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Abstract 
Perturbation methods are employed to calculate time variation in the orbital 
elements of a compact binary system. It turns out that the semi-major axis 
and eccentricity exhibit only periodic variations. The longitude of periastron 
and mean longitude of epoch exhibit both secular and periodic variation. In 
addition, the relativistic effects on the time of periastron passage of binary stars 
are also given. Four compact binary systems (PSRJ0737-3039, PSR1913+16, 
PSR1543+12 and M33X-7) are considered. Numerical results for both secular 
and periodic effects are presented, and the possibility of observing them is 
discussed. 
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1. Introduction 

In the wake of unceasing development in the post-Newtonian celestial mechan-
ics, at present, the research on the post-Newtonian effects has been exhibited 
gradually due to the fact that the degree of accuracy of astronomical observation 
improves unceasingly. Hence several authors devoted their research to this sub-
ject and the scopes (Brumberg, (1972, 1985) [1] [2], Rubincam (1977) [3], Soffel 
(1987, 1989) [4] [5], Iorio (2005) [6]). These authors research mainly the post- 
Newtonian effect of the orbital elements of planets and artificial satellites in the 
solar system. The largest post-Newtonian effects have been exhibited in the or-
bits of binary systems, especially in the compact binary systems. So, the research 
in the post-Newtonian orbital effect of the compact binary stars is important and 
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meaningful. Hence some authors research this subject from theory and observa-
tion. Such as, Will (1981, 2006) [7] [8], Damour & Deruelle (1985, 1986) [9] [10], 
Schāfer & Wex (1993) [11], Wex (1995) [12]. Calura (1997) [13], Iorio (2007) 
[14] studied this subject from theory. On the other hand, Burgay et al. (2003) 
[15], Konacki (2003) [16], Kramer et al. (2005) [17], and Weisberg & Taylor 
(2005) [18] researched the post-Newtonian effect for the periastron shift of 
compact binary stars (PSRJ0737-3039, PSR1913+16 PSR1543+12) from observa-
tion. These researches are very interested in the theoretical and observing as-
pects. This paper presents the post-Newtonian effect on all orbital elements of 
the compact binary stars on the theoretical aspect. The research method of this 
paper is different from previous studies that this paper uses the method of per-
turbation theory in the celestial mechanics. 

2. R, S and W Components for the General Relativistic 
Accelerations in the Two-Body Problem 

The relative acceleration of two-body with the Post-Newtonian Parameters is 
given by Will (1981) [7] 
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here f denotes the true anomaly. n  is a unit vector in the radial direction and 
λ  are unit vectors in the orbital plane. n  is directed along the radial direction, 
and λ  is perpendicular to n . In the equation m denotes Gm and the right side 
should be multiplied by c−2. G is gravitational constant and c is the speed of light. 

In this paper we research the general relativistic effect. In the general relativis-
tic case the Post-Newtonian parameters 1 2 3 0,α α α= = =  1,β =  1,γ =  

2 0.ζ =  (Will 1981) [7]. The Equation (1) can be written 
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Using the relative expressions the Equation (3) may be written 
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here boldface denotes vector. 
We resolve the acceleration a  into a radial component Rn , a component 

Sλ , normal to Rn  and a component W normal to the orbital plane. 
i.e, ( )R S W= + + ×a n nλ λ , × =n Nλ  (the unit vector normal to the orbit-

al plane). 
On comparison with the expression (4), we get three scalar accelerative com-

ponents R, S and W 
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Substituting the following formulas of the problem of two body into the above 
formula (Smart, 1953) [19] 
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here ( )21p a e= − . 
An independent variable dt is transformed to an independent variable df in 

the Gaussian perturbation equations (Brouwer & Clemence, 1961 [20], Roy, 
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1988) [21] by using the second formula of the Equations (6), we get the pertur-
bation equations with an independent variable true anomaly f 
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where ω�  is the longitude of periastron, E is the eccentric anomaly and 0ε  is 
the mean longitude at epoch. 

3. Integration for the Perturbation Equations and Its 
Perturbation Solutions 

Substituting R, S and W for expressions (7) into the perturbation Equation (8) 
by using Kepler’s third law ( )2 3

1 2n a m m m= + = , we obtain 
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Integrating the above Equation (9), we obtain the perturbation secular and 
periodic solutions 
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where λ  denotes the mean longitude of periastron, E denotes the eccentric 
anomaly. In the last integral expression, we have used the next integral already: 
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4. The Secular and Periodic Variation of the Orbital 
Elements 

1) The secular variation per cycle (revolution) 
By letting 0 0,f =  2πf = , 0 0E = , 2πE = , the periodic terms are disap-

peared and one obtains the secular variables per cycle (revolution): 
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where ( )G M mµ = +  
The author Li (2010) [24] obtained the formulas for the post-Newtonian effect 

on the time variation of periastron passage of binary stars. In that paper we 
change the symbol of the first expression of (35) (in the case of relativity) as the 
symbol of the present paper, which is 
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2) The secular variable rate: 
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where the period P is denoted in unit of day 
3) The periodic variation of amplitudes: 
In the expressions (10) all terms are the periodic variable terms except for all 

secular terms. Here we list the maximal and minimal amplitudes of the periodic 
terms for semi-major axis, a and eccentricity, e from the expressions (10). 

For the semi-major axis: 
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For eccentricity: 
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5. Numerical Results for Four Compact Binary Systems 

We use the formulae (11) - (13) to calculate the secular of the general relativistic 
secular effect on the orbital elements of four compact binary systems. It is con-
venient to reduce the formulas (11) - (13) to practical units m1, m2 and a are de-
noted by the unit in solar mass ( )1M m� , ( )2M m�  and solar radius ( )A R� , 
and P is denoted by the unit in day = 86400 s, G = 6.67 × 10−8, (c. g. s), c = 3 × 
1010 cm/s. The formulae (11) - (13) can be written by taking the secular effect 
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here 62 6.66 1π 0K GM c R == ×� �  (c, g, s)., 
This paper chooses four compact binary systems: PSR1913+16, PSR1543+12, 

PSRJ0737-3039 and a black hole M33 X-7 as an example. For these compact bi-
nary stars, their data for P, a, e, M and m are retrieved from Burgay et al. (2003) 
[15], Konacki et al. (2003) [16], Kramer et al. (2005) [17], Willems et al. (2004) 
[22] and Orosz et al. (2007) [23]. Their data are listed in Table 1. 

Substituting these data in Table 1 into formulas (16) and (13) and (14) - (15), 
we obtain the numerical results for the periodic and secular variation of the or-
bital elements of four compact binary stars in Tables 2-4. 

 
Table 1. The data of four compact binary stars. 

Compact 
binary stars 

P(d) A(R⊙) e M1(m⊙) M2(m⊙) Ref 

M33 x-7 3.450 42.40 0.0385 15.65 70.00 Orosz et al. (2007) [23] 

PSR J0737-3039 0.1022 1.26 0.0878 1.34 1.25 
Willems et al. (2004) [22] 
Burgay et al. (2003) [15] 
Kramar et al. (2005) [17] 

PSR1913+16 0.3230 2.80 0.6170 1.44 1.38 Willems et al. (2004) [22] 

PSR1543+12 0.1022 3.28 0.2736 1.35 1.33 
Konacki et al. (2003) [16] 
Willems et al. (2004) [22] 

 
Table 2. Periodic variation of the amplitudes of the orbits of semi-major axis and eccen-
tricity. 

Compact 
binary stars 

Semi-major axis Eccentricity 

( )max kmA  ( )min kmA  ( )5
max 10E −×  ( )6

min 10E −×  

M33 X-7 −1661.80 0.00027 −1.23 0.00012 

PSR J0737-3039 −48.55 0.00016 −1.23 0.00100 

PSR1913+16 −51.77 0.0560 −1.68 0.0410 

PSR1543+12 −60.83 0.0037 −0.62 0.00270 
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It can be seen from Table 2 that the maximum amplitude of semi-major axis 
is the black hole binary system M33 X-7 and the maximum eccentricity is PSR 
1913 + 16. 

It can be seen from Table 3 that the maximum secular variable of longitude 
per period is PSRJO737-3039. The longest time of the periastron passage is 
M33-7. 

It can be seen from Table 4 that the maximum secular variable rates of longi-
tude is PSRJ0737-3039. The longest time of the periastron passage is M33X-7. 

6. Discussion and Conclusions 

1) The comparison of the theoretical results with the observable results. 
The theoretical results in this paper as compared with the observable results 

given by several authors for three compact binary stars are listed in the Table 5. 
It can be seen from the above Table 5 the theoretical results are very close to 

the observed results. 
 
Table 3. Secular variation of the orbital elements of four compact binary stars per cycle 
(Revolution). 

Compact binary stars ( )cm Rea∆  e/Re ω∆ �  ("/Re) 0ε∆  ("/Re) ( )s Reτ∆  

M33 X-7 0 0 16".68 −32".34 11.04 

PSR J0737-3039 0 0 17.08 −29.92 0.37 

PSR1913+16 0 0 13.45 −19.75 0.78 

PSR1543+12 0 0 7.29 −13.48 0.53 

[Note] The symbol denotes arc-second: Rev denotes Revolution (cycle). 

 
Table 4. Secular variable rates of the orbital elements of four compact binary stars per 
year. 

Compact 
binary stars a�  ("/yr) e�  ("/yr) 

ω��  0ε�  
( )s yrτ�  

("/yr) (deg/yr) ("/yr) (deg/yr) 

M33 X-7 0 0 1765″ 0.49 −3424″ −0.95 19.47 

PSR J0737-3039 0 0 61016 16.95 −106875 −29.68 18.45 

PSR1913+16 0 0 15218 4.22 −22332 −6.20 14.70 

PSR1543+12 0 0 6323 1.75 −11703 −3.25 7.66 

 
Table 5. Comparison of the theoretical results with the observable results. 

Compact 
binary stars 

The theoretical 

values ω��  (deg/yr) 

The observable 

values ω��  (deg/yr) 
Authors for providing Data 

PSRJ0737-3039 16.95 
16.90 
16.88 

Kramer et al. (2005) [17] 
Burgay et al. (2003) [15] 

PSR1913+16 4.2260 4.2266 Weisberg & Taylor (2005) [18] 

PSR1543+12 1.7566 1.7558 Kohacki et al. (2003) [16] 
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2) The possibility of observing effects. 
In the solar system the advance of perihelion of Mercury may be observed by 

the recent instrument. We can see from Table 4 that maximal value of the ad-
vance of PSRJ0737-3039 is 61016" per year which correspond to 145000" time 
value of advance of perihelion of Mercury in solar system. The value of the ad-
vance of periastron of compact binary star is largest than that of Mercury in so-
lar system. Therefore the effects of the advance of compact binary stars can be 
observed too. 

We have four conclusions: 
a) The compact binary stars are the best objects for studying the post-Newto- 

nian effects on the orbits 
b) Although there are no secular variation for the semi-major axis and eccen-

tricity, there is maximal amplitude of the periodic terms for semi-major axis, 
such as max 1661.80 kmA = . 

c) The longitudes of periastron and the mean longitude at epoch exist both 
secular and periodic variable terms, and the maximal values for ω�  and 0ε�  ar-
rive at 16.95/yr and −29.68/yr for PSRJ0737-3039 respectively. 

d) The longest time of periastron passage is 19.47 minute per year for black 
hole M33 X-7. This corresponds to over 3 seconds per a day. 
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