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Abstract 
 
In this paper, the power-law model for a non-Newtonian (pseudo-plastic) flow is investigated numerically. 
The D2Q9 model of Lattice Boltzmann method is used to simulate the micro-channel flow with expansion 
geometries. This geometry is made by two squared or trapezoid cavities at the bottom and top of the channel 
which can simulate an artery with local expansion. The cavities are displaced along the channel and the ef-
fects of the displacements are investigated for inline structures and staggered ones (anti-symmetric expan-
sion). The method is validated by a Poiseuille flow of the power-law fluid in a duct. Validation is performed 
for two cases: The Newtonian fluid and the shear thinning fluid (pseudo-plastic) with n = 0.5. The results are 
discussed in four parts: 1) Pressure drop; It is shown that the pressure drop along the channel for inline cavi-
ties is much more than the pressure drop along the staggered structures. 2) Velocity profiles; the velocity 
profiles are sketched at the centerline of the cavities. The effects of pseudo-plasticity are discussed. 3) Shear 
stress distribution; the shear stress is computed and shown in the domain. The Newtonian and non-Newto- 
nian fluids are discussed and the effect of the power n on shear stress is argued. 4) Generated vortices in the 
cavities are also presented. The shape of the vortices is depicted for various cases. The results for these cases 
are talked over and it is found that the vortices will be removed for flows with n smaller than 0.5. 
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1. Introduction 
 
During the last two decades great attention has been paid 
to the Lattice Boltzmann method (LB). The LB method 
has a remarkable ability to solve single phase, multiphase, 
single component, and multi-component problems in 
complex geometries. Also the LB method is a strong 
method in simulating complex fluid flows such as non- 
Newtonian Fluids. 

Non-Newtonian fluid plays an important role in vari-
ous industries. The flow of petrochemical materials in 
tubes and blood in the arteries are a simple example of 
these problems. Blood is a type of a non-Newtonian fluid 
that should be simulated with a suitable model. Power 
law shear-thinning (pseudo-plastic) fluid is a well pre-
sented model for simulating blood in the arteries. Shear- 
thinning fluid is a type of a generalized non-Newtonian 
fluid. In this kind of fluid the shear stress is a function of 
a second invariant of rate of deformation tensor which is 

famous for its simplicity. In many cases there isn’t an 
exact solution for non-Newtonian fluids, so they should 
be solved with a suitable numerical method. 

In recent years many non-Newtonian cases have been 
solved with the LB method. G. Drazer et al. modeled a 
power-law for a non-Newtonian fluid using this method 
[1]. They tested the accuracy of the method for a shear 
thinning and shear thickening power-law fluid in parallel 
and reentrant geometries. They also found an excellent 
agreement with the solution obtained by the finite ele-
ment method. 

J. Boyd et al. used LB method to simulate a power- 
law fluid [2]. A second-order accurate LBM for shear- 
dependent non-Newtonian flow was proposed. This 
method avoids time consuming derivations of the veloc-
ity data to calculate the shear flow. S. P. Sullkivan et al. 
simulated the flow of non-Newtonian fluids through 
complex random porous media in both two and three 
dimensions. The power-law model was used for shear- 
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thinning fluids in their study [3]. 
J. Psihogios et al. applied LB method to simulate the 

flow of non-Newtonian shear-thinning fluids in three- 
dimensional digitally reconstructed porous domains. 
They showed that the LB method combined with digital 
reconstruction is a powerful tool for the study of non- 
Newtonian flow in porous media [4]. 

M. Yoshino et al. simulated power-law and Carreau 
fluid flows in a reentrant corner geometry and in a 
three-dimensional porous structure [5]. Mahmud Ashraf-
izaadeh et al. applied K-L and Casson and Carreau-Ya- 
suda models to the blood flow in a channel and com-
pared the models to each other. They showed the capa-
bility of the LB method for such complex fluid flows [6]. 

The nature of the artery walls isn’t rigid. Therefore, 
assuming geometry with fixed walls isn’t exact. Using 
moving boundaries instead of fixed walls solves this 
problem. P. H. Kao et al. studied the application of vari-
ous curved boundary treatment schemes to the simulation 
of fixed and moving curved boundary problems [7]. Y. 
Sui et al. studied a hybrid immersed-boundary method 
with multi-block Lattice Boltzmann in order to simulate 
the moving boundaries interacting with incompressible 
viscous fluid [8]. The results demonstrate the flexibility 
of their model and show it as an alternative approach for 
the simulation of fluid-structure interactions. J. Wu et al. 
present a new version of the immersed boundary-lattice 
Boltzmann method (IB-LBM) for simulating incom-
pressible viscous flows around moving objects [9]. It is 
believed that their method has a potential to effectively 
simulate incompressible viscous flows around moving 
objects. 

The oscillating pressure in an artery causes expansion 
in it. With some information about the flow field, fatty 
deposits in the arteries can be reduced. First, we focus on 
a micro-channel with local expansion and a fixed wall 
which is a simple type of blood flow in the artery. Three 
geometries are chosen for this simulation. Two symmetric 
squared cavities, two trapezoid cavities, and two stag-
gered cavities are studied. We used a Lattice Boltzmann 
FORTRAN code for this work. The method is validated 
by a Poiseuille flow in a channel. Finally the accuracy of 
LB method is shown. For future works we can extend our 
code for oscillating flow with moving boundaries in a 
tube to exactly simulate the blood flow in an artery. 
 
2. Background 
 
The most widely used general viscous constitutive rela-
tion is the power-law model. In this model, the local 
viscosity is a function of a second invariant of the rate of 
deformation tensor [10]: 

1

0 2

n

ij DII 


   

where n is the power-law exponent and m is the propor-
tional constant. When n is one, µ shows the viscosity of 
the Newtonian fluid. As a result, m corresponds to the 
viscosity of the Newtonian fluid. Note that n must be 
greater than zero. The exponent n can be interpreted as 
below: 

n < 1     Shear-thinning (pseudo-plastic) fluid 
n = 1     Newtonian fluid 
n < 1     Shear-thickening (dilatant) fluid 
Pseudoplastic, or shear-thinning fluids have a lower 

apparent viscosity at higher shear rates, and are usually 
solutions of large, polymeric molecules in a solvent with 
smaller molecules. Dilatant, or shear-thickening fluids 
increase in apparent viscosity at higher shear rates. 

The rate of the deformation tensor, D, is the symmetric 
part of the velocity gradient tensor, L. 
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The velocity gradient tensor in the Cartesian coordi-
nates (x, y, and z) is: 
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As a result, the rate of the deformation tensor can be 
calculated from: 
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According to the two dimensional geometry, the II2D is 
obtained by the following equations: 
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Consequently, the local viscosity can be calculated: 
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It is obvious that the local viscosity is a function of 
velocity derivatives. 
 
3. Numerical Scheme 
 
The Lattice Boltzmann method is a suitable way to solve 
the complex fluid flows numerically, such as the Non- 
Newtonian fluid flow. Here we introduce the method and 
apply it to our case. 

We apply the D2Q9 model, as it is two dimensional 
and contains 9 directions. Particle positions are confined 
to the nodes of the lattice. Variations in momenta that 
could have been due to a continuum of velocity direc-
tions and magnitudes and varying particle mass are re-
duced (in the simple 2-D model we focus on here) to 8 
directions, 3 magnitudes, and a single particle mass. Fig-
ure 1 shows the Cartesian lattice and the velocities ea 
where a = 0, 1,···,8 is the direction index and e0 = 0 de-
notes particles at rest. This LB method classification 
scheme was proposed by Qian et al. [11] and is used 
widely. Because particle mass is uniform (1 mass unit or 
mu in the simplest approach), these microscopic veloci-
ties and momenta are always effectively equivalent. The 
lattice unit (lu) is the fundamental measure of length in 
the LBM models and time steps (ts) are the lattice time 
unit. 

The velocity for the particles 1, 2, 3 and 4 is 1 lu/ts, 
and for the particles 5, 6, 7 and 8 is 2 2  lu/ts. 

We introduce fi distribution function in the ith direction. 
Accordingly, the macroscopic density of the fluid can be 
defined as the sum of the distribution function in 9 direc- 
tions: 
 

 

Figure 1. D2Q9 model. 
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Similarly, the macroscopic velocities can be derived 
from the sum of directional distribution functions of mi-
croscopic momentum per density: 
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where ex(i) and ey(i)are the directions of the ith particle in 
x and y directions, respectively. 
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The evolution of a lattice Boltzmann proceeds in two 
steps that take place during each time step. The first step 
is a streaming step in which the particles move to new 
sites according to their previous positions and velocities. 
Next, the particles collide according to collision rules. 
The BGK (Bhatnagar-Gross-Krook) approximation is 
used in the simplest LBM [8,10]. Streaming and collision 
are combined in the equation below: 
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Collision of the fluid particles is considered as a re-
laxation towards a local equilibrium and the D2Q9 equi-
librium distribution function feq is defined as: 
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The relaxation time, τ, is obtained by the cinematic 
viscosity, ν, according to the equation below: 
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3 2
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In the single relaxation time model, it is usual to set τ = 
1, but in non-Newtonian cases, relaxation times for each 
point change by velocity derivatives. As a result, the re-
laxation times depend on the coordinates, therefore, local 
relaxation time is obtained. 
 
4. Boundary Conditionss 
 
According to Sukup and Succi [12,13], we have 3 gen-
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eral kinds of boundary conditions: 
 Periodic boundary 
 Bounceback boundary 
 Von-Newman boundary 
Here, bounceback and Von-Newman boundaries have 
been used. 

Bounceback boundaries are particularly simple and 
have played a major role in making LB method popular 
among modelers. These modelers have shown interest in 
simulating fluids in domains characterized by complex 
geometries such as those found in porous media. The 
uniqueness of it is that one simply needs to designate a 
particular node as a solid obstacle and no special pro-
gramming treatment is required. In our case, Bounceback 
boundaries are applied to the walls. In the walls, as de-
scribed in the Figure 2, the distribution function can be 
obtained in all directions except the ones that have the 
directions towards the domain. 

According to Figure 2, we can calculate the f0, f1, f2, f3, 
f5 and f6, but the f4, f7 and f8 remain unknown. The 
bounceback rule says that f4, f7 and f8 can be obtained by 
considering these three equations: 

   4 2, ,f x y f x y 1  

   7 5, 1,f x y f x y  1  

   8 6, 1,f x y f x y  1  

In other words, after the streaming steps, the bounce-
back boundary condition sets these unknown distribution 
functions equal to their opposite directions. Conclusively,  
 

 

Figure 2. Bounceback boundary condition. 

it sets f4 equal to f2, f7 equal to f5 and f8 equal to f5. 
Von Neumann boundary conditions constrain the flux 

at inlet and outlet boundaries. We set a constant x-ve- 
locity at the inlet and a fully-developed x-velocity at the 
outlet. The procedure, in which we can obtain the mac-
roscopic values, is explained as below. 

In the inlet boundary nodes, since the velocity is 
known, the following equations can be written: 
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In the above equations, three distribution functions 
and one density are unknown: f1, f5, f8 and ρ respectively. 
In oder to find these four magnitudes, another equation is 
needed. As proposed by Zou and He [14], the fourth 
equation can be written by assuming that the non-equili- 
birium distribution function of the bounceback condition 
is used in the direction normal to it. 

1 1 3 3
eq eqf f f f    

In conclusion, all four unknown magnitudes are ob-
tained. 

For the outlet boundary the procedure is like the inlet 
one. The only difference between these two is that the 
velocity magnitudes are calculated in a way in which the 
velocity gradient in the x-direction and the velovity 
magnitude in the y-direction are both set to zero. The 
velocity gradient can be calculated with the first order or 
the second order approximation. 

 1 24 3
0 0 2

2
ndi i iu u uu

Order
x lu

  
  

 
 

 10 0  1sti iu uu
Order

x lu


  


 

Figure 3 shows all the boundary conditions of the 
domain. 
 

 

Figure 3. Boundary conditions. 
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5. Results and Discussion 
 
5.1. Validation 
 
In order to validate our method, we applied it the Poi- 
seuille flow in the parallel channel geometry. The exact 
solution of this flow is brought here to compare to the 
numerical solution. 
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where G is the pressure gradient along the channel, H is 
the channel width, and y is the vertical coordinate. Also, 
we can rewrite the above equation as a function of aver-
age velocity: 

 
1

2 1 2
1 1 ,0

1

n

nn y
u y U y H

n H



            
  

Note that U  is the average velocity in the channel. 
Figures 4-6 show the velocity profile obtained from the 
exact solution. 

To solve the parallel channel numerically, we set the 
width of the channel to 80 lu and its length to 400 lu. 
Average velocity is taken to 0.03 m/s and the Newtonian 
viscosity is set to 0.002. The Reynolds number is defined 
as: 

Re
U Width




  

Here, the Reynolds number is equal to 1. The bound-
ary condition is constant velocity at the inlet and fully- 
 

 

Figure 4. X-velocity profile for n = 0.5 (Pseudoplastic fluid). 

 

Figure 5. X-velocity profile for n = 1 (Newtonian fluid). 
 

 

Figure 6. Velocity profiles for independency investigation. 
 
developed velocity at the outlet. We studied three cases 
to verify our code: 
 n = 0.5 
 n = 1 
 n = 2 

The results have a good agreement with the exact so-
lution of the problem which shows the accuracy of the 
method. 

Solid lines stand for the analytical solution and dash 
lines are the numerical results using the Lattice Boltz-
mann method. 
 
5.2. Grid Independency 
 
In order to prove that the results are independent of the 
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grid size, the method is applied to the geometry of the 
problem with two different grids.  

In the first case, the channel inlet width is divided into 
50 lattice units and the channel length is divided into 700 
lattice units. Then the results are compared to the ge-
ometry with twice the width and length (100 lattice unit 
width and 1400 lattice unit length). The chosen fluid is 
pseudoplastic with n = 0.7. 

The velocity profiles are presented in Figure 7 for both 
grids. The results match each other completely; therefore 
the solution is independent of the grid. The channel 
width is non-dimensionlized in order to compare the re-
sults better. 
 
5.3. Convergence and Error Discussion 
 
To check the convergence of the code, the following 
condition is set:  
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where, X and Y are respectively the number of nodes in 
x-direction and y direction. N is the whole number of the 
nodes in the domain (N = X × Y). V is the velocity and i 
is the iteration number. 

The convergence condition is modified in such a way 
that the error magnitude reaches specified limits. Here 
we set the convergence error to 10−10 (i.e. −8 in logarith-
mic scale).The error is plotted in Figures 8-9 for the 
Newtonian and non-Newtonian cases, respectively. As 
seen in Newtonian case solution converges smoothly 
while in non-Newtonian flow some oscillations occur. 
 

 

Figure 7. The error reduction for the Newtonian case. 

 

Figure 8. The error reduction for the non-Newtonian case 
(n = 0.7). 
 

 

Figure 9. Non-dimensional pressure drop for the inline 
case. 
 
5.4. Discussions 
 
The results are discussed in four sections: pressure drop, 
velocity profile, shear stress and generated vortices. 
 
5.4.1. Pressure Drop Discussion 
In order to compare pressure drop along the channel, rela-
tive pressure drop is computed. The relative pressure drop 
is defined as below: 

in
r

in in

P PP
P

P P


    

where P and Pin are the average pressure (normal to the 
channel axis) for each point and the inlet pressure, re-
spectively. 
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The relative pressure drop is plotted against the chan-
nel length in Figures 9-11, for inline geometry, stag-
gered geometry and trapezoid geometry, respectively. 
The relative pressure drop is plotted for different shear- 
thinning fluids with the n equal to 0.5 to 1. 

According to this figures, the differences between 
Newtonian and shear-thinning fluids are distinct. As the 
fluid becomes more viscous (shear-thinning), the pressure 
drop decreases rapidly. In the cavity area, the pressure 
increases because of velocity decrease.  

At the inlet of the channel, there is a boundary layer 
and flow isn’t developed; therefore pressure drop isn’t 
linear. Pressure gradient for the staggered cavities is 
lower than the inline ones. Hence, in inline cavities there 
is a sudden expansion and contraction in the area of the  
 

 

Figure 10. Non-Dimensional pressure drop for the staggered 
case. 
 

 

Figure 11. Non-Dimensional pressure drop for the trapezoid 
case. 

channel, while in staggered cavities, changing occurs 
gradually. 
 
5.4.2. Velocity Profile Discussion 
The dimensionless velocity is defined as below: 

ND

V
V

U

  

where U∞ is the uniform inlet velocity and V is the flow 
velocity. 

The velocity profile is sketched along the mid-line of 
the cavities. These lines are shown in Figure 12. 

In Figures 13-16, the dimensionless velocity profile 
for inline geometry, the staggered geometry (upper cavity) 
and (lower cavity), and trapezoid cavity are presented 
respectively. Figures 17-19 show the streamlines and 
velocity contours in the domain.  

According to the velocity profiles, it can be said that 
because of the vortices, velocity in the cavities has a 
negative magnitude. As seen the magnitude of negative  
 

 

Figure 12. Velocity profile sections. 
 

 

Figure 13. Non-Dimensional velocity for the shear-thinning 
and inline case. 
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Figure 14. Non-Dimensional velocity for the shear-thinning 
and staggered case―first cavity (upper cavity). 
 

 

Figure 15. Non-Dimensional velocity for the shear-thinning 
and staggered case―second cavity (lower cavity). 
 
velocity is small compare to the main flow velocity. 
Therefore the flow will be trapped in the cavities. But for 
the case n = 0.5, this negative magnitude isn’t seen. 
Therefore as n decreases and flow become more viscous, 
the vortices become weaker. This will be discussed in the 
vortices discussion section. 

The maximum velocity occurs in the centerline for all 
geometries, but with a different magnitude. The stag-
gered geometry has the highest peak value and the 
trapezoid one has the least value. This is mainly because 
of the change happening in the area of the channel and 
the vortices created inside the cavities, their sizes and 
shapes. The velocity magnitude in the cavities for in- 

 

Figure 16. Non-Dimensional velocity for the shear-thinning 
and inclinedcavity. 
 
clined geometry is higher than the other two cases. 
 
5.4.3. Shear Stress Discussion 
The shear stress contour is computed from the power law 
equation. As mentioned before, shear stress is obtained 
from the power law formulation: 
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n

s D

u v
II

y x
 
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where, II2D is the second invariant of the deformation 
rate tensor, u is x-velocity, and v is y-velocity of the 
flow.The shear stress contours are presented in Figures 
22-24, respectively for inline, staggered, and inclined 
geometries. Considering these figures, shear stress is 
higher for the lower n numbers. The shear stress contours 
become wavier in the staggered geometry. In the inclined 
cases, the shear stress inside the cavity is less than the 
other two cases. 

The shear stress profile is depicted along the lines 
shown in Figure 11. These profiles are demonstrated in 
Figures 20 and 21. In all cases, the magnitude of shear 
stress increases as we move from center line toward the 
cavities. Maximum shear stress occurs in the entrance of 
cavities, then it decreases until it reaches near the wall 
and increases again at the wall of the cavity. But in the 
inclined cavity and for n less than 0.7, increasing doesn’t 
happen in the cavity wall. 

Considering the comparison of different shear-thinning 
fluids, it is seen that shear stress has a higher magnitude 
for a lower power of n. 

The peak of the shear stress moves toward centerline 
f the cannel as n increases. o  
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Figure 17. Stream lines for the inline cases (from left to right: n = 0.5, n = 0.7 and n = 1). 
 

 

Figure 18. Stream lines for the staggered cases (from left to right: n = 0.5, n = 0.7 and n = 1). 
 

 

Figure 19. Stream lines for the inclined cases (from left to right: n = 0.5, n = 0.7 and n = 1). 
 
5.4.4. Generated Vortices Discussion 
The streamlines are sketched in Figures 17-19 for inline, 
staggered, and inclined geometries, respectively. The size 
of the vortex created by Newtonian fluid (n = 1) is greater 
than the shear-thinning fluids. As n decreases, the size of 
the vortex becomes smaller, so the center of the vortex 
moves left and to the upper corner of the cavity. So, re-

verse flow is lower for the shear-thinning fluid inside the 
cavity. We can conclude that in the non-Newtonian fluid, 
flow enters the cavity area more than the Newtonian fluid 
does.  

In the staggered geometry, the condition is the same. 
The difference between the two is that the flow gets 
somewhat wavier in the centerline of the channel. 
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Figure 20. Shear stress profile for the shear-thinning and 
inline case. 
 

 

Figure 21. Shear stress profile for the shear-thinning and 
inclined case. 

 

Figure 22. Shear stress contours for the inline cases. n = 0.5, n = 0.7, and n = 1 (left to right). 
 

 

Figure 23. Shear stress contours for the Staggered cases. n = 0.5, n = 0.7, and n = 1 (left to right). 
 

Vortices cause the flow to become trapped inside the 
cavities and hence some fatty deposit will be formed in 
blood flow. 

In the trapezoid case, the fluid can easily flow inside 

the cavity and thus a vortex isn’t created. Figure 21 dem-
onstrates how the vortex is removed. In the Newtonian 
fluid case, the vortex becomes smaller and moves toward 
he wall and as a result, the flow enters the cavity area.  t 
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Figure 24. Shear stress contours for the inclined cases. n = 0.5, n = 0.7, and n = 1 (left to right). 
 
For n = 0.7, this vortex is small but isn’t yet completely 
disappeared. In the case n = 0.5, has the cavity has no 
vortex and fluid flows smoothly in the cavity area.  

Therefore, by making the flow more pseudo-plastic, 
vortices will be removed.  
 
6. Conclusions 
 
The non-Newtonian pseudo-plastic (shear-thinning) fluid 
flow is investigated numerically. The D2Q9 Lattice Bolt- 
zmann method is used to simulate the blood flow in an 
artery with local expansion. The two-dimensional micro 
channel is used as a geometry of the problem. Three cases 
are investigated: inline cavities, staggered cavities, (anti- 
symmetric) and inline trapezoid cavities. 

The method is validated by simulation of flow between 
parallel plates (Poiseuille flow). Two cases are confirmed: 
Newtonian and shear-thinning. The validation results are 
completely similar to the analytical results. Therefore, the 
method is verified. 

The results are discussed in four sections: pressure drop, 
velocity profiles, shear stress, and generated vortices. 
Pressure drop is compared between inline and staggered 
geometries. The inline cases have higher pressure drop 
than the staggered ones. The reason for this difference is 
that the expansions in the staggered geometry happen 
gradually and in two steps. 

Velocity profiles are presented for inline, staggered, 
and trapezoid cases. The negative velocity isn’t seen in 
the shear-thinning fluid with n = 0.6 and or lower. For the 
trapezoid geometry, the flow becomes more uniform than 
other geometries. 

The shear stress profile is sketched in the centerline of 
the cavities. It is realized that the maximum shear stress 
become smaller for the trapezoid case. 

The vortices are shown inside the cavities. In the 
trapezoid geometry they are smaller. For the cases with n 
= 0.5 and or lower, the vortices are discarded and there 
were no reverse flow inside the cavities. 

It is proved that by making the fluid flow more 
pseudo-plastic, vortices are removed. Therefore, the 
problem of fatty deposit inside the artery will be solved. 
To have success in real cases, local injection of pseudo- 
plastic blood is proposed. 

Finally, it is understood that the Lattice Boltzmann 
method is a suitable method for simulation of the non- 
Newtonian pseudoplastic fluid in a microscale channel. 
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