 81 30 70 19 81

100 0.739814235 0.739814235

54.7325102881

χ

χ

χ

× − × × − ×
= × ×

× × × × × ×

= × ×

=

 

The chi-square statistic, uncorrected for continuity, is calculated as X2 = 
54.7325102881 and thus far equivalent to a P value of 0.000000000000138. The 
calculated chi-square statistic exceeds the critical chi-square value of 3.841458821 
(Table 12). Consequently, we reject the null hypothesis and accept the alterna-
tive hypotheses. There is a highly significant causal relationship between an in-
fection of human lymph nodes by Epstein-Bar virus and Hodgkin’s lymphoma 
(k = +0.739814235, p Value = 0.000000000000138). The result is significant at 
p < 0.001. 

Q.e.d. 

4. Discussion 

A case-control study or a retrospective study is a type of an observational study 
where investigators compare a set of people with a certain disease (the cases) and 
a set of people with all but this certain disease (the controls) with regard to a 
special condition, cause or factor. Case-control studies usually require a smaller 
sample sizes than equivalent cohort studies and are cheap and quick. As a con-
sequence, many factors, conditions or causes can be studied simultaneously. Still, 
etiological questions are ideally studied not through the case-control approach. 
A cohort study is a better type of an observational study to investigate etiological 
hypothesis, especially when a study population, which is free of a disease, is used 
at the outset. By contrast to a case-control study, in a cohort study, it is investi-
gated whether a disease develops or not. In particular, a case-control study may 
provide data which are inaccurate under certain circumstances and is very likely 
to suffer from bias error. Among many source of bias, the problems arise espe-
cially from the way how controls are sampled with the consequence that the data 
as collected in a case-control study may not be appropriate to perform some 
causal investigations of interest. To be persuasive, case-control studies need to 
be conducted very carefully. Further details about case control studies are given 
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by secondary literature [50]. Despite of the view disadvantages of case-control 
studies discussed above, Dinand et al. [17] [21] detected EBV DNA by in situ 
hybridization (ISH), which cannot be ignored. The in situ hybridization, like 
any method, is not completely free of bias and is labeled with some severe limi-
tations. Still, the in situ hybridization provides the opportunity to distinguish 
EBV DNA in tumor cells from EBV DNA in non-tumor cells. In general, it is 
known that a great proportion of HL tissues is able to harbor EBV within tumor 
cells. Emerging evidence suggests that EBV is causality related to Hodgkin’s 
lymphoma. According to the data as published by Dinand et al. [17], without an 
infection of human lymph nodes by Epstein-Bar virus no Hodgkin’s lymphoma. 
In the same context, there is a highly significant causal relationship between an 
infection of human lymph nodes by Epstein-Bar virus and Hodgkin’s lymphoma 
(k = +0.82841687, p-value = 0.000000000000000000000000108179). Thus far, 
Epstein-Bar virus is not only a cause, but the cause of Hodgkin’s lymphoma. The 
challenge is to unravel this complexity of the relationship between Epstein Bar 
virus and Hodgkin’s lymphoma by detailed consideration of the function of EBV 
genes in the appropriate (tumor) cellular context. The hope is justified that this 
approach has revealed the most fundamental aspects of HL pathogenesis and 
that the same has paved the way for a more targeted and individual therapies for 
HL patients. Even if EBV is the cause of HL, many times a specific therapy is not 
indicated for most patients with an EBV infection. In point of fact, some drugs, i. 
e. acyclovir, are able to inhibit EBV replication and to reduce viral shedding. 
Sometimes, corticosteroid therapy is considered for patients with severe com-
plications of an EBV infection and is able to shorten the duration of some 
symptoms and fever associated with an EBV infection. In point of fact, vaccina-
tion against EBV might be useful especially for people who are seronegative for 
EBV. In this context, preliminary studies in which EBV-seronegative children 
were vaccinated with vaccinia virus expressing gp350 where to some extent ef-
fective [51] [52]. 

5. Conclusion 

Epstein-Bar virus is the cause of Hodgkin’s lymphoma (k = +0.82841687, p Val-
ue = 0.000000000000000000000000108179). 
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