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Abstract 
In this paper, a nonlinear semiquantum Hamiltonian associated to the special 
unitary group SU(2) Lie algebra is studied so as to analyze its dynamics. The 
treatment here applied allows for a reduction in: 1) the system’s dimension, as 
well as 2) the number of system’s parameters (to only three). We can now 
discern clear patterns in: 1) the complete characterization of the system’s fixed 
points and 2) their stability. It is shown that the parameter associated to the 
uncertainty principle, which constitutes a very strong constraint, is the key 
one in determining the presence of fixed points and bifurcation curves in the 
parameter’s space. 
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1. Introduction 

Semiquantum Dynamics (SD) may be used to describe systems in which quan-
tum and classical degrees of freedom coexist. One finds in [1] an exhaustive 
compilation of physical phenomena and technological applications successfully 
modeled by SD. It is also possible to encounter situations in which SD is used to 
describe physical phenomena [2] [3] [4] [5]. A nonlinear semiquantum Hamil-
tonian associated to the SU(2) Lie algebra is very useful to model the problem of 
quantum confinement, which is of interest for nanotechnology and solid state 
physics. In particular, if the quantum subsystem is associated to the SU(2) Lie 
algebra generators { }ˆ ˆ ˆ, ,x y zσ σ σ , the uncertainty principle (UP) adopts a very 
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simple form and turns out to be a motion invariant [6]. 
In [7], the authors consider the following semiquantum Hamiltonian 

2 4 2
ˆ ˆ ˆ ,

2 4 2z x
p q qH B Cq D F
m

σ σ= + + + −                (1) 

where ˆ xσ  and ˆ zσ  are quantum operators, the x and z components of a 1/2 
spin particle, while q and p are canonical conjugated classical variables (position 
and momentum) that obey the Hamilton equations [5] [8]. B, C, m, D, and F are 
positive and constant parameters. The Hamiltonian given by Equation (1) 
represents a quantum 1/2 spin particle interacting with an external magnetic 
field [2] [7] (due to the term ˆ zBσ ). The particle is confined by the double well  

potential ( )
4 2

4 2
q qV q D F= − , generated by a classical particle of mass m and it 

undergoes elastic reflections between the moving frontier, V∂ , of the double 

well potential. The term 
2

2
p
m

 represents the classical kinetic energy. The clas-  

sical and quantum variables are couple in non-linear fashion via the term, 
ˆ xCqσ , C  being the coupling constant. In [7], the authors concentrate on the 

likely presence of chaotic motion (semiquantum chaos) for special values of the 
coupling strength. The authors represent the trajectories for different initial 
conditions by stroboscopic plots, displaying regular and irregular dynamics. This 
Hamiltonian also may be reduced to the one in [2] (taking 0F = ). It also can be 
used to model the semiquantum differential equations of the spin-boson Hamil-
tonian of [9] (taking 0D = ). In [10], the authors considered the simplest case of 
a spin-boson Hamiltonian, i.e., a two level system coupled to one oscillator de-
gree of freedom, and made a posterior semiclassical approximation, to obtain a 
semiquantum Hamiltonian similar to that given by Equation (1). 

We consider that, since the Hamiltonian of Equation (1) is able to model the 
quantum confinement phenomenon, its dynamics deserves an exhaustive analy-
sis. In the present work, we purport to give a full description of its phase space 
taking into account that, in conservative systems like this one, the motion is fully 
determined by the amount and disposition of its fixed points. We make a com-
plete characterization of them and determine their stability according to the sys-
tem’s parameters values. In addition, we obtain the bifurcation curves which di-
vide the phase space into the three different zones in which the fixed points are 
located, according to their stability. We present a dimensionless formulation, 
and because the uncertainty principle (UP) is an invariant of the motion for the 
nonlinear semiquantum Hamiltonians associated to the SU(2) Lie algebra [6] 
[11], we make a change of variables that removes it as external strong constrain 
to the system’s motion equations. The UP provides then just an additional pa-
rameter in the concomitant new motion equations. We mention that, in [10], a 
similar method is used for a coupled quasiparticle-oscillator system, which 
enables the authors to study the existence of fixed points and bifurcation curves, 
allowing for a formulation in canonically conjugate variables of the excitonic 
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subsystem. In our case, the change of variables offers some advantages which are 
highlighted in describing our treatment and summarized in the conclusions. 

2. Equations of Motion 

If we consider the generators of the SU(2) Lie algebra, { }ˆ ˆ ˆ, ,x y zσ σ σ , it can be 
easily seen that they close a partial Lie algebra under commutation with the Ha-
miltonian of Equation (1), since the commutator of any ˆiσ  with Ĥ  may be 
expressed as a linear superposition of these generators. The semiquantum equa-
tions of motion are obtained through the Maximum Entropy Approach (MEP), 
using the MEP density operator ρ̂  to evaluate the Hamiltonian’s mean value, 

( )ˆ ˆˆTrH Hρ=  which, in turn, plays the role of a Hamilton function so as to 
obtain the (evolution) differential equations of motion corresponding to the 
classical degrees of freedom q and p (the prescription given by the MEP, in order 
to find the density operator, is a standard procedure. The interested reader can 
consult [6] [12] [13] [14] to become familiar with the subject). The MEP density 
operator ρ̂  corresponds to a non-pure state given that it is constructed from a 
set of noncommuting observable { }ˆ ˆ ˆ, ,x y zσ σ σ  (the generators of the SU(2) Lie 
algebra). 

Following the prescription given in [6] [12] [13], we obtain the equations of 
motion for the system given by Equation (1): 

ˆd
ˆ2 ,

d
x

yB
t
σ

σ= −                              (2) 

ˆd
ˆ ˆ2 2 ,

d
y

x zB Cq
t

σ
σ σ= −                      (3) 

ˆd
ˆ2 ,

d
z

yCq
t
σ

σ=                              (4) 

d ,
d
q p
t m
=                                      (5) 

3d ˆ ,
d x
p C Dq Fq
t

σ= − +                          (6) 

and they must obey the uncertainty relation [6] [11] which, for the SU(2) Lie al-
gebra case, adopts the form [6]: 

222 2ˆ ˆ ˆ ˆ0  1.x y zσ σ σ σ< = + + <                  (7) 

We will consider the whole range of values that the polarization vector σ̂  
can achieve in the interval ( )0,1 , given that the generators of the SU(2) Lie 
algebra { }ˆ ˆ ˆ, ,x y zσ σ σ  constitute a complete set of noncommuting observables. 
Thus, we are dealing with a non pure quantum state ρ̂ . Equation (7) defines 
the well-known Bloch sphere, whose “radius’’, σ̂ , remains a constant of the 
motion while its possible values ˆ0 1σ< <  are determined by the initial con-
ditions imposed on Equations (2)-(6). It is also taken into account that the sys-
tem’s energy (evaluated via the non pure state density operator ρ̂ ) [6] [13]: 
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2 4 2
ˆ ˆ ˆ ,

2 4 2z x
p q qH B Cq D F
m

σ σ= + + + −              (8) 

must remain a constant of motion during the whole temporal evolution [6]. 
In order to find the fixed points it is convenient to express Equations (2)-(6), 

(7), and (8) in dimensionless form [15], by defining new variables, , , , ,x y z qτ  
and p : 

0

ˆ ˆ ˆ, , ,

, , ,
x z yx z y

t T q q p p

σ α σ δ σ γ

τ µ ν

= = =

= = =
                 (9) 

with 
3

04

2 2

3 2

1, , ,
2

, , .
42

DB BT
B CC

DB D FCs
mCC DB

α γ δ µ

ν ε

= = = = =

= = =

               (10) 

Accordingly, Equations (2)-(6) and (7) become: 

d ,
d

x y
τ
= −                                 (11) 

d ,
d

y x qz
τ
= −                               (12) 

d ,
d

z qy
τ
=                                 (13) 

d ,
d

q pε
τ
=                                 (14) 

3d ,
d

p x q sq
τ
= − − +                          (15) 

( )22 2 2 2 ˆ ,x y z r σ α+ + = =                 (16) 

and from Equation (8) the system’s energy reads: 

2 4 2ˆ
.

2 4 2

H p q qh z qx s
B

ε
α

= = + + + −             (17) 

3. The System’s Fixed Points 

In order to determine the system’s fixed points we proceed, as usual, by equating 
(11)-(15) to zero. Note that the existence of them does not depend on the para-
meter ε , but only on the values of r and s. From Equation (13), there exist two 
situations: the cases 0q∗ =  and 0q∗ ≠ . 

3.1. Case q* = 0 

From 
d 0
d

x
τ
=  in Equation (11), it follows 0y = . From 

d 0
d

y
τ
=  in Equation 

(12), it follows 0x = . So, from Equation (16), we are led to z r= ± . From 
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d 0
d

q
τ
=  in Equation (14), it follows 0p = . Therefore, in this case, one obtains 

two fixed points, [ ], , , , 0,0, ,0,0x y z q p r∗ ∗ ∗ ∗ ∗  = ±  , where ˆr σ α= , 
[ ]PN 0,0, r=  and [ ]PS 0,0, r= −  being the north and south pole of the dimen-

sionless Bloch sphere. 

3.2. Case q* ≠  0 

From Equations (11)-(15) it follows that these kinds of fixed points must fulfill: 

( )* * *2 *20, 0, and ,y p x q s q z s q∗ ∗ ∗= = = − = −           (18) 

so they adopt the appearance ( )*2 *2,0, , ,0q s q s q q∗ ∗ − −  , and must obey the 
strong constraint given by Equation (16), the uncertainty principle, which in 
terms of q∗ , reads: 

( ) ( )2*2 *2 21 0,s q q r− + − =                    (19) 

with ˆr σ α= , ˆ0 1σ< < . Thus, ( ),q q r s∗ ∗=  are the roots of Equation 
(19), which should be tackled numerically. The system’s phase space, given by 
Equations (11)-(15), is five-dimensional. However, the Jacobian matrix at the 
fixed point must have, at least, one null eigenvalue, since the uncertainty condi-
tion of Equation (16) is an external constraint added to the equations of motion. 
This means that, in fact, the solutions lie on a 4D invariant manifold,  . 

Accordingly, we represent the quantum degrees of freedom, [ ], ,x y z , in 
spherical coordinates: 

( ) ( ) ( ) ( ) ( )cos sin , sin sin , cos ,x r y r z rθ ϕ θ ϕ ϕ= = =         (20) 

with 0 2πθ≤ < , 0 πϕ< < , ˆr σ α=  and we study the system’s fixed points 
by means of the four-dimensional variables, [ ] [ ]1 2 3 4, , , , , ,q pξ ξ ξ ξ θ ϕ= =ξ . 

Using the relations: 

( ) ( )2 2 2cos , tan ,yz r
x

ϕ θ= =                   (21) 

we find: 

( ) ( ) ( ) ( )

2

2 2

cos
, .

sin cos
zzyx yx

x r
θ

θ ϕ
ϕ ϕ

= − = −
�� �� �            (22) 

The system of Equations (11)-(16) becomes now: 

( ) ( )
( )

cos
1 cos ,

sin
q

ϕ
θ θ

ϕ
= −�                      (23) 

( )sin ,qϕ θ= −�                              (24) 

,q pε=�                                    (25) 

( ) ( ) 3cos sin ,p r q sqθ ϕ= − − +�                 (26) 

where ( )⋅  means ( )d
dτ

, and ( ) 22 ˆ0 < < 1rα σ= . The system’s energy given 
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by Equation (17) becomes: 

( ) ( ) ( )( )
2 4 2

cos sin cos .
2 4 2
p q qh r q sϕ ϕ θ ε= + + + −         (27) 

We claim that this change of variables (CV) offers some advantages: 
1) The quantum variables θ  and ϕ  obey the relationship: 

( ) ( )
1 1,

sin sin
h h

r r
ϕ θ

ϕ θ ϕ ϕ
∂ ∂

= = −
∂ ∂

��              (28) 

as if they were canonical spherical-conjugates, meanwhile the classical ones, q 
and p, obey, as usual, the Hamilton’s equations [6] [13]: 

, .
h h

q p
p q

∂ ∂
= = −

∂ ∂
� �                     (29) 

Thus, the fixed points ∗ξ  of the system given by Equations (23)-(26), are the 
critical points of the energy function h  of Equation (27), since: 

( ) 0, 1,2,3,4.
i

h
i

ξ
∗∂
= =

∂
ξ                    (30) 

2) The uncertainty relation in Equation (16), now of the form 
( ) 22 ˆ0 1rα σ< = < , is incorporated into the new system’s equations in a natural 

way by reducing the system dimension and removing a superfluous null eigenva-
lue. One may speak of linearization of the original system at each fixed point. 

3) Our CV provides a better characterization of the fixed points, since with 
this change we find a generic expression for them explicitly written in terms of 
the variable q. This fact facilitates the study of 1) the presence of bifurcations 
curves in the parameter’s space, and 2) the stability analysis of the fixed points. 

To obtain the fixed points, * * * *, , ,q pθ ϕ∗  =  ξ , we equate (23)-(26) to zero. 
From 0q =�  in Equation (25), it follows that * 0p = , and from 0ϕ =�  in 
Equation (24), we are led to 0 0 2 πkθ ∗ = +  or π π 2 πkθ ∗ = + , k∈ . 

3.2.1. Case k∗ = + π0 0 2θ  

From 0θ =�  in Equation (23) and ( )*cos 1θ = , it follows that: 

( ) ( )
( ) ( )

* *
* *

* *

cos
0 1 cos 1 ,

sin tan
qq

ϕ
θ

ϕ ϕ
= − = −             (31) 

so that: 

( )*tan .q ϕ∗ =                        (32) 

Then, in this case, ∗ξ  adopts the generic form ( )* * * *
0 0 0 0, arctan , ,0q qθ =  ξ . 

From Equation (32), 
( )
( )

2 *
*2

2 *

sin

cos
q

ϕ

ϕ
= , and ( )

*2
2 *

*2sin
1

q
q

ϕ =
+

. Since ( )sin 0ϕ > , 

then: 
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( )
*

*

*2
sin .

1

q

q
ϕ =

+
                    (33) 

From 0p =�  in Equation (26) and ( )*cos 1θ =  one has: 

( ) ( ) ( ) ( )* * *3 * * * *20 cos sin sin ,r q sq r q s qθ ϕ ϕ= − − + = − + −      (34) 

and then: 

( ) ( )* * *2sin .r q s qϕ = −                   (35) 

Replacing Equation (33) into Equation (35), it follows that *
0q  must be the 

solution of the following equation: 

( )2

2
.

1

r q
q s q

q
− =

+
                    (36) 

Since * 0q ≠ , the right side on Equation (36) is positive. Thus, the possible 
values of *

0q  are restricted to the range ( ) ( ), 0,s s−∞ − ∪ . In each case, the 
amount of solutions will be obtained graphically by means of the intersection 
points of two curves, namely: 

( ) ( )
2

2 2

, 0
and .

, 0 1

q s q rf q g q
s q q q

 − <
= =

− > +
        (37) 

• 0q < . Figure 1 depicts the intersection between the left branch of ( )f q  
and ( )g q . It is possible to see that for all , 0r s > , there is always a unique 
solution, ( )

1 1

* *
0 0 ,q q r s= , in the range of interest, and so a corresponding 

fixed point, ( )1 1 1

* * *
0 0 00,arctan , ,0q q =  ξ , is obtained. Note also that this point 

does not bifurcate in the ( ),r s -parameter space. 
• 0q > . Here, we are looking for the intersection points of the right branch of 

( )f q  and ( )g q . The situations for different values of r and s are depicted 
in Figure 2, by considering r as a “fixed’’ parameter and s going down from 
s r>  to s r< . 

 

 
Figure 1. The graph of the functions g and the left branch of f of Equation (37) for 

, 0r s > , showing the unique intersection point 
1

*
0q  existing for 0q < . 

https://doi.org/10.4236/am.2018.91001


R. Hansen et al. 
 

 

DOI: 10.4236/am.2018.91001 8 Applied Mathematics 
 

   
(a)                                         (b) 

   
(c)                                         (d) 

Figure 2. The graph of the functions g and the right branch of f of Equation (37) for 
, 0r s > . The figures in the first column ((a)-(c)) depict the case where f is more convex 

than g at 0q =  ( 2r < ); in the second column ((b)-(d)), g is more convex than f at 
0q =  ( 2r > ). (a) and (b) show the unique intersection point 

2

*
0q  existing for 0q > , 

when r s< . (c) there is no intersection point when s r< . (d) there are two intersection 
points, *

0,2q  and *
0,3q , when s s r< <� , s�  being a critical value for which f and g 

become tangent. When s s< �  the graphs do not intersect at all. 
 

For s r> , Figure 2(a) and Figure 2(b) show that the two curves intersect at 
one point at ( )

2 2

* *
0 0 ,q q r s= , this being the unique solution of Equation (36) in 

the range of interest, adding a new fixed point, 
2

*
0ξ . 

Decreasing the s value, the curves become tangent at 0q = , at the critical 
value s r= . Note that s is a “rigid’’ parameter since only produces f graph shifts, 
in contrast to the “flexible’’ parameter r which bends the graph of g. The scena-
rio splits into two ones when s r< , depending on the convexity of g as 
compared to the f value at 0q = , i.e., depending on the absolute values of the 
second derivatives: 

( ) ( )
( )
( )

2

52

0

1 2
0 2 and 0 .

1
q

r q
f g r

q
=

− −
′′ ′′= = =

+
          (38) 

Thus, for 2s r< <  ( ( ) ( )0 0g f′′ ′′< , see Figure 2(c)), there is no 
intersection point between f and g. However, for s r<  but 2r >  
( ( ) ( )0 0g f′′ ′′> , see Figure 2(d)), the graphs intersect at a new point, 

( )
3 3

* *
0 0 ,q q r s= , giving rise to another solution in the range of interest. This fact 

makes the line s r=  to be a codimension-1 bifurcation curve in the ( ),r s
-parameter space: an imperfect saddle-node bifurcation occurs for 2r < , since 
the fixed point 

2

*
0ξ  is lost, and another imperfect saddle-node bifurcation 
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occurs for 2r > , since a new fixed point, 
3

*
0ξ , is created (the term “imperfect” 

means that only one point is created/extinguished, instead of two, as would 
happen in a “perfect” saddle-node. This is due to the loss of the quadratic 
symmetry of 2s q−  when considering only its right branch ( 0q > ) [15]. 

This last scenario ( 2r > ) persists until the two graphs becomes tangent again 
at the critical value ( )s s t=� � , when 

2

*
0q  and 

3

*
0q  meet each other at 

( ),q q r s=� � , with ( )( ) ( )( ), ,q f q q g q=� � � �  the tangency point. For s below this 
critical value s� , the two graphs do not match any longer, and the fixed points 

2

*
0ξ  and 

3

*
0ξ  are mutually destroyed. The system undergoes a (“perfect”) 

saddle-node bifurcation at s� , and this makes the relation ( )s s r=  to be 
another codimension-1 bifurcation curve in the ( ),r s -parameter space. Note 
the fundamental role that plays the uncertainty principle parameter r in the 
coming into being of these bifurcation curves. 

To find the relation ( )s s r=  at q� , we proceed by equating the first deriva-
tives: 

( ) ( )
( )32

2 and .
1

rqf q q g q
q

−′ ′= − =
+

                (39) 

From this, we obtain the relation between q�  and r: 

( )
2

3 1,
4
rq q r= = −� �                         (40) 

valid for 2r > . Evaluating f and g at Equation (40), and so equating ( )f q�  to 
( )g q� , we find the relation between r and s: 

( )
312 ,

3
sr r s + = =  

 
                        (41) 

or, equivalently, 

( )
2

33 1.
4
rs s r= = −                          (42) 

Replacing Equation (41) into Equation (40), we find the relation between q�  
and s� , that allows to better fit the possible ranges for 

2

*
0q  and 

3

*
0q , within the 

range ( )0, s , which will be useful later on: 
23 2,s q= +� �                             (43) 

or, equivalently: 

2.
3

sq −
=
�

�                             (44) 

Thus, as 
3 2

* *
0 0q q q< <�  (Figure 2(d)), we have for s r< : 

3 2

* *
0 0

2 20, and , .
3 3

s sq q s
   − −

∈ ∈      
   

           (45) 

Note that the bifurcation curve ( )s r  meets the line s r=  tangentially at a 
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codimension-2 point ( )2,2  in the ( ),r s -parameter space (Figure 3). 

3.2.2. Case k∗
π = π + π2θ  

From 0θ =�  in Equation (23) and ( )*cos 1θ = − , it follows that: 

( )*tan .q ϕ∗ = −                         (46) 

Accordingly, in this case ∗ξ  adopts the generic form 

( )* * * *
π π π π, arctan , ,0q qθ = − ξ . Equation (33) is still valid, but from 0p =�  in 

Equation (26) and ( )*cos 1θ = − , one has: 

( ) ( )* * *sin .r q q sϕ = −                     (47) 

Replacing (33) into (47), it follows that *
πq  must be the solutions of the equa-

tion: 

( )2

2
.

1

r q
q q s

q
− =

+
                     (48) 

Accordingly, in this case the possible values of *
πq  are restricted to the range 

( ) ( ),0 ,s s− +∞∪ . Therefore, the solutions should now be obtained by the 
intersection points of the functions ( )f q−  and ( )g q  (defined in (37)) ac-
cording to the r and s values. It is easy to see that, for symmetry reasons, the 
analysis is completely analogous to the one developed in the previous Section. 
Then, the solutions thus obtained are: ( )1 1

* *
π 0 ,q q s= − ∈ +∞  for all , 0r s > , 

 

 
Figure 3. The ( ),r s -parameter space and the codimension-1 bifurcation curves: the 

s r=  and ( )
2

33 1
4
rs s r= = −  for r > 2, that meet tangentially at the codimension-2 

point ( ) ( ); 2, 2r s = . The number labeling each region indicates the quantity of 

non-degenerate fixed points. Cyan: 
1

*
0ξ , 

2

*
0ξ , 

1

*
πξ , 

2

*
πξ ; orange: 

1

*
0ξ , 

2

*
0ξ , 

3

*
0ξ , 

1

*
πξ , 

2

*
πξ , 

3

*
πξ ; violet: 

1

*
0ξ , 

1

*
πξ . 
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2 2

* *
π 0

2,
3

sq q s
 −

= − ∈ − −  
 

 for s r> , 
3 3

* *
π 0

2 ,0
3

sq q
 −

= − ∈ −  
 

 for 

( ) , 2s r s r r< < > , and the same bifurcation curves, s r=  and ( )s s r= , are 
found. Note also that * *

0 πϕ ϕ= . 
Summing up, the amount of fixed points in the ( ),r s -plane is (Figure 3): 

• 
1 1 2 2

* * * *
0 π 0 π, , , ,r s< →ξ ξ ξ ξ  

• 
( ){ }
( ){ }

1 1

1 1 2 2 3 3

* *
0 π
* * * * * *
0 π 0 π 0 π

max 2, , ,

max 2, , , , , ,

s s r
s r

s s r

ξ ξ

ξ ξ ξ ξ ξ ξ

 ≤ →≤ 
≥ →

 

4. The Stability of the Fixed Points 

The system given by Equation (1) (and then by Equation (27)) is conservative. 
Thus, the local behavior at the fixed point may be studied by considering the 
energy h  of Equation (27) as a function of [ ], , ,q pθ ϕ=ξ , :h → , 
which is a constant of motion, since 0h =� . The h-level sets, ( )h h=ξ , are 
3D invariant manifolds containing orbits given by the equations of motion. The 
h-level sets help in understanding the structure of the system’s phase space. The 
local behavior around a fixed point will be determined by the index k of ∗ξ  as 
a non-degenerate critical point of the Morse function h  [16]. 

Definition 1. The instability index ( )k k ∗= ξ  is the number of negative 

eigenvalues of the Hessian matrix of h  at ∗ξ , ( )
2

i j

h
H h

ξ ξ∗
∗

 ∂
=  

∂ ∂  
ξ

ξ  

(whenever ∗ξ  is a non-degenerate critical point, i.e. ( )det 0H h∗ ≠
ξ

). 
This is to say, k is the number of independent directions along which h  

decrease from ∗ξ . Therefore, if ( ) 0k ∗ =ξ , the h-level set around ∗ξ , corres-
ponds to a positive definite quadratic form, ∗ξ  is a local minimum of h  
and a system’s nonlinear center. If, in our case, ( )0 4k ∗< <ξ , ∗ξ  it is unstable, 
and of the saddle type. 

4.1. Obtaining the Index k of ∗ξ  

From Equation (27) the Hessian matrix of h  at ∗ξ  is: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

* * *

* * * * *

* * 2

0 0 0

0 0

0 0

0 0 0

cos sin 0 0 0

0 cos cos sin cos cos 0

0 cos cos 3 0

0 0 0

q

q qq

pp

h

h h
H h

h h

h

rq

r rq r

r q s

θθ

ϕϕ ϕ

ϕ

θ ϕ

ϕ θ ϕ θ ϕ

θ ϕ

ε

∗

∗

∗ ∗

∗ ∗

∗

∗

∗

 
 
 
 =
 
 
 
  

 −
 
 − −
 =
 − 
  

ξ

 (49) 

Since H h∗ξ
 is a square-block diagonal matrix, its eigenvalues are those 
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from the block submatrices. Taking into account that for a 2 2× -matrix the ei-
genvalues may be written in terms of its trace and determinant, we have, then, 
that the four eigenvalues of H h∗ξ

 are: 

( ) ( ) ( )
2

* *
1 2,3 4

4, , and ,
2 pp

tr trh h
θθ

λ λ ξ λ ξ∗ ∗∗ ± − ∆
= = =ξ     (50) 

where qqtr h h
ϕϕ

∗ ∗= +  and 2

qq qh h h
ϕϕ ϕ

∗ ∗ ∗∆ = − , are the trace and determi-  

nant of the block q

q qq

h h

h h

ϕϕ ϕ

ϕ

∗ ∗

∗ ∗

 
 
 
 

, respectively. The instability index is, then,  

( ) ( ){ }# 0k λ∗ ∗= <ξ ξ . 
From Equation (26), ( ) ( )* * * *3cos sinr sq qθ ϕ = − , from Equation (32), 

( ) ( )* * *cos sinq ϕ ϕ=  for *
0θ , and from Equation (46), ( ) ( )* * *cos sinq ϕ ϕ= −  

for *
πθ . Therefore, the matrix in Equation (49) for *

0ξ , is thus expressed in 
terms of *q : 

( )
( )( )

2 2

2 2 2

*
0

2 2

0 0 0

0 1 0 ,

0 3 0
0 0 0

q q s

q s q s qH h

s q q s
ε

∗ ∗

∗ ∗ ∗

∗ ∗

 −
 
 

− + − =
 
 − −
 
  

ξ
       (51) 

and for *
πξ , *

π
H h

ξ
 is the same except that * * *2

q qh h q s
ϕ ϕ
= = − . 

The eigenvalues ( )iλ
∗ξ  of Equation (50) in terms of *q  read: 

( )4 0, for all ,λ ε∗ ∗= >ξ ξ                   (52) 

guaranteeing ( ) 4k ∗ <ξ  for all ∗ξ , as befits to a conservative system which 
cannot posses a completely unstable critical point. 

( ) ( ) ( )
( )

2 2 1 1

2 2 3 3

* *
0 ,π

1 * * *
0 ,π 0 ,π

0, , ,

0, 0, , .

q s
q q s

q s
λ ∗ ∗ ∗

> ∈ +∞ →= − 
< ∈ →

ξ
ξ

ξ ξ
       (53) 

Note that ( )1 0λ ∗ ≠ξ  because * 0q ≠ , and also, *2q s≠  from Equation 
(19). For ( )2,3λ ∗ξ : 

( ) ( ) ( )( )( ) ( )
( )( )

2*2 *2 *2 *2
2 3

*2 *2 *2

1 3

3 2 ,

q s q q s s q

q q s q s

λ λ∗ ∗∆ = ⋅ = − + − − −

= − + −

ξ ξ
 

and using Equation (45), it follows that 

( )
( )

( )

1 1

2 2

1 1 3 3

2 2

* *
0 ,π

* *
0 ,π

* * *
0 ,π 0 ,π

* *
0 ,π

0, ,
2

0, ,0

20, 0, , ,
3

2
20, ,

3

q s
s

q s

sq s

s
sq s

 > ∈ +∞ → <  < ∈ → 
   −=  > ∈ +∞ →       > 
  −< ∈ →      

∪

ξ

ξ

ξ ξ

ξ

       (54) 
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From Equation (50), if 0∆ < , it follows that 2 0λ >  and 3 0λ < . Thus, for 

2 2

*
0 ,πξ , we can just conclude, from Equations (52)-(54), that ( )2 2

*
0 ,π 2k =ξ  For 

the remaining critical points, things depends on the sign of tr  in the corres-
ponding intervals: 

( )( )
( )

( )

1 1

3 3

*2 *2 *2

* *
0 ,π

* *
0 ,π

1 3

0 ,

20 0, 2
3

tr q s q q s

q s

sq s

= − + + −

> ∈ +∞ →
=   −
< ∈ → >     

ξ

ξ

         (55) 

Then, from Equations (50), (54) and (55), ( )1 1

*
2,3 0 ,π 0λ >ξ , ( )3 3

*
2,3 0 ,π 0λ <ξ , 

and therefore, from Equations (52)-(55), it follows that ( )1 1

*
0 ,π 0k =ξ  (nonlinear 

centers), and ( )3 3

*
0 ,π 3k =ξ . The summary of results is displayed in Table 1. 

Figure 4 and Figure 5 illustrate a case relative to the orange zone in Figure 3, 
for which the six fixed points coexist ( 11, 9r s= = ). 
 
Table 1. The nondegenerate critical points ∗ξ  and their instability index k: 

1

*
0ξ  and 

1

*
πξ  are the only nonlinear centers and the rest of them are saddles. 

fixed points parameters eigenvalues index k 

1 1

* *
0 πξ ,ξ  , 0r s >  1 2 3 4, , , 0λ λ λ λ >  0 

2 2

* *
0 πξ ,ξ  r s<  1 2 3 40, 0, 0, 0λ λ λ λ< > < >  2 

3 3

* *
0 πξ ,ξ  

2

33 1
4
r s r− < <  1 2 3 4, , 0, 0λ λ λ λ< >  3 

 

 

Figure 4. The * *,θ ϕ    components of six fixed points *ξ  in the orange-zone of 

Figure 3, represented in the dimensionless Bloch sphere, for 11r = , 9s = . Blue: the arc 
0θ = , red: the arc πθ = . The projection of trajectories, starting at an initial condition 

close to each *ξ , is also plotted (only for *
0 j
ξ , for symmetry and clarity reasons) dis-

playing the local behavior, according to the corresponding index k (we use 20ε = ). The 
degenerate points, PN and PS, are plotted in black. 
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(a) 

 
(b) 

Figure 5. (a) The * *,θ ϕ   -components of *
0 j
ξ , 1,2,3j =  of the Figure 4, represented 

in the quantum ( ),θ ϕ -phase space. The projection of nearby orbits is also plotted. (b) 

The * *,q p   -components of the same *
0 j
ξ , represented in the classical ( ),q p -phase 

space. 
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4.2. Note 

The other two fixed points of the system, [ ]0,0, ,0,0r± , which are not described 
by the change of variables ( [ ], , ,q pθ ϕ=ξ ), result degenerate critical points of 
the energy h  of Equation (17) as a function of [ ], , , ,x y z q p , since they force 
the vanishing of the Hessian matrix of h . 

5. Conclusions 

The dimensionless formulation of Equations (2)-(6), given by Equations 
(11)-(15), allows for reduction in the number of system’s parameters to three: r, 
s, and ε . The posterior change of variables (CV) has additional advantages as 
highlighted before: the reduction of the system’s dimension through proper 
consideration of the uncertainty principle constraint. It also affords a convenient 
way to obtain the fixed points, providing a better characterization of them, 
according to the system’s parameters, and depending only on the classical degree 
of freedom, q. We can display a relation between the new quantum degrees of 
freedom, θ  and ϕ , which turn out to be canonically “spherical-conjugates”, 
making the system’s fixed points to be the critical points of the energy function 

h . In addition, the CV illustrates the role of each parameter in the system dy-
namics in a very clear fashion: ε  can only play a role in the stability analysis, 
ensuring that the unstable fixed points are saddles. The parameter s accounts for 
the range of possible values that q can achieve at each fixed point, dividing the 
phase space into three regions. Finally, the parameter r forces the uncertainty 
principle to play a fundamental role in the appearance/disappearance of fixed 
points, thus governing the presence of bifurcations in the SU(2) nonlinear se-
miquantum dynamics. 

The putative presence of chaotic dynamics in this system, for some ( ),r s - 
parameter’s region, is still under consideration and will be reported elsewhere. 

Remark: by virtue of the SU(2) Lie algebra, the uncertainty principle becomes 
a constant of the motion. Thus, we claim that the methodology used in the 
present work applies even in the case in which the quantum subsystem of Equa-
tion (1) was nonlinear in the spin variables (as in the non-dissipative Hamilto-
nian case treated in [17], which can be used to model a SQUID). Despite the 
nonlinearity in the quantum subsystem, the uncertainty principle would remain 
there a constant of the motion. This and other topics related to semiquantum 
dynamics will be part of future work. 
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