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Abstract 
The simplified momentum equations of the two-phase flow have been 
adopted as the basic assumptions in this study. For vessels of small diameter, 
the shear stress becomes important and the friction pressure drop proposed 
by Ergun considers this effect by involving the wall effect. By replacing the 
Ergun pressure drop and the first order velocity term for particles drag model 
in the momentum equations, the relation for the drag coefficient versus the 
volume fraction is obtained. The calculus of variations is used with certain re-
striction for extremization of this drag coefficient. An analytical correlation 
for the drag coefficient is obtained depending on the volume fraction of “fluid 
particles”. The drag function obtained in previous studies does not match 
with the empirical data in the bed volume fraction range of [0.45 to 0.59]. 
Therefore, the function is modified and the results are better adjusted with the 
empirical data. 
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1. Introduction 

Fluidized bed systems are used in many commercial processes; including mixing 
particles, particle separation, solids coating, power generation through combus-
tion or gasification and particle drying. A proper understanding of the hydro-
dynamic behavior of the fluidized bed system is needed for the design and to 
scale up the new efficient reactor [1]. Inter-phase forces cause the interaction 
and coupling between phases. The coupling is achieved through the inter-phase 
forces such as the drag force. The drag model plays an important role in the 
two-phase flow modeling [2] [3]. Different correlations for the drag coefficient 
are available in various literatures. An interested reader can gain adequate 
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knowledge of the subject by studying the literature review of [1]. Most research-
ers used experimental and semi-empirical approaches to find correlations for the 
drag force. However, computational fluid dynamics has become a useful tool for 
evaluating the two-phase interaction and hydrodynamic behavior. 

New insights have been proposed in recent literature based on the combina-
tion of CFD method and empirical correlations. Sun Liyan et al., [4] proposed a 
drag coefficient model for gas-mono-size particle flow to predict the interaction 
between the gas and solid phases in the tapered bubbling fluidized beds. They 
predicted distribution of concentration, velocity and moments of particles in the 
tapered bubbling fluidized bed. Wang Shuai et al., [5] proposed a modified clus-
ter structure-dependent drag model. They verified their drag model by CFD si-
mulation and concluded that it was able to capture the axial heterogeneity with 
the dense bottom and dilute top sections. Hua et al., [6] proposed a simple drag 
model in their work to address the critical role of the particle shape to determine 
the drag force. This drag model uses the Ganser correlation and Ergun correla-
tion. They calibrated particle sphericity by minimum fluidization velocity and 
the corresponding voidage. Their results showed that the proposed drag model 
with the estimation method of particle sphericity is reasonable and convenient 
for the Eulerian-Eulerian simulation of irregular particles in the fluidized beds. 
Liu et al., [7] presented a new scheme to establish the structural parameters 
model and they used this model to solve structural parameters based on the 
available drag models. Their simulation results showed that combination of the 
structural parameters model with the available structure-based drag model can 
predict the hydrodynamics for Geldart A and B particles in circulating fluidized 
beds well. 

The approach in which effective correlations for fluidization process were ob-
tained analytically was introduced for the first time by the novel study of Grbav-
cic et al., [8]. By introducing the calculus of variations in their research as an op-
timization tool, a new approach was created. Grbavcic et al., [8] expressed the 
governing momentum equations for the fluid-particle phase and after replacing 
the Darcy pressure drop term, they obtained the drag coefficient in terms of 
voidage. This function was then extremized using the calculus of variations and 
finally an analytic equation for the fluid velocity in terms of voidage was 
achieved. Owing to the notability of this achievement, Littman and Morgan, [9] 
reviewed the generalities of this approach. They compared relations and results 
with the experimental data in the form of a new study. 

The equation obtained by Grbavcic et al., [8] is in excellent agreement with 
the experimental data for higher bed voidages. But in the voidage range of [0.45, 
0.59], the pressure gradients stemming from the experimental method lead to 
higher drag coefficients in comparison to Grbavcic et al.’s analytical approach 
that ignored the wall effect. Therefore, deviation is observed between the expe-
rimental data and analytical correlations. The present study reveals that such a 
difference stems from the use of the Darcy pressure drop equation in the process 
of obtaining the momentum equations. Moreover, neglecting the importance of 
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the linear velocity term in the drag model of the low bed voidage amplifies this 
deviation. 

To fix this problem in this study, the pressure drop equation has been re-
placed by Ergun’s correlation. For vessels of small diameter, the wall effect be-
comes important and influences the bed voidage. The frictional pressure drop, 
proposed by Ergun, is proper [10] because this correlation consists of a viscous 
term, and a Reynolds-dependent term to take into account the viscous and iner-
tial effects respectively [11]. 

An acceptable adjustment between the analytical and experimental data is ob-
tained by considering the combination of the first and second order terms of 
polynomials in the drag equation. The process of obtaining relations in this 
study includes dividing the fluidization process into two intervals of voidage of 
[0.45, 0.59] and [0.59, 1] and defining two functions with different criteria for 
these two intervals. To achieve the required quantities in the first range of voi-
dage, the governing momentum equations for the two-phase of the fluid-solid 
are written, and the drag term is replaced with the first degree velocity term. Li-
near velocity term is removed from the drag equation to find the required crite-
ria in the second range of the voidage. In this case, for the first range of voidage, 
a new equation is introduced but in the second range the equation obtained in 
the studies of Littman and Morgan, [9] is written. For equations, verification 
experimental data is used, and the new assumptions are in good agreement with 
the experimental data. 

2. Equations of Motion 

To obtain the required parameters in the fluidization process, the conservation 
equations of mass and momentum in the vertical transport of fluids and solids 
with the assumption of no-acceleration motion are used. Also, the motion of 
fluid and solids is considered to be one-dimensional, laminar and uniform in the 
steady state condition with no wall shear stress. 

2.1. Deriving the Drag Coefficient 

The drag coefficient is a dimensionless quantity which is used to calculate the 
drag force acting on the particles suspended in the fluidized bed. This factor de-
pends on voidage of the particles in the fluidization process. 

During the fluidization process, by accelerating the fluid, the voidage of the 
solids increases and it changes the drag force acting on the solid particles. 
Therefore, the relationship between the drag coefficient and the voidage of par-
ticles is the first important parameter in this research and will be found subse-
quently. 

To find this relationship and for simplification, the one-dimensional conser-
vation equations of mass and momentum for vertical transport of fluid and par-
ticles by assuming no acceleration in movement should be expressed and the re-
lation for drag force should be replaced. The conservation equations of mass for 
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two-phases of fluid and solid particles will be generally in form of relations 1) 
and 2). In these equations, the air moves as the continuous phase and suspended 
particles in the fluidized bed are described by the Eulerian approach. Accor-
dingly, conservation equations of mass and momentum for the two-phase flow 
of the particle and air are written in the form of Eulerian-Eulerian, outlined as 
follows: 

dFluid phase 0
d f fu
x
ερ  =                   (1) 

( )dSolid phase 1 0
d s su
x

ε ρ− =                  (2) 

Momentum equations representing the motion of the fluid and solid phases 
are written as relations (3) and (4): 

d 4dFluid : Drag Force
d d

f wf
f f f

bed

u pu g
x x D

τ
ερ ε ερ= − − − +        (3) 

( ) ( )( )d 4dSolid : 1 1 Drag Force
d d

s ws
s s s f

bed

u
u g

x x D
τσε ρ ε ρ ρ− = − − − − − −   (4) 

Regardless of the wall shear stress and ignoring the stress of particles on each 
other, or in other words, assuming the two-way coupling, the momentum equa-
tion is reduced and rewritten as follows: 

d dFluid phase Drag Force
d d

f
f f

u Pu
x x

ερ ε= − +             (5) 

where the average normal pressure is introduced in the form of Equation (6): 

P p gzρ= +                            (6) 

In the present study, the drag force is considered a linear function (see Equa-
tion (7)). In the research of Grbavcic et al., [8] this force is assumed to be a 
second order polynomial, and the relation they obtained is given in the form of 
Equation (8). 

Davidson [12] assumed that the drag force in the dense phase with lower voi-
dage is proportional to ( )f su u− . It is common to use ( )2

f su u−  for the large 
particles involving higher superficial velocities in the momentum equation. 

( )Drag Force B f su uβ= −  Current study                      (7) 

( )2
Drag Force B f su uβ= −  Grbavcic et al. [8] and current study (8) 

Now, it is desirable to detect a relation for the drag coefficient from the mo-
mentum equation. In order to achieve this aim, the pressure drop equation 
should be placed in Equation (5). In this study, the pressure drop term is re-
placed with Ergun’s equation. Ergun’s equation for pressure drop of the sol-
id-fluid phase is introduced in Equation (9). In the research of Grbavcic et al., 
[8] the Darcy pressure drop Equation (10) is used: 

( ) ( ) ( ) ( )
2

21 2
3 3

1 1
f s f s

k kP u u u u
x

ε ε
ε ε
− −∂

= − + −
∂

 Current study     (9) 
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( )( )1 s f
P g
x

ε ρ ρ∂
= − −

∂
 Grbavcic et al. [8]         (10) 

where 1k  and 2k  are constants. 
The relation for the drag coefficient in terms of voidage is obtained (Equation 

(12)) by replacing Ergun’s equation (Equation (9)) in the momentum equation  

(Equation (5)) for non-accelerating beds (
d

0
d

fu
x
= ). Similarly, by putting the  

Darcy correlation (Equation (10)) in the momentum equation (Equation (5)), 
the relationship between the drag coefficient and the voidage in the research of 
Grbavcic et al., [8] is obtained: 

( ) ( ) ( )2
1 2

2 3

1 1k k Uε ε
β ε

ε ε
− −

= +  Current study         (11) 

( )
( )( )3

2

1 p f g

U

ε ε ρ ρ
β ε

− −
=  Grbavcic et al. [8]      (12) 

where superficial velocity is defined as: 

( ) ( )s fU u uε ε= −                           (13) 

After deriving the drag coefficient, it is necessary to extremize this function. 
In the following sections, the drag coefficient is extremized, the relationship be-
tween fluidization velocity and voidage is determined, and the results are dis-
cussed. 

2.2. Extremizing the Drag Functions 

In order to be able to extremize this drag coefficient function (in terms of voi-
dage using the calculus of variations), it is necessary to change it to the shortest 
path problem. In the fluidization process, the physics of the problem dictates 
that for different voidages, the drag force acting on the suspended solids should 
be at their least magnitude. It is physically equivalent to a rope that is attached 
from both ends to two points. In this situation, its potential energy will stand at 
the lowest possible level. 

To formulate this physical sense mathematically, it is necessary to define the 
drag coefficient and voidage as dimensionless parameters and then normalize 
them in the interval of [0, 1]. Doing this on the drag coefficient and voidage 
leads to emergence of two quantities x and y, in the form of relations (14) and 
(15). 

1
mf

mf

x
ε ε

ε
−

=
−

                            (14) 

1
mf

y β
β

= −                             (15) 

Since the fluidized bed is addressed between the minimum and maximum 
fluidity, it is necessary to consider the drag coefficient in the minimum fluidity 
as the beginning of the fluidization process. This quantity is obtained by consi-
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dering the voidage coefficient of the minimum fluidity in Equation (11) Equa-
tion (12). 

( ) ( )2
1 2

2 3

1 1mf mf mf
mf

mf mf

k k Uε ε
β

ε ε

− −
= +  Current study     (16) 

( )( )3

2

1mf mf s f
mf

mf

g

U

ε ε ρ ρ
β

− −
=  Grbavcic et al. [8]   (17) 

Now, after the definition of the normalized quantities, it is necessary to de-
termine the required functional of the calculus of variations. It can be perceived 
from a mathematical viewpoint that, among all the curves available for the 
normalized drag coefficient (y), the area under the curve of dI y x= ∫  is 

constant and this relation is considered a restriction for the problem. Then: 

1 1

0

1d 1 d
1 mfmf mf

I y x
ε

β ε
ε β

 
= = −  −  
∫ ∫                 (18) 

The next step is to determine the conditions in which the least possible  

lengths of the normalized drag curves 1
mf

y β
β

= −  occur. This condition is  

mathematically defined as Equation (19): 
1 2
0

1 d miny x′+ =∫                        (19) 

The drag coefficient curve will change the maximum between the first and 
end point. Therefore, the functional of this problem is defined as Equation (20): 

( ) ( )
1

2 2, 1F y y y yλ ′ ′= + +                      (20) 

In Equation (20), the parameter λ is called the Lagrange multiplier. 
Now, after definition of the functional of the problem, its extremum is ob-

tained using the calculus of variations. Referring to the approach of the calculus 
of variations of Gelfand and Fomin, [13] it can be perceived that this problem is 
isoparametric with one restriction, and its functional must satisfy the Eu-
ler-Lagrange differential equation. The Euler-Lagrange equation is defined as the 
relation (21): 

d 0
d

F F
x y y
 ∂ ∂

− = ′∂ ∂ 
                       (21) 

By substituting the relation F , which was obtained in Equation (20), into 
Equation (21) and solving it, the extremum value of y is obtained as: 

( )
1

2 2
2 1

1 1y c x cλ
λ
 = − − +                     (22) 

In the relation λ , 1c  and 2c  are constant values and for detecting them, 
three boundary conditions are required. Relations (23), (24) and (25) are re-
ferred to as boundary conditions. 
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( )0 0y =                           (23) 

( )1 1y =                           (24) 

( )
1

1 d1
d

mf

mf

y
ε

ε β
β ε →

 −
′ = −  

 
                   (25) 

The boundary condition expressed in Equation (25) will be in the form of the 
following relations by using Equations (14) and (15): 

( ) ( )
3

2

1 2

1
1

mf t

mf mf mf

k U
y

k k U

ε

ε ε
′ =

− +
 Current study      (26) 

( )
( )2

31 mf t

mf

U U
y

ε
′ =  Grbavcic et al. [8]      (27) 

where tU  describes terminal velocity when 1ε → . Using these boundary con-
ditions, the constant values of 2c , and 1c  are obtained: 

2
1 11 c cλ = − −                           (28) 

2
12

1 1 2 2
1 1

1
1

1

c
c c c

c c
λ

−
= − − =

− −
                    (29) 

And, 

( )

1
2 23

2
1

1 2

1
1

mf t

mf mf mf

k U
c

k k U

ε

ε ε

−
  
  = +
  − +   

 Current study    (30) 

1
2 22

1 2 31 mf

t mf

U
c

U ε

−
  
 = +      

 Grbavcic et al. [8]        (31) 

By substituting the values of y and x into the relation (22), the extremum of 
the drag coefficient equation in terms of voidage is obtained as Equation (32) 
[9]: 

( )
2

2 1
11 1

1
mf

mf mf

c c
ε εβ λ

β λ ε

  −
 = − + − +   −  

             (32) 

This dimensionless drag coefficient is the function of the bed fluidization ve-
locity in the balanced bed situation. 

2.3. Determining the Relationship between Fluidization Velocity 
and Voidage 

As mentioned before, another important parameter in the fluidization process is 
the fluidization velocity for different voidages. To find this parameter, the rela-
tions obtained for the drag coefficient in terms of voidage are used. After sim-
plifying relations (11) and (12), the connection between the fluidization velocity 
and voidage is obtained as Equations (33) and (34): 
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( ) ( )
( )3

1

2 2

1
1

k
U

k k
ε εβεε

ε
−

= −
−

 Current study           (33) 

( ) ( )3

3

1
(1 )

mf
mf

mf mf

U U
βε ε

ε
βε ε

−
=

−
 Grbavcic et al. [8]      (34) 

3. Results and Discussion 

In this section, the relations which were mentioned previously are validated with 
the empirical data. To achieve this purpose, the empirical research data of 
Grbavcic et al., [8] will be accompanied. The test set-up used water as fluid and 
spherical solid particles with 1.94 in diameter. Also, in this experiment, the ini-
tial bed height, bed diameter and the reactor height were 1000 mm, 40 mm and 
2.2 m, respectively. According to the result of Grbavcic et al., [8] experimental 
data for ,,mf mf mfU ε β  are 0.0205, 0.447, and 3.77 and the calculated values of 

1 2, ,tU c c  are 0.288, 0.9987, and −0.054, respectively. 
The data obtained from the experiment of Grbavcic et al., [8] for the drag 

coefficient in terms of voidage are shown in Figure 1. In this figure, the results 
of the analytical equations obtained from the present study and the research of 
Grbavcic et al., [8] are illustrated. 

As can be seen in Figure 1, in the interval of [0.45, 0.59], the relation obtained 
in the present study is in excellent agreement with the experimental data. In the 
voidage range of [0.59, 1], the equation obtained in the investigation of Grbavcic 
et al., [8] predicts experimental data as well. It can be concluded that in the voi-
dage range of [0.45, 0.59], the assumptions of Ergun pressure drop as well as the 
linear term of superficial velocity in the drag model are more consistent with re-
ality. But in the voidage range of [0.59, 1], the assumptions of Darcy pressure 
drop and non-linear term of the superficial velocity which are performed by 
Grbavcic et al., [8] in the investigation determine the drag coefficient well. 

Empirical data for superficial velocity of the fluidization in terms of voidage is 
presented in Figure 2. Analytic relations obtained in the present study and the 
research that was conducted by Grbavcic et al., [8] are also shown below. 

In the voidage range of [0.49, 0.59], the relation derived in the present study 
represents a closer approximation of the empirical data and is specified in Fig-
ure 2. However, in the voidage range of [0.59, 1], the relation achieved in the re-
search of Grbavcic et al., [8] predicts the experimental data in the same way. 

4. Conclusions 

In the voidage range of [0.45, 0.59], the measured pressure gradients in the re-
search of Grbavcic et al., [8] lead to slightly higher drag coefficients. They con-
cluded that this deviation is due to a small wall friction which was ignored in 
their considered correlations. For vessels of small diameter, the wall effect be-
comes important and influences the bed voidage [10]. The frictional pressure 
drop proposed by Ergun consists of a viscous term and a Reynolds-dependent 
term to consider the viscous and inertial effects, respectively [11]. 
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Figure 1. Comparison of the drag coefficient equations obtained in current study and by 
Grbavcic et al. [8]. 

 

 
Figure 2. Comparison of the fluidization velocity obtained in current study and by 
Grbavcic et al. [8]. 

 
The assumptions of Ergun pressure drop and the linear term of superficial 

velocity in the drag model are more consistent with reality. However, in the voi-
dage range of [0.59, 1], the assumptions of Darcy pressure drop and non-linear 
term of superficial velocity, which are used in the investigation of Grbavcic et al., 
[8] determine the drag coefficient perfectly. 
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Nomenclature 
.c s  Current study 

d  Diameter (m) 

g  Gravitational acceleration (m⋅s−2) 

P  Average normal Pressure (kg⋅m−1⋅s−2) 

p  Pressure (kg⋅m−1⋅s−2) 

u  Velocity (m⋅s−1) 

x  Dimensionless voidage = ( ) ( )1mf mfε ε ε− −  

y  Dimensionless drag coefficient = 1 mfβ β−  

z  Height (m) 

Greek symbols  

β  Drag coefficient (-) 

ε  Voidage (-) 

λ  Lagrange multiplier (-) 

µ  Dynamic viscosity (kg⋅m−1⋅s−1) 

ρ  Density (kg⋅m−3) 

σ  Solid pressure (kg⋅m−1⋅s−2) 

τ  Shear stress (kg⋅m−1⋅s−2) 

Subscript  

f  Fluid 

s  Solid 

t  Terminal 
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