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Abstract 
Using the k∙p theory, the coupling effect between the Δ1 and Δ2’ bands on the 
energy band structure of different energy valleys is studied. The analytical 
model of the energy-dispersion relationship applicable to uniaxial stress for 
arbitrary crystal plane and orientation as well as different energy valleys is es-
tablished. For typical crystal orientations, the main parameters of energy band 
structure such as band edge level, splitting energy, density-of-state (DOS) ef-
fective mass and conductivity effective mass are calculated. The calculated re-
sults are in good agreement with the data reported in related literature. Final-
ly, the relationship between the DOS effective mass, conductivity effective 
mass and the change of stress and orientation of different crystal planes is 
given. The proposed model and calculation results can provide a theoretical 
reference for the design of nano-electronic devices and TCAD simulation. 
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1. Introduction 

As an important method of extending Moore’s Law, strained silicon technology 
can significantly improve the mobility of carriers in devices [1] [2]. Current na-
noelectronic devices already use strained silicon technology to improve device 
performance [3] [4] [5] [6]. The energy band structure of the silicon material 
depends on the direction and magnitude of the applied stress. Reasonable 
choices of the crystal orientation of the conducting channel of Metal-Oxide- 
Semiconductor (MOS) devices based on uniaxial strained silicon can greatly 
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improve performance. Therefore, for the sake of applications in nanoelectronic 
devices, it is necessary to study the energy band structure of uniaxial strained 
silicon materials in depth. 

The key to obtaining the structure of the conduction band in uniaxial strained 
silicon is establishing the E(k)-k relation near the minimum value of the con-
duction band. Using the traditional k∙p perturbation method and deformation 
potential theory, the calculation results in [7] [8] [9] show that the strain effect 
does not change the structure of the conduction band or the shape of the con-
stant-energy surface, but only changes the position of the conduction band edge. 
However, these studies neglected the change of band structure by stress. In fact, 
under the action of shear stress, not only does the structure of the conduction 
band change, but also the minimum value of the valley and the effective mass 
along the stress direction. Sverdlov and Dhar et al. [10] [11] [12], based on the 
two-band k∙p theory proposed by Hensel [13], thoroughly analyzed the effect of 
shear stress on the effective mass in the [110] direction. However, the 
above-mentioned articles only studied a specific crystal orientation, while the 
main structure parameters of the energy band under arbitrary uniaxial stress, as 
well as the different valleys, were not explicitly given. The arbitrary stress in this 
paper can be exerted on any arbitrary crystal orientation on any crystal plane, 
unlike the specific orientations studied in earlier work. Therefore, in order to 
describe the effects of uniaxial stress on conduction band structure, it is neces-
sary to further improve the two-band model and calculate the main parameters 
of the energy band, in order to use an arbitrary crystal plane and provide the 
theoretical basis for the informed selection of the orientation of a strained Met-
al-Oxide-Semiconductor Field Effect Transistor (MOSFET) channel. 

2. The Model 

The bottom of the conduction band of bulk silicon is located on the Δ axis of the 
Brillouin zone, and the energy band at the bottom of the conduction band and 
its neighbor band at the boundary of Brillouin zone are denoted as the Δ1 band 
and Δ2’ band. The Δ1 band and the Δ2’ band are non-degenerate at the Γ point 
of the centre of Brillouin zone, but they are degenerate at the position X. Under 
shear stress, the degeneracy of the Δ1 and Δ2’ bands at X is eliminated. The two 
bands couple with each other, changing the dispersion relationship of the con-
duction band and the valley minimum [10]. In order to apply this model to dif-
ferent valleys of conduction band, we introduce the conversion operator Tv. 
Here the subscripts v = 1, 2, 3 denote three equivalent energy valleys [00±1], 
[0±10] and [±100]. Consequently, 

1 2 3

1 0 0 0 1 0 0 0 1
0 1 0 , 0 0 1 , 1 0 0 .
0 0 1 1 0 0 0 1 0

     
     = = =     
     
     

T T T  

In the coordinate system of each valley, the z-axis coincides with the rotation 
axis of each ellipsoid. For any energy valley v, then the wave vector kv and the 
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strain tensor εv can be respectively written as 

v v=k T k  and T
v v v=T Tε ε . 

For each energy valley, the shear strain tensor can be expressed as 

shear, ,12 ,21v v vε εε = = . 

Not any uniaxial stress can lead to splitting at position X. If the shear strain 
tensor of a valley is εshear = 0, then Δ1 and Δ2’ at X are still degenerate. Therefore, 
under uniaxial stress without shear stress, the uniaxial stress only leads to 
movement of the energy level of conduction band, without changing its band 
structure. 

If the z-axis of the lattice coordinate system (x, y, z) is rotated by φ and the 
x-axis is rotated by θ, the stress coordinate system (x’, y’, z’) is obtained. The 
wave vector 

( )T
x y zk k kε ′ ′ ′=k . 

under stress coordinate system can be expressed as  

ε =k Uk , 

where 

( )T
x y zk k k=k  

is the wave vector in the lattice coordinate system. The transformation matrix is 

cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

ϕ θ θ ϕ θ
ϕ θ θ ϕ θ

ϕ ϕ

− 
 =  
 − 

U  

For different valleys, 
,v v vε ε= =k T k T Uk . 

2.1. Energy Band Model 

According to the two-band k∙p theory, the strain Hamiltonian of different val-
leys of the conduction band in bulk silicon at position X of the boundary of the 
Brillouin zone is a 2 × 2 matrix [11] [14]. The diagonal elements of the Hamilto-
nian are the energies of the Δ1 and Δ2’ bands. For any energy valley, they can be 
written as 

( ) ( )
2

1T
, ,0 ,

0

1 0 0
2

i
i v C C v v vH E E p

m
−   

= + ∆ + + −   
   

k k M k T k  .      (1) 

with 

( ), 11 22 33C v d u vvE D Dε ε ε ε∆ = + + + , 
1

1

1

T
t

t

l

v v v

m
m

m

−

−

−

 
 

=  
 
 

M T T . 

where EC,0 = 1.119 eV is the energy of the conduction band in its unstressed state, 
ΔEC,v is the energy change of the conduction band edge, and i = 1, 2 denote the 
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energy bands of Δ1 and Δ2’. In addition, p denotes the electron momentum at 
point X when Δ1 and Δ2’ are not strained. m0 stands for the mass of free electrons, 
mt and ml represent the transverse and longitudinal effective mass of the elec-
trons, respectively. If the point X is assumed to be the origin of k-space, the 
minimum value of the conduction band [00±1] can be −k0 = −0.15(2π/a0), where 
a0 is the lattice constant. When no uniaxial stress is applied, then Δ1 is the lowest 
band, and for any energy valley, the following relationship holds: 

( )
( )T0

1,

0,0,

0
v

v

i k

H
k

= −

∂ 
= 

∂ k T

k
, 

that yields 

0
0

l

mp k
m

 
=  
 

 .                        (2) 

The subscripts ( ) ( ) ( ) ( ), 1, , 2, , 3,v i z y x=  denote the [00±1], [0±10] and 
[±100] energy valleys and their rotation axes. Substituting Equation (2) into Eq-
uation (1), and diagonalizing the strain Hamiltonian, the dispersion relation of 
the conduction band energy at X point can be obtained: 

( ) ( )
22 2T T0

,0 , shear,0 0
2v C C v v v v v

l

kE E E D
m

ε
  

= + ∆ + − + −  
   

k k M k T k k P k

(3) 

where 

T

0 0
0 0 0
0 0 0

v v v

P 
 =  
 
 

P T T , 

here 2P M=  , the parameter M can be obtained by the empirical pseu-
do-potential method [10]. The band division of Δ1 and Δ2’ at the X point under 
the action of shear stress leads to a change in the valley minimum. Using the 
dispersion relation of Equation (3), the minimum of each valley can be obtained 
from 

( )
( )T0,0, 0,

0
v

v

i k

E
k

ε= −

∂ 
= 

∂ k T

k
.                   (4) 

By expanding Equation (3) at the valley minimum and neglecting the higher 
order terms, one obtains the conduction band dispersion relation near the 
minimum: 

( ) ( ) ( ) ( )
0,

22 2
0, 0, 0,

,0 , 1, 2z

z z
v C C v v k k

l l

k k k k k
E E E H

m mε

ε ε ε

=

 − − = + ∆ + + −
 
 

k
 

.  (5) 

2.2. Effective Mass 
2.2.1. Density-of-State (DOS) Effective Mass 
The calculation of the effective mass uses the stress coordinate system in the 
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[00±1] valley. Starting from the dispersion relation of the conduction band from 
Equation (3) or Equation (5), the following inverse transform 

1 1
,v vε

− −k U T k  

is carried out in Equation (3) to obtain Ev(kε,v). The effective mass of valley [00±1] 
can then be obtained by the following expression: 

( )
( )T, 0,

12
,

, 2 2

0 0

1

v v

v v
i v

i k

E
m

k
ε ε

ε

−

= −

 ∂
 =
 ∂ k T U

k


,              (6) 

where, , ,i x y z′ ′ ′= . The 6-degree degenerate conduction band can be split by 
the uniaxial stress into valleys in different degenerate states, leading to the 
change of the distribution of electron concentration in the valley. Under the ac-
tion of stress, the quantum state density of each energy valley is 

( ) ( )3 2
,

,3

4π 2 n v
v v C v

m
g E M E E

h

 
 = −
 
 

,              (7) 

where Mv is the degeneracy of each valley, and EC,v is its minimum energy. The 
effective mass of each valley can be expressed as 

3
, , , ,n v v x v y v zm m m m′ ′ ′= .                    (8) 

Assume that electrons are subject to the Boltzmann distribution 

( )B
B

exp fE E
T

Ef
k
− 

=  
 

, 

and ΔEsplit1 and ΔEsplit2 represent the split energy of the valley of the conduction 
band. For the general application, the electron concentration of the conduction 
band at equilibrium state can be represented as 

( ) ( )
,

3 23
DOS

B1

B
B 2

2π
d 2 exp

C v

f C
v

Ev

E Em k Tg E f E E
k Th=

∞  −    =         
∑ ∫ .      (9) 

EC,v also represents the minimum energy of each valley. Taking EC,1 = 0 as the 
reference point of energy, then EC,2 = ΔEsplit1, EC,3 = ΔEsplit2. The expression of the 
effective mass of the electron density at the bottom of the silicon conduction 
band under arbitrary uniaxial stress is obtained by the following formula: 

2 3
split1 split22 3 2 3 2 3

DOS 1 ,1 2 ,2 3 ,3
B B

exp expn n n

E E
m M m M m M m

k T k T
 ∆ ∆   

= + − + −         
.   (10) 

In Equation (10), the subscripts 1, 2, and 3 of the effective mass m and the de-
generacy M in the above equation represent the lowest valleys, the intermediate 
valleys and the highest valleys, respectively. If the conduction band is split into a 
lower 2-degree degenerate valley and a higher 4-degree degenerate valley, then 

split1 split2E E E∆ = ∆ = ∆ , and ,1 ,lown nm m= , ,2 ,3 ,highn n nm m m= =  and the DOS ef-
fective mass becomes 
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2 3

3 2 3 2
DOS ,low ,high

B

2 4 expn n
Em m m

k T
  ∆

= + −     
.            (11) 

If the valley is divided into a lower 4-degree degenerate valley and a higher 
2-degree degenerate valley, the density calculation method is the same as the 
former. In particular, if there is no split of valley under a single uniaxial stress, 
then the shear strain component of any energy valley becomes due to symmetry, 
and split1 split2 0E E∆ = ∆ = . Then the effective mass of the density is 

( ) ( ) ( )2 3 2 3
DOS ,

2
1 2 ,3

3
,6 6 6n n nm m m m= = = .           (12) 

The electron effective mass of the valley mn,v can be obtained by Equation (6) 
and Equation (8). 

2.2.2. Conductivity Effective Mass 
For conduction bands of strained silicon, the conductivity effective mass de-
pends on the electron occupancy in each valley and the effective mass along the 
stress direction. In general, Rv is used to represent the electronic possession of 
each valley, where v = 1, 2, 3 is the conduction band with the lowest, interme-
diate and the highest valley, respectively. According to Equation (7) we can see: 

( )

( )

3 2 ,
,

B

3 23 ,
,

B
1

exp

exp
v

c v
n v

c v
nv v

R

E
m

k T
E

m
k T=

=

 
− 
 
 
− 
 

∑
.                   (13) 

Following the same method as the conductivity effective mass of the un-
strained silicon, the expression of the conductivity effective mass mc of the elec-
trons in conduction band under uniaxial stress on arbitrary crystalline plane can 
be written as 

1

1

3

,

v
c

v xv

Rm
m=

−

′

  
=       
∑ .                       (14) 

It should be noticed that if there is no stress applied, then 1 2 2 1 3R R R= = = , 
and split1 split2 0E E∆ = ∆ = , hence Equation (14) can be simplified to the un-
strained conductivity effective mass 

( )1 13 2c t lmm m− −= + . 

2.2.3. Strain Tensor 
In order to make this model suitable for arbitrary crystal plane and orientation, 
let the angle θ between x’ axis and x axis reflect the crystal plane in any direction 
of uniaxial stress. Using Hooke’s law, we can derive the strain tensor ε of the 
three typical high-symmetry planes (001), (101), and (111). Here cij is the elastic 
stiffness coefficient, and σ is the corresponding tensile stress. A negative value 
corresponds to compressive stress. From the following strain tensor model, the 
conduction band structure can be calculated and analyzed. 
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( )

2
11 12

2 2
4411 11 12 12

2
11 12

001 2 2
44 11 11 12 12

12
2 2
11 11 12 12

cos cos 2 sin 2 0
22

sin cos 2sin 2 0
2 2

0 0
2

c c
cc c c c

c c
c c c c c

c
c c c c

θ θ θ

θ θθ
σ

    +
    + −    
    − = ×    + −    
  

−  + −  

ε , 

( )

2 2
11 12

2 2
44 4411 11 12 12

2 2
11 12

2 2
44 4411 11 12 12

11
2

44 44 11 11 12

101

cos 2 sin1 sin 2 cos
2 4 22

sin 2 cossin 2 1 sin
4 2 22

cos sin 1
2 2 2

c c
c cc c c c

c c
c cc c c c

c
c c c c c

θ θ θ θ

θ θθ θ
σ

θ θ

     −
−     

+ −     
    −

= × −    + −    
   

− − −    +   

ε

2
122c

 
 
 
 
 
 
 
  

  −  

, 

( )

( )

( )

2 2
11 12

2 2
4411 11 12 12 44

2 2
11 12

111 2 2
44 11 11 12 12 44

44

2 cos 1 4sin1 1 sin 2 1 cos
3 3 32 2

2 sin 3 4sin1 sin 2 1 1 sin
3 3 32 2

1 cos 1 sin
3 32 2

c c

cc c c c c

c c

c c c c c c

c

θ θ θ θ

θ θθ θ
σ

θ θ

 + −     −      + −     
 − −     = × −      + −    

 
− −  

 

ε

11 1244

1 1
3 2c cc

 
 
 
 
 
 
 
 
          +    

. 

3. Results and Discussion 
3.1. Energy Band Structure 

From the dispersion relation model, the dispersion relation curve of any valleys 
along an arbitrary crystal plane can be obtained. Crystal plane and orientation 
have an infinite variety of options. These cannot be calculated one by one, so the 
[100] and [110] orientation of the (001) crystal plane, the [111] orientation of 
the (101) crystal plane, and the (112) orientation of the (111) plane, were chosen 
for study. The uniaxial stress was applied on these typical orientations, and the 
band structures of different valleys were studied. Shear stress leads to the move-
ment of valley minimum positions, which can also lead to energy changes of the 
band edge. The change is ΔEshear,v. Let 

( )T
min 0,0 0 k ε= = −k k  

in Equation (3), then 

( ) ( )shear, min shear, min, ,0v v v vE E Eε∆ = −k k . 

Figure 1(a) and Figure 1(b) are the band curves of [00±1] and [±100] valleys 
under the stress in [100] orientation, respectively. The results of Equation (5) 
show that the band curves of the [±100] can increase with the uniaxial compres-
sive stress, while the band curve of the [00±1] can decrease; here, the movement 
of the two valley curves in the case of uniaxial tensile stress is opposite to that of  
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 1. Energy band structure of energy valleys in conduction band under stress in different orientations (a) [±100] energy val-
ley under stress in the [100] orientation (b) [00±1] energy valley under stress in the [100] orientation (c) [±100] energy valley un-
der stress in the [111] orientation (d) [±100] energy valley under stress in the [112]  orientation. 

 
compressive stress. The position of the wave vector k corresponding to the 
minimum energy level of the conduction band does not change, since the shear 
strain tensor of the [100] crystal orientation is 0 (θ = 0). The minimum value of 
the Δ1 band in the [00±1] valley is −k0, and the minimum value of band Δ2’ is k0. 
There is no coupling between the two at point X, the non-diagonal element in 
Equation (3) 

T
1 0x yPk k= =k P k , 

and the Δ1 and Δ2’ bands are coincident and the minimum of the energy band is 
still at point X. Similarly, the change of energy band in [0±10] valley has the 
same trend as the [00±1] valley. Figure 1(c), Figure 1(d) are the energy spectra 
under stress in the [111] orientation and the energy band of the [00±1] energy 
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valley under stress in the [111] orientation and the [112]  orientation, respec-
tively. It can be seen that the band curvature changes. 

In order to reflect the effect of shear stress on the band structure, the [00±1] 
energy valley is used to calculate under the application of stress in the [110] 
orientation. As shown in Figure 2(a), the curvature of the energy band changes 
greatly under the action of uniaxial stress along the [110] crystal orientation, as 
does the effective mass of electrons. Figure 2(b) shows the band curves of the 
[±100] and [0±10] valleys along the [110] direction. The figure shows that under 
the action of uniaxial stress, the energy bands of [±100] and [0±10] are identical, 
and the Δ1 and Δ2’ bands in [±100] and [0±10] are still degenerate at the point X. 
The band curvature does not show apparent change. 

3.2. Band Edge Level of Conduction Band 

The band edge level of the silicon conduction band is a necessary parameter for 
calculating the density-of-state (DOS) effective mass and conductivity effective 
mass of electrons. Under the action of uniaxial stress, the degenerate energy level 
in the conduction band is split, and the movement ΔEC,v of each energy level can 
be described by deformation potential theory. For each valley, the wave vector 
kmin corresponding to the valley minimum is substituted into Equation (1), ob-
taining the band edge level corresponding to each energy valley. For bands with 
an energy minimum at point X, the band edge level under uniaxial stress can be 
reduced to 

, ,0 , shear,C v C C v vE E E E= + ∆ + ∆ . 

Figure 3 shows the change of band edge energy corresponding to the mini-
mum energy of the conduction band, with respect to the change of uniaxial 
stress in the [100] orientation. The figure shows that the bottom energy of the 
band changes with stress, and the degeneracy of the valley is eliminated. Regard-
less of tensile or compressive stress, the bottom energy valley of the conduction 
band can be split into a group of valleys in 4-degree degeneracy and a group of 
valleys in 2-degree degeneracy. Under the action of tensile stress, the minimum 
of the conduction bands [0±10] and [00±1] can be the band edge. Under com-
pressive stress, however, the minimum of the conduction band [±100] can be the 
band edge. Compared with the case of no stress, the minimum energy of the 
conduction band is reduced under the action of both uniaxial compressive and 
tensile stress. With uniaxial stress in the [110] orientation, the change of band 
edge level with respect to stress is shown in Figure 3. Unlike the case of stress 
induced in the [100] orientation, the minimum value of the [00±1] energy valley 
at the 2-degree degenerate state under tensile stress is the conduction band edge, 
while under compressive stress, the band edge is the minimum of the [±100] and 
[0±10] energy valleys which are 4-degree degenerate. Compared with the case of 
no stress, the minimum energy of the conduction band under uniaxial stress in 
the [110] orientation increases under compressive stress and decreases under 
tensile stress. 
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(a)                                                          (b) 

Figure 2. Energy band structure of energy valley in conduction band under stress in the [110] orientation. (a) [00±1] energy valley 
(b) [±100]/[0±10] energy valley. 

 

 
Figure 3. Band edge of conduction band under stress in 
the [100] and [110] orientations. 

 
In order to illustrate the relationship between stress and the splitting energy of 

the conduction band, Figure 4 shows the curve of the conduction band with re-
spect to stress under uniaxial stress in the [100] and [110] orientations. The fig-
ure shows that, under the same amount of stress, the uniaxial stress along the 
[100] orientation has a greater splitting effect than that in the [110] orientation. 
Therefore, the inhibition effect of uniaxial stress on the inter-band scatter in the 
[100] orientation is greater than that in the [110] orientation. In addition, Fig-
ure 4 also shows the use of the first principle method to calculate the splitting 
energy of the conduction band with respect to strain changes. The figure shows 
that the calculated results from this paper are in good agreement with the nu-
merical results from first principle method. 

3.3. Effective Mass 

Figure 5 compares the two-band k∙p theoretical model and the empirical pseu-
do-potential method (EPM) [15] in calculating the effective mass of the [00±1]  
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Figure 4. Splitting energy of conduction band under stress in 
the [100] and [110] orientations. 
 

 
Figure 5. Effective mass of [00±1] energy valley under stress 
in the [110] orientation. 

 
valley in the silicon conduction band along with the [110] and [001] orientations 
under stress in the [110] orientation. It shows that the values of electron effective 
mass in the [001] and [110] orientations calculated by these two methods are 
generally the same. In the case of compressive stress, the electron effective mass 
of the [110] orientation calculated from the EPM method is slightly smaller than 
from the k∙p method. 

In the design of scaled CMOS devices, stresses in the [100] and [110] orienta-
tions on the (001) plane are mainly used. In this case, the conduction band can 
be divided into valleys with 2-degree degeneracy and valleys with 4-degree de-
generacy. The density-of-state effective mass can be calculated according to Eq-
uation (11). Figure 6(a) shows the change of the DOS effective mass under 
stress in the [100] and [110] orientations, respectively. The figure shows that, 
under the uniaxial stress in the [100] and [110] orientations, the DOS effective 
mass of electrons decreases significantly with the increase of stress when stress is 
small, and then gradually increases to a constant with increasing stress. 
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(a)                                                          (b) 

Figure 6. (a) Density-of-state effective mass and (b) conductivity effective mass under stress in the [100] and [110] orientations. 
 
The change of conductivity effective mass of electrons under stress in the [100] 

and [110] orientations is shown in Figure 6(b). Under the action of stress in the 
[100] orientation, the conductivity effective mass increases with the increase of 
compressive stress, and decreases with the increase of tensile stress. When σ > 1 
GPa, the conductivity effective mass change is small. The reason why the effec-
tive mass of the conductivity varies with the stress is mainly due to the division 
of the degenerate energy valleys in the conduction band under stress, which 
changes the distribution of electrons in the valley. Under the action of uniaxial 
tensile stress in the [110] orientation, the conductivity effective mass decreases 
slightly with the increase of stress, while under compressive stress the conduc-
tivity effective mass increases slightly with the increase of stress. 

For general application, Figure 7(a) and Figure 7(b) show the relationship 
between density-of-state effective mass and stress, and orientation in the two 
special crystal planes, for the purpose of providing guidance in choosing the ap-
propriate orientation in device design. The figure shows that the density-of-state 
effective mass of the conduction band has obvious anisotropy. On the (101) 
plane, the density-of-state effective mass decreases with the increase of the un-
iaxial stress, with its minimum value in the [111] orientation. However, for the 
(111) crystal plane, the change of effective mass is significantly different from 
that of the (101) crystal plane. In the [0, π/4] and [π/4, π/2] intervals, the DOS 
effective mass decreases with the increase of the uniaxial tension/compressive 
stress. When θ = π/4, there is no obvious change. Under certain ten-
sile/compressive stress, the DOS effective mass continuously increases in the 
range of [0, π/4], but continuously decreases in the range of [π/4, π/2]. DOS ef-
fective mass reaches the maximum value at θ = π/4. In addition, the effect of 
tensile stress and compressive stress on the DOS effective mass shows similar 
symmetry to what was shown on the energy band of the conduction band. Fig-
ure 7(c), Figure 7(d) also give the relationship between conductivity effective 
mass, stress and orientation for the (101) and (111) crystal planes. 
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 7. Density-of-state (DOS) effective mass and conductivity effective mass. (a) (101) 
plane, (b) (111) plane, (c) (101) plane, (d) (111) plane. 

4. Summary 

Based on the two-band k∙p theory, the analytical model of energy-dispersion re-
lationship of different energy valleys under arbitrary uniaxial stress on arbitrary 
crystal plane was established. In this process, the coupling effect between the Δ1 
band and the Δ2’ band on the dispersion of different valleys and the variation of 
valley minimum by shear stress under different uniaxial stresses were considered 
through the transformation of stress and lattice coordinate systems. Based on the 
established dispersion relationship on the conduction band, three typical 
high-symmetry crystal planes (001), (101) and (111) were taken as examples, and 
major energy structure parameters such as the band edge level, splitting energy, 
density-of-state (DOS) effective mass, conductivity effective mass, and mobility 
in the [110] orientation were further calculated. The effective mass values calcu-
lated in this work were in good agreement with the values obtained by different 
methods, which confirmed the validity of this model. In addition, the relation-
ship of DOS effective mass and conductivity effective mass with stress and 
orientation for the (101) and (111) planes was also given. 

In addition to the above mentioned, in fact, strain technology can be involved 
not only in MOS devices, but also in bipolar and optoelectronic devices. Recent 
studies of TCAD simulation pointed out that the strain effect has an influence 
on the electrical parameters of bipolar transistors, it is possible to introduce un-
iaxial stress induced by the functional oxides into silicon photonics applications. 
The proposed band-parameter model and calculation results can provide a theo-
retical reference for the design and optimization for silicon-based nano-electronic 
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devices, bipolar devices or optoeletronic devices, and TCAD simulation. 

Acknowledgements 

This work is financially supported by National Natural Science Foundation of 
China (Grant Nos.: 61404019, 61704147), the Science Fund from the Education 
Department of Hebei Province, China (Grant No.: QN2017150). 

References 
[1] Sun, W.K. and Shin, H.S. (2014) Optimization of Uniaxial Stress for High Electron 

Mobility on Biaxially-Straned n-MOSFETs. Solid-State Electronics, 94, 23-27.  
https://doi.org/10.1016/j.sse.2014.01.005 

[2] Zhou, X., Chandrasekaran, K., Chiah, S.B., et al. (2006) Implicit Analytical Sur-
face/Interface Potential Solutions for Modeling Strained-Si MOSFETs. IEEE Trans-
actions on Electron Devices, 12, 3110-3117. 

[3] Sun, G.D., Zhang M., Xue Z.Y., et al. (2014) Strain Redistribution in Free-Standing 
Bridge Structure Released from Strained Silicon-on-Insulator. Applied Physics Let-
ters, 105, 193505. https://doi.org/10.1063/1.4901820 

[4] Gupta, S., Moroz, V., Smith, L., et al. (2014) 7-nm FinFET CMOS Design Enabled 
by Stress Engineering Using Si, Ge, and Sn. IEEE Transactions on Electron Devices, 
61, 1222-1230. https://doi.org/10.1109/TED.2014.2311129 

[5] Vogel, D., Auerswald, E., Auersperg, J., et al. (2014) Stress Analyses of High Spatial 
Resolution on TSV and BEoL Structures. Microelectronics Reliability, 54, 1963-1968.  
https://doi.org/10.1016/j.microrel.2014.07.098 

[6] Biswas, A., Luong, G.V., et al. (2017) Benchmarking of Homojunction Strained-Si 
NW Tunnel FETs for Basic Analog Functions. IEEE Transactions on Electron De-
vices, 64, 1441-1448. https://doi.org/10.1109/TED.2017.2665527 

[7] Sun, Y., Thompson, S.E. and Nishida, T. (2007) Physics of Strain Effects in 
Semiconductors and Metal-Oxide-Semiconductor Field-Effect Transistors. Joural of 
Applied Physics, 101, 104503. https://doi.org/10.1063/1.2730561 

[8] Fischetti, M.V. and Laux, S.E. (1996) Full-Band Monte Carlo Simulation of 
High-Energy Transport and Impact Ionization of Electrons and Holes in Ge, Si, and 
GaAs. Solid State Device Research Conference, Tokyo, 813-820. 

[9] Rieger, M.M. and Vogl, P. (1993) Electrionic-Band Parameters in Strained Si1-xGex 
Alloys on Si1-yGey Substrates. Physical Review B, 48, 14276.  
https://doi.org/10.1103/PhysRevB.48.14276 

[10] Sverdlov, V., Karlowatz, G., Dhar, S., et al. (2008) Two-Band kp Model for the 
Conduction Band in Silicon: Impact of Strain and Confinement on Band Structure 
and Mobility. Solid-State Electronics, 52, 1563-1568.  
https://doi.org/10.1016/j.sse.2008.06.019 

[11] Sverdlov, V. and Selberherr, S. (2008) Electron Subband Structrue and Controlled 
Valley Splitting in Silicon Thin-Body SOI FETs: Two-Band kp Theory and Beyond. 
Solid-State Electronics, 52, 1861-1866. https://doi.org/10.1016/j.sse.2008.06.054 

[12] Dhar, S., Ungersböck, E., Kosina, H., et al. (2007) Electron Mobility Model for 
<110> Stressed Silicon Including Strain-Dependent Mass. IEEE Transactions on 
Nanotechnology, 6, 97-100. https://doi.org/10.1109/TNANO.2006.888533 

[13] Hensel, J.C., Hasegawa, H. and Nakayama, A.M. (1965) Cyclotron Resonance in 
Uniaixally Stressed Silicon. II. Nature of the Covalent Bond. Physical Review, 138, 
A225. https://doi.org/10.1103/PhysRev.138.A225 

https://doi.org/10.4236/jamp.2018.61018
https://doi.org/10.1016/j.sse.2014.01.005
https://doi.org/10.1063/1.4901820
https://doi.org/10.1109/TED.2014.2311129
https://doi.org/10.1016/j.microrel.2014.07.098
https://doi.org/10.1109/TED.2017.2665527
https://doi.org/10.1063/1.2730561
https://doi.org/10.1103/PhysRevB.48.14276
https://doi.org/10.1016/j.sse.2008.06.019
https://doi.org/10.1016/j.sse.2008.06.054
https://doi.org/10.1109/TNANO.2006.888533
https://doi.org/10.1103/PhysRev.138.A225


G. Y. Wang et al. 
 

 

DOI: 10.4236/jamp.2018.61018 197 Journal of Applied Mathematics and Physics 
 

[14] Tan, Y.H., Li, X.J., Tian, L.L., et al. (2008) Analytical Electron-Mobility Model for 
Arbitrarily Stressed Silicon. IEEE Transactions on Electron Devices, 55, 1386-1390.  
https://doi.org/10.1109/TED.2008.921074 

[15] Ungersböck, E., Gös, W., Dhar, S., et al. (2008) The Effect of Uniaxial Stress on 
Band Structure and Electron Mobility of Silicon. Mathematics and Computers in 
Simulation, 4, 1071-1077. https://doi.org/10.1016/j.matcom.2007.10.004 

 
 

https://doi.org/10.4236/jamp.2018.61018
https://doi.org/10.1109/TED.2008.921074
https://doi.org/10.1016/j.matcom.2007.10.004

	Modelling and Calculation of Silicon Conduction Band Structure and Parameters with Arbitrary Uniaxial Stress
	Abstract
	Keywords
	1. Introduction
	2. The Model
	2.1. Energy Band Model
	2.2. Effective Mass
	2.2.1. Density-of-State (DOS) Effective Mass
	2.2.2. Conductivity Effective Mass
	2.2.3. Strain Tensor


	3. Results and Discussion
	3.1. Energy Band Structure
	3.2. Band Edge Level of Conduction Band
	3.3. Effective Mass

	4. Summary
	Acknowledgements
	References

