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Abstract 
In this article, we investigate some exact wave solutions to the higher dimen-
sional time-fractional Schrodinger equation, an important equation in quan-
tum mechanics. The fractional Schrodinger equation further precisely de-
scribes the quantum state of a physical system changes in time. In order to 
determine the solutions a suitable transformation is considered to transmute 
the equations into a simpler ordinary differential equation (ODE) namely 
fractional complex transformation. We then use the modified simple equation 
(MSE) method to obtain new and further general exact wave solutions. The 
MSE method is more powerful and can be used in other works to establish 
completely new solutions for other kind of nonlinear fractional differential 
equations arising in mathematical physics. The affect of obtaining parameters 
for its definite values which are examined from the solutions of two dimen-
sional and three dimensional time-fractional Schrodinger equations are dis-
cussed and therefore might be useful in different physical applications where 
the equations arise in this article. 
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1. Introduction 

The differential equations with fractional order have recently become a valuable 
tool to the modeling of numerous tangible events and it has gained importance 
and popularity to the researchers. The modeling of a tangible incident plays an 
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important role on the history of the previous time which can also be successfully 
achieved by using fractional calculus. The use of fractional differentiation for the 
mathematical modeling of real-world physical problems has been widespread in 
recent years, for example, the modeling of earthquake, the fluid dynamic traffic 
model with fractional derivatives, and measurement of viscoelastic material 
properties. Applications of fractional differential equations in other fields, like 
quantum mechanics, electricity, plasma physics, chemical kinematics, optical fi-
bers and related area are also felt. The fractional calculus has dominated in every 
field of sciences and engineering. In quantum mechanics the fractional Schro-
dinger equation [1] [2] is an equation that describes how the quantum state of a 
physical system changes in time. Thus, searching traveling wave solutions of 
fractional nonlinear evolution equations (NLEEs) plays a fundamental role. To 
know the internal mechanism of complex physical phenomena exact solutions of 
nonlinear fractional differential equations is very much important. As a result, 
recently some useful methods have been established and enhanced for obtaining 
exact solution to the fractional evolution equations such as, the extended direct 
algebraic function method [3] [4], the F-expansion method [5], the Adomian 
decomposition method [6], the homotopy perturbation method [7] [8] [9] [10], 
the tanh-function method [11], the Sine-Cosine method [12], the Jacobi elliptic 
method [13], the finite difference method [14], the variational iteration method 
[15] [16], the variational method [17], the Fourier transform technique [18], the 
modified decomposition method [19], the Laplace transform technique [20], the 
operational calculus method in [21], the exp-function method [22] [23], the 
( )G G′ -expansion method [24] [25] [26], the modified simple equation method 
(MSE) [27]-[34], the ( )( )exp ϕ η− -expansion method [35], the sub equation 
method [36], the multiple exp-function method [37] [38], the simplest equation 
method [39], the direct algebraic function method [40] [41] [42] [43], the ex-
tended auxiliary equation method [44] etc. 

The aim of this article is to examine the further general and new exact solu-
tion of higher dimensional time-fractional Schrodinger equation by making use 
of the modified simple equation method [27]-[34] and discuss effect of the in-
cluded parameters to the obtained solutions. We also discuss that the attained 
solutions might be useful and realistic to analyze the fractional quantum system 
for the time fractional two and three dimensional Schrodinger equation. We also 
have studied the behavior of emerging parameters which affect the obtained so-
lutions and also describe how the quantum state of a physical system changes in 
time. In earlier literature, the time fractional Schrodinger equation is investi-
gated through the first integral method [45], the F-expansion method [46], the 
Fourier transformation method [18], and the Laplace transformation method 
[47]. 

The MSE method is a recently developed efficient, potential and rising me-
thod to investigate wave solutions to the nonlinear fractional equations. Its 
finding results are straightforward, efficient, systematic, and no need to use the 
symbolic computation software to manipulate the algebraic equations. 
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The rest of the article is processed as follows: In Section 2, we explain the Ju-
marie modified Riemann-Liouville derivative. In Section 3, we describe the out-
line of the MSE method. In Section 4, we investigate new and further general 
solutions to the time fractional equations mentioned above. In Section 5, we 
draw our conclusions. 

2. Modified Riemann-Liouville Derivative 

The Jumarie’s modified Riemann-Liouville derivative of order α  is defined as 
follows [48]: 
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Some properties for the proposed modified Riemann-Liouville derivative are 
listed [36] as follows: 

( )
( )

1
, 0,

1xD x xα γ γ αγ
γ

γ α
−Γ +

= >
Γ + −

               (2.2) 

( ) ( )( ) ( ) ( ) ( ) ( ) ,x x xD f x g x g x D f x f x D g xα α α= +          (2.3) 

( ) ( ) ( ) ( ) ( )( ) ,x g x gD f g x f g x D g x D f g x g x
αα α α ′= =                 (2.4) 

The above formulae play an important role in fractional calculus and also 
fractional differential equations. 

3. Outline of the Method 

Let us consider the nonlinear fractional evolution equation in the form: 

( )2 2, , , , , 0,t x t xH u D u D u D u D uα α α α =               (3.1) 

where ( ),u u x t=  is wave function, H  is a polynomial in ( ),u x t  and its 
partial derivatives, which consist of the highest order derivatives and nonlinear 
terms of the highest order, and the subscripts denote partial derivatives. To ob-
tain the solution of (3.1) by using the MSE method [27]-[34], we have to execute 
the subsequent steps: 

Step 1: We assume, ( ) ( ), eiu x t ηφ ξ=  and the traveling wave variable, 

( )1
ctk x

α

ξ
α

 
= −  Γ + 

 and 
( )1
wtmx

α

η
α

= −
Γ +

,            (3.2) 

permits us to transform the Equation (3.1) into the following ordinary differen-
tial equation (ODE): 

( ), , , 0G u u u′ ′′ = ,                        (3.3) 
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where G  is a polynomial in ( )u ξ  and its derivatives, wherein ( ) d
d

uu ξ
ξ

′ = . 

Step 2: We assume that the solution of Equation (3.3) can be revealed in the 
form: 

( ) ( )
( )0

,
i

N

i
i

s
u a

s
ξ

ξ
ξ=

 ′ 
=  

  
∑                       (3.4) 

where ( ), 0,1, 2, ,ia i N=   are unknown constants to be evaluated, such that 
0Na ≠ , and ( )s ξ  is an unidentified function to be estimated. In Jacobi ellip-

tic function method, ( )G G′ -expansion method, F-expansion method, Riccati 
equation method, extended tanh-function method etc., the solutions are 
pre-defined or the solutions are presented in terms of some well-known diffe-
rential equations, but in the MSE method, ( )s ξ  is neither pre-defined nor a 
solution of any pre-defined differential equation. This is the individuality and 
uniqueness of the MSE method. Therefore, some useful and realistic solutions 
might be obtained by this method. 

Step 3: The positive integer N arises in Equation (3.4) can be determined by 
balancing the highest order nonlinear terms and the derivatives of highest order 
occur in Equation (3.4). 

Step 4: Inserting (3.4) into (3.3) and simplifying for the function ( )s ξ , we 

obtain a polynomial of 
( )
1

s ξ
 
  
 

. From the resulted polynomial, we equate all 

the coefficients of ( )( ) ( ), 0,1, 2, ,
i

s i Nξ
−

=   to zero. This procedure yields a 
system of algebraic and differential equations which can be solved for determin-
ing ( )0,1,2, ,ia i N=  , ( )s ξ  and the other necessary parameters. This com-
pletes the determination of the solutions to the Equation (3.1). 

4. Applications of the Method 

In this section, we will examine the new and further general useful solutions to 
the time fractional (2+1)-dimensional and (3+1)-dimensional Schrodinger equa-
tions. 

4.1. The (2+1)-Dimensional Schrodinger Equation 

In this section, we investigate some applicable close form traveling wave solu-
tions to the time fractional (2+1)-dimensional Schrodinger equation by making 
use the MSE method. Let us consider the time fractional (2+1)-dimensional 
Schrodinger equation of the form: 

( ) 21 , 0 1,
2t xx xx yyiD u u u u pu u uα α= + + + < ≤           (4.1.1) 

where α  and p  are emerging parameters. The Schrodinger equation is a 
mathematical equation that describes the variation over time of a physical 
structure on the fractional quantum system, as for instance wave particle duality 
is noteworthy. We can use this equation as a mathematical formula for the study 
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of quantum mechanical system (The equation is a mathematical formula for the 
study of quantum mechanical systems). By means of the traveling transforma-
tion (3.2), the Equation (4.1.1) is converted into the following nonlinear ODE: 

( ) ( )2 2 32 0km ck i k w m pφ φ φ φ φ φ′ ′′− + + − − − = ,         (4.1.2) 

Equating real and imaginary part of Equation (4.1.2), we obtain 

( )2 0km ck φ′− = ,                       (4.1.3) 

And 
2 2 3 0k w m pφ φ φ φ φ′′ + − − − = .                 (4.1.4) 

As 0φ′ ≠ , from Equation (4.1.3), it can be easily obtained 2c m= . 
Now, balancing the linear term of the highest order derivative term φ′′  and 

the nonlinear term of the highest order 3φ  occurring in (4.1.4), yields 1N = . 
Thus, the solution of Equation (4.1.4) is the form: 

( ) ( )
( )0 1

s
a a

s
ξ

φ ξ
ξ

′
= + ,                     (4.1.5) 

where 0a  and 1a  are constants to be determined, such that 1 0a ≠ , and 
( )s ξ  is an unknown function to be evaluated. Now, it is simple to estimate the 

following: 

( ) ( )2
1 1

2

a s a s
ss

φ ξ
′ ′′

′ = − + ,                    (4.1.6) 

( ) ( )3
1 1 1

3 2

2 3a s a s s a s
ss s

φ ξ
′ ′ ′′ ′′′

′′ = − + ,                (4.1.7) 

Substituting the values of ( ) ( ),φ ξ φ ξ′′  from (4.1.5) and (4.1.7) into (4.1.4) 
and then equating the coefficients of 0 1 2 3 4, , , ,s s s s s− − − −  to zero, we respectively 
obtain 

2 3
0 0 0 0 0m a pa wa a− − + + =                   (4.1.8) 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1 0 1 13 0m a s pa s wa s a a s k a sξ ξ ξ ξ ξ′ ′ ′ ′ ′′′− − + − + =      (4.1.9) 

( ) ( ) ( )2 2 2
0 1 13 3 0a a s k a s sξ ξ ξ′ ′ ′′+ =               (4.1.10) 

( ) ( )2 3 3 3
1 12 0k a s a sξ ξ′ ′− =                  (4.1.11) 

From (4.1.8) and (4.1.11), we attain  
2

0 00,a a m p w= = ± − − +  and 1 12 ; 0a k a= ± ≠  

Case 1: When 0 0a = , Equation (4.1.2) produces an absurd solution. Hence, 
the case is not accepted. 

Case 2: When 2
0a m p w= − − + , 1 2a k= ±  and 2c m= , then from Equ-

ations. (4.1.9) and (4.1.10), we obtain 

( )
2

22
1 e

2
Mc ks c

N
ξξ = −  , where 

2
2,

2
m p w

M N m p w
k

− − +
= = + − . 

Substituting the value of 0 1,a a  and ( )s ξ  into the solution (4.1.5), it yields 
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( )
( )

( )
2 2

2 1

2 2
2 1

2 e 2

e 2

M

M

Mk c k c N

c k c N

ξ

ξ
φ ξ

+
=

− +





               (4.1.12) 

Converting the solution (4.1.12) from exponential to trigonometric function, 
we attain 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2
2 1 2 1

2 2
2 1 2 1

2 2 cosh 2 sinh

2 cosh 2 sinh

Mk c k c N M c k c N M

c k c N M c k c N M

ξ ξ
φ ξ

ξ ξ

+ ± − +
=

− + ± +
 (4.1.13) 

Since, 1c  and 2c  are arbitrary constant, one can choose their values arbitra-
rily. Therefore, if we choose, 2

1c k=  and 2 2c N= ± , from solution (4.1.13), we 
obtain 

( ) ( )2 cothMk Mφ ξ ξ= ±                  (4.1.14) 

( ) ( )2 tanhMk Mφ ξ ξ= ±                  (4.1.15) 

Again when 2
0a m p w= − − − + , 1 2a k= ±  and 2c m= , then from Equ-

ations (4.1.9) and (4.1.10), we obtain 

( )
2

22
1 e

2
Mc ks c

N
ξξ ±= − , where 

2
2,

2
m p w

M N m p w
k

− − +
= = + −  

Inserting the values of 0 1,a a  and ( )s ξ  into the solution (4.1.5), it yields 

( )
( )

( )
2 2

2 1

2 2
2 1

2 e 2

e 2

M

M

Mk c k c N

c k Nc

ξ

ξ
φ ξ

±

±

+
= −

− +
              (4.1.16) 

Transforming the solution (4.1.16) from exponential to trigonometric func-
tion, it becomes 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2
2 1 2 1

2 2
2 1 2 1

2 2 cosh 2 sinh

2 cosh 2 sinh

Mk c k c N M c k c N M

c k c N M c k c N M

ξ ξ
φ ξ

ξ ξ

+ − +
= −

− + +





(4.1.17) 

Here 1c  and 2c  are arbitrary constants, so one can select their values arbi-
trarily. Thus, if we select, 2

1c k=  and 2 2c N= ± , from the solution (4.1.17), we 
obtain 

( ) ( )2 cothMk Mφ ξ ξ= ±                  (4.1.18) 

And 

( ) ( )2 tanhMk Mφ ξ ξ= ±                  (4.1.19) 

Therefore, combining the solutions (4.1.14), (4.1.15), (4.1.18) and (4.1.19), we 
obtain the required solutions for this case as follows: 

( ) ( )2 cothMk Mφ ξ ξ= ±                  (4.1.20) 

And 

( ) ( )2 tanhMk Mφ ξ ξ= ±                 (4.1.21) 

Now, making use of the fractional wave variable (3.2) into solution (4.1.20), 
we obtain 
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( ) ( )
2 coth

1
ctMk Mk x

α

φ ξ
α

  
= ± −    Γ +  

           (4.1.22) 

And the solution (4.1.21), becomes 

( ) ( )
2 tanh

1
ctMk Mk x

α

φ ξ
α

  
= ± −    Γ +  

           (4.1.23) 

Substituting 
2

2
m p w

M
k

− − +
= , solution (4.1.22) yields 

( ) ( )

2
2 coth

12
m p w ctm p w x

α

φ ξ
α

  − − +
 = ± − − + −   Γ +  

   (4.1.24) 

And the solution (4.1.23) yields 

( ) ( )

2
2 tanh

12
m p w ctm p w x

α

φ ξ
α

  − − +
 = ± − − + −   Γ +  

   (4.1.25) 

The solutions attained in (4.1.24) and (4.1.25) are new and further general 
than the existing solutions. If we choose alternative values of 1c  and 2c , fur-
ther closed form analytical solutions to the (2+1)-dimensional nonlinear time 
fractional Schrodinger equation can be extracted, but for simplicity and con-
ciseness the remaining solutions have not been marked out. 

4.2. The (3+1)-Dimensional Schrodinger Equation 

In this section, we will use the MSE method to obtain new exact solution to the 
time-fractional two-dimensional Schrödinger equation. Consider the time- 
fractional two-dimensional Schrödinger equation is of the form: 

( ) 21 , 0 1,
2t xx xx yy zziD u u u u u pu u uα α= + + + + < ≤         (4.2.1) 

where α  and p  are emerging parameters. It arises as a description of the in-
fluence on the fractional quantum system. Using the traveling transformation 
(3.2), the Equation (4.2.1) becomes in the following nonlinear ODE: 

( ) ( )2 2 36 2 3 2 3 2 2 0km ck i k w m pφ φ φ φ φ φ′ ′′− + + − − − =        (4.2.2) 

Separating real and imaginary part of Equation (4.2.2), we obtain 

( )6 2 0km ck φ′− = ,                      (4.2.3) 

and 

( )2 2 33 2 3 2 2 0k w m pφ φ φ φ φ′′ + − − − = .              (4.2.4) 

Balancing the highest order derivative term φ′′  and the nonlinear term of the 
highest order 3φ  occurring in (4.2.4) yields 1N = . Thus, the solution of Equa-
tion (4.2.4) takes formal form: 

( ) ( )
( )0 1

s
a a

s
ξ

φ ξ
ξ

′
= +                       (4.2.5) 
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where 0a  and 1a  are constants to be evaluated such that 1 0a ≠ , and ( )s ξ  
is an unknown function to be determined. Now, it is simple to compute the fol-
lowings: 

( ) ( )2
1 1

2

a s a s
ss

φ ξ
′ ′′

′ = − +                    (4.2.6) 

( ) ( )3
1 1 1

3 2

2 3a s a s s a s
ss s

φ ξ
′ ′ ′′ ′′′

′′ = − +                 (4.2.7) 

Inserting the values of ( ) ( ),φ ξ φ ξ′′  from (4.2.5) and (4.2.7) into Equation 
(4.2.4) and then setting the coefficients of 0 1 2 3 4, , , ,s s s s s− − − −  equal to zero, we 
respectively obtain 

2 3
0 0 0 03 2 2 2 0m a pa wa a− − + − =                 (4.2.8) 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1 0 1 13 2 2 6 3 0m a s pa s wa s a a s k a sξ ξ ξ ξ ξ′ ′ ′ ′ ′′′− − + − + =     (4.2.9) 

( ) ( ) ( )2 2 2
0 1 16 9 0a a s k a s sξ ξ ξ′ ′ ′′− − =               (4.2.10) 

( ) ( )2 3 3 3
1 16 2 0k a s a sξ ξ′ ′− =                  (4.2.11) 

As 0φ′ ≠ , from (4.2.3) it can be easily obtained 3c m= . 
From Equations. (4.2.8) and Equation (4.2.11), we attain 

2

0 0
3 2 2

0,
2

m p w
a a

− − +
= = ±  and 1 3a k= ±  since 1 0a ≠ . 

Case 1: When 0 0a = , Equation (4.2.2) provides an absurd solution. Hence, 
the case has not been accepted. 

Case 2: When 
2

0
3 2 2

2
m p w

a
− − +

= , 1 3a k= ±  and 3c m= , from (4.2.9) 

and (4.2.10), we attain 

( )
2

22
1

3 e Mk cs c
N

ξξ ±= − , where 
23 2 2

6
m p w

M
k

− − +
= , 26 4 4N m p w= + −  

Therefore, substituting the values of 0 1,a a  and ( )s ξ  into the solution 
(4.2.5), we obtain 

( )
( )2 2

2 1
2 2

2 1

3 3 e

3 e

M

M

Mk c k Nc

c k Nc

ξ

ξφ ξ
+

=
− +





              (4.2.12) 

Converting the solution (4.2.12) from exponential to trigonometric function, 
we obtain 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2
2 1 2 1

2 2
2 1 2 1

3 3 cosh 3 sinh

3 cosh 3 sinh

Mk c k c N M c k c N M

c k c N M c k c N M

ξ ξ
φ ξ

ξ ξ

+ −
= −

− +





 (4.2.13) 

Here 1c  and 2c  are arbitrary constants. Since, 1c  and 2c  are arbitrary 
constants one might choose their values arbitrarily. Therefore, if we choose, 

2
1 3c k=  and 2c N= ± , from (4.2.13) we obtain 

( ) ( )3 cothMk Mφ ξ ξ= ±                   (4.2.14) 

and 
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( ) ( )3 tanhMk Mφ ξ ξ= ±                    (4.2.15) 

Again, when 
2

0
3 2 2

2
m p w

a
− − +

= − , 1 3a k= ±  and 3c m= , from (4.2.9) 

and (4.2.10) we obtain 

( )
2

22
1

3 e Mk cs c
N

ξξ ±= − , where 
2

23 2 2
, 6 4 4

6
m p w

M N m p w
k

− − +
= = + −  

Thus, from (4.2.5) we obtain 

( )
( )2 2

2 1
2 2

2 1

3 3 e

3 0.5 e

M

M

Mk c k c N

c k c N

ξ

ξφ ξ
+

=
±

               (4.2.16) 

Shifting the solution (4.2.16) from exponential to trigonometric function, we 
attain 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2
2 1 2 1

2 2
2 1 2 1

3 3 cosh 3 sinh

3 cosh 3 sinh

Mk c k c N M c k c N M

c k c N M c k c N M

ξ ξ
φ ξ

ξ ξ

+ − −
=

− − +
  (4.2.17) 

where 1c  and 2c  are integral constants. Since 1c  and 2c  are arbitrary con-
stants, so one might pick their values randomly. Now, if we pick, 2

1 3c k=  and 

2c N= ± , from (4.2.17) we obtain 

( ) ( )3 cothMk Mφ ξ ξ= ±                    (4.2.18) 

and 

( ) ( )3 tanhMk Mφ ξ ξ= ±                   (4.2.19) 

Therefore, comparing the solutions (4.2.14), (4.2.15), (4.2.18) and (4.2.19), we 
obtain the next solutions: 

( ) ( )3 cothMk Mφ ξ ξ= ±                    (4.2.20) 

and 

( ) ( )3 tanhMk Mφ ξ ξ= ±                    (4.2.21) 

Now, making use of the fractional wave variable (3.2) into solutions (4.2.20) 
and (4.2.21), we obtain 

( ) ( )
3 coth

1
ctMk Mk x

α

φ ξ
α

  
= ± −    Γ +  

             (4.2.22) 

and 

( ) ( )
3 tanh

1
ctMk Mk x

α

φ ξ
α

  
= ± −    Γ +  

            (4.2.23) 

Putting the value 
23 2 2

6
m p w

M
k

− − +
= , solutions (4.2.22) and (4.2.23) re-

spectively become 

( ) ( )

2 23 2 2 3 2 2
coth

12 6
m p w m p w ctx

α

φ ξ
α

  − − + − − +
 = ± −   Γ +  

 (4.2.24) 
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and 

( ) ( )

2 23 2 2 3 2 2
tanh

12 6
m p w m p w ctx

α

φ ξ
α

  − − + − − +
 = ± −   Γ +  

 (4.2.25) 

The solutions attained (4.2.24) and (4.2.25) are new and more general than the 
existing solutions. If we choose alternative values of 1c  and 2c , further closed 
form analytical solutions to the three dimensional nonlinear time-fractional 
Schrodinger equation can be extracted, but for simplicity and conciseness the re-
sidual solutions have not been marked out. 

5. Conclusion 

In this article, we have examined new and further general closed form solitons to 
time fractional two dimensional and three dimensional Schrodinger equations 
by means of the efficient technique known as modified simple equation (MSE) 
method. The solutions are attained in general form and definite values of the in-
cluded parameters yield diverse known soliton solutions. The attained solutions 
might be useful to the influence on the fractional quantum system for the time 
fractional two dimensional and three dimensional Schrodinger equations. And 
we also have studied the behavior of emerging parameters which are affecting 
the physical system on the consider equations for the obtaining solutions. When 
the parameters take certain special values, the solitary waves are derived from 
the traveling waves. The established results show that the MSE method is more 
powerful, unified and can be used for many other fractional equations to get 
feasible solutions of the tangible incidents. 
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