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1. Introduction

In the wake of unceasing development in the post-Newtonian celestial mechan-
ics, at present, the research on the post-Newtonian effects has been exhibited
gradually due to the fact that the degree of accuracy of astronomical observation
improves unceasingly. Hence several authors devoted their research to this sub-
ject and the scopes (Brumberg, (1972, 1985) [1] [2], Rubincam (1977) [3], Soffel
(1987, 1989) [4] [5], Iorio (2005) [6]). These authors research mainly the post-
Newtonian effect of the orbital elements of planets and artificial satellites in the
solar system. The largest post-Newtonian effects have been exhibited in the or-
bits of binary systems, especially in the compact binary systems. So, the research

in the post-Newtonian orbital effect of the compact binary stars is important and
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meaningful. Hence some authors research this subject from theory and observa-
tion. Such as, Will (1981, 2006) [7] [8], Damour & Deruelle (1985, 1986) [9] [10],
Schafer & Wex (1993) [11], Wex (1995) [12]. Calura (1997) [13], Iorio (2007)
[14] studied this subject from theory. On the other hand, Burgay et al (2003)
[15], Konacki (2003) [16], Kramer et al (2005) [17], and Weisberg & Taylor
(2005) [18] researched the post-Newtonian effect for the periastron shift of
compact binary stars (PSRJ0737-3039, PSR1913+16 PSR1543+12) from observa-
tion. These researches are very interested in the theoretical and observing as-
pects. This paper presents the post-Newtonian effect on all orbital elements of
the compact binary stars on the theoretical aspect. The research method of this
paper is different from previous studies that this paper uses the method of per-

turbation theory in the celestial mechanics.

2. R, S and W Components for the General Relativistic
Accelerations in the Two-Body Problem

The relative acceleration of two-body with the Post-Newtonian Parameters is
given by Will (1981) [7]
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here fdenotes the true anomaly. N is a unit vector in the radial direction and
A are unit vectors in the orbital plane. n is directed along the radial direction,
and A is perpendicular to n.In the equation m denotes Gm and the right side
should be multiplied by ¢>. G is gravitational constant and cis the speed of light.

In this paper we research the general relativistic effect. In the general relativis-
tic case the Post-Newtonian parameters o, =a,=a,=0, f=1 y=1
¢, =0. (Will 1981) [7]. The Equation (1) can be written
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Using the relative expressions the Equation (3) may be written
_m m H K2 22\, S H 2
appn—F(rn)|:4T+2?—{l+3HJ(r +ref )+Ear :|
(4)

W (rr’2n+r2rf,l) 42210
r m

here boldface denotes vector.

We resolve the acceleration a into a radial component Rn, a component
SA,normalto Rn and a component Wnormal to the orbital plane.

ie, a=Rn+SA+W(nxA), nxA=N (the unit vector normal to the orbit-
al plane).

On comparison with the expression (4), we get three scalar accelerative com-
ponents R, Sand W

r r m m
+mzr2[4—2ﬁ
r m (5)
S:—{4—2ﬁ}rf
r m
W =0

Substituting the following formulas of the problem of two body into the above
formula (Smart, 1953) [19]

e LR ©

Ji-e?

We obtain
[4+2ﬂj 7 ule’sin® f
e
r 2m p milr
m? i
r’s =—{4—2—}esin f, (7)
r m
W =0.

here p= a(l—ez) .
An independent variable dt is transformed to an independent variable dfin

the Gaussian perturbation equations (Brouwer & Clemence, 1961 [20], Roy,
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1988) [21] by using the second formula of the Equations (6), we get the pertur-

bation equations with an independent variable true anomaly £
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where @ is the longitude of periastron, E is the eccentric anomaly and ¢, is
the mean longitude at epoch.

3. Integration for the Perturbation Equations and Its
Perturbation Solutions

Substituting R, S and W for expressions (7) into the perturbation Equation (8)
by using Kepler’s third law n°a’ = (m,+m,)=m, we obtain
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Integrating the above Equation (9), we obtain the perturbation secular and
periodic solutions
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where A denotes the mean longitude of periastron, £ denotes the eccentric

anomaly. In the last integral expression, we have used the next integral already:

Irdf = aj'\ll—esz

J'ezsigz f rdf = ezp—lJ-rdf +J.df _eJ.COS fdf .

4. The Secular and Periodic Variation of the Orbital
Elements

1) The secular variation per cycle (revolution)

By letting f, =0, f=2n, E;=0, E=2n, the periodic terms are disap-

peared and one obtains the secular variables per cycle (revolution):

Aa=0 (cm/cycle)
Ae=0 (/cycle)

m
A®=6n————— (rad/cycle
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2mm 7] 7 5 \V2
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° {ax/l—e2 H m] ( mj( e) } )
6mm e’
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a(l—ez)(lﬂll—e2 J} ( )
AL =(2n+Asg,) (rad/cycle)
Ai=AQ=0 (rad/cycle)
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where 4 =G(M +m)

The author Li (2010) [24] obtained the formulas for the post-Newtonian effect
on the time variation of periastron passage of binary stars. In that paper we
change the symbol of the first expression of (35) (in the case of relativity) as the
symbol of the present paper, which is

_oma¥em¥2|[g_o | L7 174 YA
A7t =2ma’"’m KQ ZmJ 2(7 17mJe+(5]/2 24mje}(s/Rev). (12)

2) The secular variable rate:
a=6=i=Q=0
&= A&/P (rad/yr)
& =Ag, /P (rad/yr) (13)

A=[2n/P +As,/P](rad/yr)

t=A7/P(s/d)

where the period Pis denoted in unit of day

3) The periodic variation of amplitudes:

In the expressions (10) all terms are the periodic variable terms except for all
secular terms. Here we list the maximal and minimal amplitudes of the periodic
terms for semi-major axis, a and eccentricity, e from the expressions (10).

For the semi-major axis:

e z_(l-zr:z)z (g (>-5a)e

(14)
m H 3
A‘ﬂl =+ —€
Tl m
For eccentricity:
m 7 47 ,uj 2
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max a(l—ez)K m) ( 8 m
(15)
Emin=+ m ﬁez
8a(1-e*)m

5. Numerical Results for Four Compact Binary Systems

We use the formulae (11) - (13) to calculate the secular of the general relativistic
secular effect on the orbital elements of four compact binary systems. It is con-
venient to reduce the formulas (11) - (13) to practical units m,, m, and a are de-
noted by the unit in solar mass Ml(mO), M, (mo) and solar radius A(Ro),
and P is denoted by the unit in day = 86400 s, G= 6.67 x 107, (c. g. s), c = 3 X
10" cm/s. The formulae (11) - (13) can be written by taking the secular effect
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This paper chooses four compact binary systems: PSR1913+16, PSR1543+12,
PSRJ0737-3039 and a black hole M33 X-7 as an example. For these compact bi-
nary stars, their data for P, a, e, M and m are retrieved from Burgay et a/ (2003)
[15], Konacki et al. (2003) [16], Kramer et al (2005) [17], Willems et al (2004)
[22] and Orosz et al. (2007) [23]. Their data are listed in Table 1.

Substituting these data in Table 1 into formulas (16) and (13) and (14) - (15),
we obtain the numerical results for the periodic and secular variation of the or-

bital elements of four compact binary stars in Tables 2-4.

Table 1. The data of four compact binary stars.

Compact

- P  ARe) e  M(mo) My(mo) Ref

inary stars

M33 x-7 3.450 4240  0.0385 15.65 70.00 Orosz et al. (2007) [23]

Willems et al. (2004) [22]
PSR J0737-3039  0.1022 1.26 0.0878 1.34 1.25 Burgay et al. (2003) [15]
Kramar et al. (2005) [17]

PSR1913+16 0.3230 2.80 0.6170 1.44 1.38 Willems et al. (2004) [22]

Konacki et al (2003) [16]

PSR1543+12 0.1022 3.28 0.2736 1.35 1.33 i
Willems et al. (2004) [22]

Table 2. Periodic variation of the amplitudes of the orbits of semi-major axis and eccen-

tricity.
Compact Semi-major axis Eccentricity
binary stars A (km) A, (km) E. o (>< 10° ) E.. (x 10° )
M33 X-7 -1661.80 0.00027 -1.23 0.00012
PSR J0737-3039 —48.55 0.00016 -1.23 0.00100
PSR1913+16 -51.77 0.0560 -1.68 0.0410
PSR1543+12 -60.83 0.0037 -0.62 0.00270
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It can be seen from Table 2 that the maximum amplitude of semi-major axis
is the black hole binary system M33 X-7 and the maximum eccentricity is PSR
1913 + 16.

It can be seen from Table 3 that the maximum secular variable of longitude
per period is PSRJO737-3039. The longest time of the periastron passage is
M33-7.

It can be seen from Table 4 that the maximum secular variable rates of longi-
tude is PSRJ0737-3039. The longest time of the periastron passage is M33X-7.

6. Discussion and Conclusions

1) The comparison of the theoretical results with the observable results.

The theoretical results in this paper as compared with the observable results
given by several authors for three compact binary stars are listed in the Table 5.

It can be seen from the above Table 5 the theoretical results are very close to

the observed results.

Table 3. Secular variation of the orbital elements of four compact binary stars per cycle
(Revolution).

Compact binary stars Aa(cm/Re) e/Re  A@d ('IRe) Ag, ('IRe) A7 (s/Re)

M33 X-7 0 0 1668 -32"34 11.04
PSR J0737-3039 0 0 17.08 -29.92 0.37
PSR1913+16 0 0 13.45 -19.75 0.78
PSR1543+12 0 0 7.29 -13.48 0.53

[Note] The symbol denotes arc-second: Rev denotes Revolution (cycle).

Table 4. Secular variable rates of the orbital elements of four compact binary stars per

year.
* P
e R
yr)  (deg/yr) ("Tyr) (deg/yr)

M33 X-7 0 0 1765" 0.49 —-3424" -0.95 19.47
PSR J0737-3039 0 0 61016 16.95 —106875 -29.68 18.45
PSR1913+16 0 0 15218 4.22 —22332 -6.20 14.70
PSR1543+12 0 0 6323 1.75 -11703 -3.25 7.66

Table 5. Comparison of the theoretical results with the observable results.

Compact The theoretical The observable L
. . B Authors for providing Data
binary stars values @ (deg/yr) values @ (deg/yr)
. . 1

PSRJ0737-3039 16.95 16.90 Kramer et al. (2005) [17]

16.88 Burgay et al. (2003) [15]
PSR1913+16 4.2260 4.2266 Weisberg & Taylor (2005) [18]
PSR1543+12 1.7566 1.7558 Kohacki et al (2003) [16]
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2) The possibility of observing effects.

In the solar system the advance of perihelion of Mercury may be observed by
the recent instrument. We can see from Table 4 that maximal value of the ad-
vance of PSRJ0737-3039 is 61016 " per year which correspond to 145000 " time
value of advance of perihelion of Mercury in solar system. The value of the ad-
vance of periastron of compact binary star is largest than that of Mercury in so-
lar system. Therefore the effects of the advance of compact binary stars can be
observed too.

We have four conclusions:

a) The compact binary stars are the best objects for studying the post-Newto-
nian effects on the orbits

b) Although there are no secular variation for the semi-major axis and eccen-
tricity, there is maximal amplitude of the periodic terms for semi-major axis,
suchas |A,,|=1661.80 km.

¢) The longitudes of periastron and the mean longitude at epoch exist both
secular and periodic variable terms, and the maximal values for ® and &, ar-
rive at 16.95/yr and —29.68/yr for PSR]J0737-3039 respectively.

d) The longest time of periastron passage is 19.47 minute per year for black

hole M33 X-7. This corresponds to over 3 seconds per a day.
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