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Abstract 
The aim of this research is to map the salt-affected soil in an arid environment 
using an advanced semi-empirical predictive model, Operational Land Imager 
(OLI) data, a digital elevation model (DEM), field soil sampling, and labora-
tory and statistical analyses. To achieve our objectives, the OLI data were at-
mospherically corrected, radiometric sensor drift was calibrated, and distor-
tions of topography and geometry were corrected using a DEM. Then, the soil 
salinity map was derived using a semi-empirical predictive model based on 
the Soil Salinity and Sodicity Index-2 (SSSI-2). The vegetation cover map was 
extracted from the Transformed Difference Vegetation Index (TDVI). In ad-
dition, accurate DEM of 5-m pixels was used to derive topographic attributes 
(elevation and slope). Visual comparisons and statistical validation of the 
semi-empirical model using ground truth were undertaken in order to test its 
capability in an arid environment for moderate and strong salinity mapping. 
To accomplish this step, fieldwork was organized and 120 soil samples were 
collected with various degrees of salinity, including non-saline soil samples. 
Each one was automatically labeled using a digital camera and an accurate 
global positioning system (GPS) survey (σ ≤ ± 30 cm) connected in real time 
to the geographic information system (GIS) database. Subsequently, in the la-
boratory, the major exchangeable cations (Ca2+, Mg2+, Na+, K+, Cl− and 

2
4SO − ), pH and the electrical conductivity (EC-Lab) were extracted from a sa-

turated soil paste, as well as the sodium adsorption ratio (SAR) being calcu-
lated. The EC-Lab, which is generally accepted as the most effective method for 
soil salinity quantification was used for statistical analysis and validation pur-
poses. The obtained results demonstrated a very good conformity between the 
derived soil salinity map from OLI data and the ground truth, highlighting six 
major salinity classes: Extreme, very high, high, moderate, low and non-saline. 
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The laboratory chemical analyses corroborate these results. Furthermore, the 
semi-empirical predictive model provides good global results in comparison 
to the ground truth and laboratory analysis (EC-Lab), with correlation coeffi-
cient (R2) of 0.97, an index of agreement (D) of 0.84 (p < 0.05), and low over-
all root mean square error (RMSE) of 11%. Moreover, we found that topo-
graphic attributes have a substantial impact on the spatial distribution of sa-
linity. The areas at a relatively high altitude and with hard bedrock are less 
susceptible to salinity, while areas at a low altitude and slope (≤2%) composed 
of Quaternary soil are prone to it. In these low areas, the water table is very 
close to the surface (≤1 m), and the absence of an adequate drainage net-
work contributes significantly to waterlogging. Consequently, the intrusion 
and emergence of seawater at the surface, coupled with high temperature 
and high evaporation rates, contribute extensively to the soil salinity in the 
study area. 
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1. Introduction 

Soil salinity development occurs in the landscape in response to many factors, 
especially topographic attributes (altitude and slope) which contribute signifi-
cantly to the flow paths and, therefore, the salinity of the soil. It is highly dy-
namic, varies considerably in time and in space, and modifies temporarily or 
permanently the state of the surface and of the soils below [1] [2] [3] [4]. Cer-
tainly, the adoption of suitable management methods in salinity-vulnerable areas 
can slow down the salinization processes and even reverse them completely. 
However, without adequate information, mitigation measures and actions can-
not be applied to the affected soils and damage becomes irreversible, if left unat-
tended for a long time. Therefore, to properly manage the situation, salinity in-
formation must be not only accurate and reliable, but also up-to-date [5]. In af-
fected areas, farmers, soil managers, scientists and agricultural engineers need 
accurate and reliable information on the nature, scope or extent, severity and 
spatial distribution of the salinity, in order for them to take appropriate meas-
ures [6]. Remedial action requires precise data to help set priorities and to 
choose the most appropriate solution for each situation. Consequently, it is im-
portant to monitor and map soil salinity at an early stage to prevent a future in-
crease in the salinity of the soil. Accurate information about the extent, magni-
tude, and spatial distribution of salinity will help bring about sustainable devel-
opment of natural resources [7]. Knowing when, where and how salinity may 
occur is very important to the sustainable development of any irrigated produc-
tion system especially in arid and semi-arid environments. 
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The measurement of electrical conductivity (EC) of saturation extract from a 
saturated soil paste is considered a standard and universally accepted way of 
measuring soil salinity [8] [9]. Nevertheless, the cost of such salinity determina-
tion becomes prohibitive when it calls for regular monitoring over a long period. 
These methods are expensive, time consuming, and require manpower to ac-
complish this task. In addition, the dynamic nature of soil salinity in space and 
time makes it very difficult to use conventional methods for comparisons over 
large areas [10]. According to Metternicht and Zinck [6], remote sensing and 
GIS offer advantages over ground-based methods because they make it possible 
to map accurately vast areas that are subject to soil salinity hazards spatially and 
temporally with good accuracy. In the literature, various authors have examined 
the advantages of remote sensing methods and sensors for the assessment of sa-
linity-based soil degradation [6] [7] [11]-[25]. Remote sensing methods can be 
relatively easy to use and reliable for these purposes. Their main advantage is 
that they enable mapping of large areas at a relatively low cost [26] [27]. Infor-
mation can also be collected at regular intervals, therefore making monitoring 
easier and less expensive. This not only allows for appropriate remedial action to 
be taken, but also to monitor both the effectiveness of any ongoing remediation 
or preventative measures that facilitate management and decision-making. Cur-
rently, the most used source of imagery for salinity detection remains multispec-
tral remote sensing with the Landsat series sensors [28] [29] [30] [31] [32]. 

Furthermore, some scientists have advocated the hypothesis that soil-salt oc-
curs in many landscapes in response to the way water moves through and over 
the landscape. Indeed, terrain attributes contribute significantly to the flow paths 
and, therefore, to the soil salinity attributes [3] [33]. Topography is recognized 
as an important factor in determining the stream flow response. It defines the 
effects of gravity on the movement of water in a watershed, and therefore it in-
fluences many aspects of the hydrologic system [34]. Consequently, topographic 
attributes must be considered for the detection and mapping of soil salinity pa-
rameters [35] [36]. Morre et al. [37] have discussed the relationship between to-
pographic attributes and hydro-geological processes in the landscape with regard 
to the salinity of a soil. Sheng et al. [38] integrated GIS environment climate va-
riables, vegetation data, and topographic and geomorphologic features for 
salt-affected soil analysis mapping in China. Over Canadian territory, Florinsky 
et al. [39] assessed macro-topography as a fundamental variable for soil salinity 
prediction. In Arizona (U.S.), the spatial variability and dynamic nature of soil 
salinity were mapped and estimated by Rhoades et al. [40] based on a range of 
factors: soil (permeability and parent material); water table depth and ground-
water; topographic attributes and geo-hydrology; management methods (irriga-
tion, drainage, tillage, cropping practices); and climate-related factors (rainfall, 
amount and distribution, temperature, relative humidity, wind). Similarly, 
Moore et al. [37] used a topographic wetness index that indicates the degree of 
wetness from the hydrology of the landscape to characterize areas with saline 
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soils. According to McBratney et al. [36], the first requirement in soil characte-
ristic mapping and soil salinity parameter detection is the integration of topo-
graphic variables and ancillary data in the analysis. Bilgili [41] investigated the 
synergy between geomorphometry and remote sensing science for soil salinity 
mapping. In irrigated agricultural arid land, Elmahdy and Mohamed [42] hig-
hlighted a strong correlation between flow accumulation, groundwater salinity, 
topographic attributes and salt-affected soil. In addition, they showed that the 
integration of remote sensing and GIS could be used in predicting and identify-
ing sites of groundwater salinity in arid regions. In central Iran, Taghiza-
deh-Mehrjardi et al. [31] demonstrated the potential of multispectral remote 
sensing data, EC, terrain parameters, and geomorphologic integration for soil 
salinity detection and mapping. The main objective of this research is to perform 
salt-affected soil mapping in an arid environment using a semi-empirical predic-
tive model, Landsat-8 Operational Land Imager (OLI) data, a digital elevation 
model (DEM) for image topographic rectification and results interpretation, 
field soil sampling, and laboratory and statistical analyses. In comparison with 
stochastic and integrated approaches [1] [43], its originality resides in its sim-
plicity and rapidity in developing and integrating an operational methodology 
for slight, moderate and strong salinity mapping on the regional scale in an arid 
environment.  

2. Materials and Methods 

The used methodology in this research is summarized in four steps. Firstly, the 
preprocessing step involves the OLI image corrections from the atmosphere, the 
radiometric drift of the sensor, and the topographic and the geometric distor-
tions using a high spatial resolution (5-m) DEM. Secondly, the processing step 
addresses the soil-salinity map retrieval using an advanced semi-empirical model 
for salinity detection based on the Soil Salinity and Sodicity Index-2 (SSSI-2). In 
addition, vegetation cover was extracted based on the Transformed Difference 
Vegetation Index (TDVI) using EASI-modeling of PCI-Geomatica [44]. The to-
pographic variables of elevation and slope were obtained using a DEM in the 
ArcGIS environment [45]. Thirdly, for statistical analysis and validation pur-
poses, fieldwork was organized and 120 soil samples were collected with various 
degrees of salinity, as well as non-saline soil samples. Each sample was automat-
ically labeled using a digital camera and accurate global positioning system 
(GPS) survey (σ ≤ ±30 cm) connected in real time to the GIS database. Then, it 
was analyzed in the laboratory to extract electrical conductivity (EC-Lab) from a 
saturated soil paste, which is generally accepted as the most effective method for 
soil salinity quantification. In addition, the major exchangeable cations (Ca2+, 
Mg2+, Na+, K+, Cl− and 2

4SO − ), pH, and the sodium adsorption ratio (SAR) were 
determined. Fourthly, to test the semi-empirical model’s capability in an arid 
environment for slight, moderate and strong salinity mapping, visual analysis 
and statistical validation were undertaken with respect to the ground truth 
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(EC-Lab), spatial distribution of vegetation cover, ancillary data (soil, geology and 
geomorphology maps) and topographic attributes. 

2.1. Study Site 

The Kingdom of Bahrain (26˚00'N, 50˚33'E) is a group of islands located in the 
Arabian Gulf, east of Saudi Arabia and west of Qatar (Figure 1). The archipelago 
comprises 33 islands, with a total land area of about 765.30 km2 [46]. According 
to the aridity criteria and the great variations in climatic conditions, Bahrain has 
an arid to extremely arid environment [47]. High summer temperatures of 
around 45˚C (June-September) and an average of 17˚C approximately charac-
terize the main island in winter (December-March). Rain is sparse, and occurs 
primarily from November to April, with an annual average of 72 mm, sufficient 
only to support the most drought-resistant desert vegetation. Mean annual rela-
tive humidity is over 70% due to the surrounding Arabian Gulf waters, and the 
annual average potential evapotranspiration rate is 2099 mm [48]. 
 

 
Figure 1. Study site (Kingdom of Bahrain). 

 
Geologically, Bahrain is characterized by Eocene and Neocene rocks, which 

are partly covered by Quaternary sediments and a complex of Pleistocene depo-
sits. The dominant rocks are limestone and dolomitic-limestone with subsidiary 
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marls and shales. The leading structure is the north-south axis of the main 
dome, with minor cross folds predominantly tilting from northeast to southwest. 
The beds are gently inclined towards the coast from the center of the main isl-
and. The fringes of Bahrain are covered by more recent marine and Aeolian sand 
dunes, which were derived from the Arabian land connection across the present 
Arabian Gulf [49].  

2.2. OLI Landsat-8 Data 

Since 1972, the Landsat satellite program, involving NASA, the USGS and other 
agencies, has provided a continuous record of the Earth’s surface reflectivity 
from space. Indeed, the Landsat satellites series supports more than four decades 
of global moderate resolution data collection, distribution and archives of the 
Earth’s surface [50] to support research, applications, and climate change impact 
analysis on a global, regional and local scale. With the Landsat-5 satellite trans-
mitting its final image in early 2013, and with Landsat-7 still in orbit, but com-
promised by Scan Line Corrector problems since 2003, the continuity of the 
Landsat program was ensured with the launch of Landsat-8 in February 2013 
with the OLI instrument on board. Its design results in a more sensitive instru-
ment, providing improved land-surface reflectivity and information extraction 
with far fewer moving parts. With a significant amelioration of the sig-
nal-to-noise ratio (SNR) radiometric performance quantized over a 12-bit dy-
namic range (Level 1 data), products are delivered in 16 bit compared to pre-
vious Landsat sensors (TM and ETM+) using only 8 bit [51]. This SNR perfor-
mance and improved radiometric resolution provide a superior dynamic range 
and reduce saturation problems associated with maximizing the range of 
land-surface spectral radiance and, consequently, enable better characterization 
of land-cover conditions [52]. The OLI image used in this research was acquired 
on April 5, 2015 and was deemed acceptable in terms of cloud cover and spatial 
coverage of the study area.  

2.3. OLI Data Preprocessing 
2.3.1. Sensor Radiometric Calibration and Atmospheric Correction 
Prior to launch, the OLI sensor was subject to rigorous radiometric and spectral 
characterization and calibration [52] [53] [54] [55]. However, post-launch abso-
lute calibration is an important step to establish the relationship between 
at-sensor radiance [L*(λ)], or reflectance [ρ*(λ)] and the digital number [DN(λ)] 
output for each pixel in the different spectral bands. Without these operations, 
the changes caused by artefacts relative to the sensor can be mistakenly attri-
buted to changes in land use and ground biophysical components. Consequent-
ly, errors can propagate in all subsequent steps taken during the image 
processing, such as spectral indices calculations, multi-temporal analysis, climate 
change modeling, target classification, etc. [56]-[61]. The USGS EROS Center 
delivers the values of the solar zenith angle, multiplicative and additive rescaling 
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coefficients (gain and offset) in the image metadata file for deriving apparent ra-
diance or apparent reflectance values from the OLI sensor data. Furthermore, 
two processes that are responsible for the modification of the satellite signal— 
mainly absorption by gases (ozone, water vapor, and carbon dioxide) and scat-
tering by aerosols and molecules [62]-dominate atmospheric effects. These phe-
nomena cause an attenuation of the signal in the direction of illumination, but 
increase the signal in the other directions causing a scattering effect. An accurate 
correction of atmospheric effects requires a priori knowledge of the atmospheric 
parameters that interfere with image data acquisition. For our image, these pa-
rameters were measured during the satellite overpass using meteorological sta-
tion data located at the closest point to the study site. The Canadian Modified 
Simulation of the Satellite Signal in the Solar Spectrum (CAM5S), based on the 
Herman radiative transfer code [63], was used for atmospheric parameter simu-
lation in this study. CAM5S simulates the signal measured at the TOA from the 
Earth’s surface reflecting solar and sky irradiance at sea level, while considering 
the OLI sensor characteristics, such as the band passes of the solar-reflective 
spectral bands (Figure 2), satellite altitude, atmospheric condition, atmospheric 
model, Sun and sensor geometry, and terrain elevation. Consequently, all the 
requested atmospheric correction parameters were used to transform the ap-
parent reflectance at the TOA to the ground reflectance, ρG(λ), using Equation 
(3). Table 1 summarizes the input parameters for the CAM5S radiative transfer 
code (RTC). To preserve the radiometric integrity of our image, absolute radi-
ometric calibration and atmospheric effects (scattering and absorption) were 
combined and corrected in one-step [64] as follows:  

( ) ( ) ( ) ( )*L G DN Oλ λ λ λ= +                            (1) 

( ) ( ) ( ) ( )* * 2
0 cos sL D Eρ λ π λ λ θ   = ⋅ ⋅ ⋅                   (2) 

( ) ( ) ( ) ( )
( ) ( )

( )
*

1
s v

a G
G

T T
tg

S
θ θ

λ λ
ρ λ λ ρ λ ρ λ

ρ λ

⋅ 
= ⋅ + ⋅ 

− ⋅  
          (3) 

where: 
( )*L λ  = Apparent equivalent spectral radiance at TOA [Watts. (m2 sr μm)−1], 
( )G λ  = Radiance multiplicative rescaling factor from the metadata (gain),  
( )O λ  = Radiance additive rescaling factor from the metadata (offset),  
( )DN λ  = Digital number values, 
( )0E λ  = Irradiance [Watts. (m2 sr μm)−1], 

D  = Earth-Sun distance [astronomical units], 
( )*ρ λ  = Apparent reflectance at the TOA, with a correction for solar zenith 

angle,  
( )aρ λ  = Atmospheric at-sensor reflectance, 
( )Gρ λ  = Ground reflectance,  
( )tg λ  = Average total gaseous transmittance, 
( )

s
T θλ  = Total descending scattering transmittance, 
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( )
v

T θλ  = Total ascending scattering transmittance, and 

sθ  = Solar zenith angle, 

vθ  = Sensor zenith angle, 
S  = Spherical albedo. 

 

 
Figure 2. Relative response profile of the OLI Landsat-8 sensor and atmospheric transmittance. 

 
Table 1. Input parameters for the CAM5S RTC (ASL: Above sea level; GMT: Greenwich 
Mean Time; ppm: Parts per million). 

Parameter Value 

Terrain elevation (ASL) 0.065 km 

Sensor elevation 705 km 

Time of over-flight (GMT) 10:45 

Date of over-flight April 5, 2015 

Solar zenith angle 30.452˚ 

Solar azimuth angle 126.625˚ 

Atmospheric model Dry 

Aerosol model Desert 

Horizontal visibility 30 km 

Ozone content 0.319 cm-atm 

Water vapor 0.75 g·(cm2)−1 

CO2 mixing ratio 357.5 ppm (as per model) 

2.3.2. Geometric and Topographic Corrections 
During the 90-day period following the OLI launch, three types of geometric ca-
librations were performed on-orbit including updating the OLI-to-spacecraft 
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alignment knowledge, refining the alignment of the sub-images from the mul-
tiple OLI sensor chips, and refining the spatial alignment of the OLI spectral 
bands. The results showed that the considered aspects of geometric performance 
met the system accuracy requirements [65]. However, one of the remote sensing 
objectives is to provide quantitative information for producing conform and 
standard cartographic documents and deriving digital data files compatible with 
GIS databases. Within this framework, rigorous geometric and topographic cor-
rections of satellite image data are essential for digital analyses and for use with 
GPS and GIS databases [66]. The Landsat-OLI data as delivered from the USGS 
EROS Center were geometrically corrected and registered to the WGS-84 geo-
detic reference. However, even a second-degree polynomial function cannot 
eliminate all the distortions caused by terrain relief and shadow. Indeed, the in-
tersection of the FOV sensor with the terrain altitude variation may well produce 
pixels with variable size following the slope and aspect (moderately negligible for 
OLI due to its relatively narrow FOV), and varying spectral signature from uni-
form and similar targets. Accordingly, the association of topographic variation 
with illumination geometry [67] can result in considerable spectral signature 
variation for a given target. For correcting terrain relief effects, it is necessary to 
have an altitude value for each point in the image. This is provided using a spa-
tially co-registered DEM in which the sampling step of the DEM must be at the 
image pixel size or a higher spatial resolution to provide an ortho-image with 
good precision [66] [68]. In this study, an ortho-rectification was conducted us-
ing a highly accurate DEM with a 5-m pixel size [69] [70], and processed using 
the Rational-Function model implemented in the Ortho-Engine module of 
PCI-Geomatica [44]. Topographic attributes, such as altitude, slope, aspect, and 
sky view were integrated into the ortho-rectification approach and extracted 
from the DEM [71]. This step enabled corrections of the parallax effect on the 
spatial arrangement of long-track pixels, as well as minimizing the disruptive ef-
fects caused by shadow and topographic variability, and the residual atmospher-
ic artefacts caused by altitude variability. Additionally, it allowed the integration 
of a derived salinity map into a GIS with GPS locations of soil sampling points 
for validation analysis. To preserve the image’s radiometric integrity, geometric 
corrections have been combined into a single step with the correction of topo-
graphic effects [71] utilizing a set of equations in one processing data flow. 

2.4. Predictive Model for Soil Salinity Mapping  

To exploit remote sensing for salinity soil mapping, different spectral salinity in-
dices have been proposed in the literature [16] [72] [73]. Khan et al. [74] pro-
posed three spectral indices for the identification of salinity in Pakistan using 
predominantly bands 3 and 4 of the LISS-II sensor onboard the Indian satellite 
(IRS-1B): Brightness Index (BI), Normalized Difference Salinity Index (NDSI) 
and Salinity Index (SI). Of these three indices, the authors found that NDSI 
showed the most promise for extraction of different salinity classes in a semi-arid 
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environment using satellite and ground truth data. Using ground-based spectral 
data, Al-Khaier [75] developed the Salinity Index using bands 4 and 5 of the 
ASTER sensor (SI-ASTER) to derive agricultural soil salinity in semi-arid irri-
gated agricultural regions of Syria. A cooperative project between India and the 
Netherlands [27] also proposed a methodology for soil salinity and waterlogging 
mapping in irrigated cropped land in a semi-arid region of India. They recom-
mended three different Salinity Indices (SI-1, SI-2 and SI-3) using Landsat-TM 
Bands 4, 5 and 7. Bannari et al. [16] used ground spectroradiometric measure-
ments and reflectance processing to simulate EO-1 ALI sensor spectral bands 
and demonstrated that the SWIR bands are more sensitive than other band-
widths to different degrees of salinity and sodicity, especially for slight and 
moderate levels. They proposed two indices: Soils Salinity and Sodicity Indices 1 
and 2 (SSSI-1 and SSSI-2), which are particularly well-suited for low and me-
dium salinity identification. Furthermore, using spectroradiometric measure-
ments and EC extracted from saturated paste, all of these nine spectral salinity 
indices discussed above were derived from the spectra. They were then corre-
lated to EC using a second order regression analysis, at 90% confidence level, to 
establish a semi-empirical model for soil salinity detection [16]. A comparative 
study among these models for soil salinity detection in North Africa using ALI 
EO-1 imagery showed that the model based on SSSI-2 provided the most accu-
rate information for soil salinity detection mapping [7] [24]. In this study, we 
therefore considered this predictive model: 

( ) ( )2
PredictedEC 4521 SSSI-2 125 SSSI-2 0.41- stC  = ⋅ + +          (4) 

( ) ( )OLI-6 OLI-7 OLI-7 OLI-7 OLI-6SSSI-2 ρ ρ ρ ρ ρ= ⋅ − ⋅            (5) 

where: 
stC : Scaling factor, 

PredictedEC- : Predicted EC from remote sensing semi-empirical model, 

OLI-6ρ : Reflectance in OLI SWIR-1 channel, and 

OLI-7ρ : Reflectance in OLI SWIR-2 channel. 
The scaling factor ( stC ) enables an up-scaling between the spatial information 

measured in the field (fine scale) and its homologous information derived from 
the image (coarse scale). In the literature, several methods exist to calculate this 
factor depending on the remote sensing applications [19]. In this research, a 
simple up-scaling empirical ratio was calculated between the observed and the 
predicted values considering five sampled points representing the five salinity 
classes (extreme, very high, high, moderate, low and non-saline). Homogeneous 
and uniform pixel surface representing each class was located using the GPS 
coordinates; their homologous ground reference values resulting from the labor-
atory analysis (EC-Lab) were used to calculate five scaling factor values. An aver-
age value was then calculated as a global scaling factor for the entire image.  

2.5. Vegetation Cover Mapping 

Salt-affected landscape inhibits vegetation cover growth and agricultural prod-
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uctivity. However, diverse halophytic plants grow in an arid environment ac-
cording to their tolerance to salinity and the alkalinity of the soil [74]. Therefore, 
vegetation cover can be used to assess the spatial variability degree of soil salini-
ty. The monitoring of vegetation cover involves the utilization of vegetation in-
dices as a spectro-radiometric measurement of spatial and temporal patterns of 
vegetation photosynthetic activity. In the literature, over fifty vegetation indices 
have been developed to measure the vegetation cover in different applications 
and under quite particular conditions, as reviewed by Bannari et al. [76]. How-
ever, various physical effects on the signal at the sensor can limit the use of these 
indices to characterize vegetation cover. These include drift of the sensor radi-
ometric calibration, atmospheric variations, topographical distortions, optical 
soil properties artifacts, bi-directional effects, spatial and spectral characteristics 
of the sensors, and problems of saturation and linearity [7] [56] [77] [78] [79]. 
These factors increase or decrease reflectances in the red and NIR spectral bands 
and, consequently, limit the detection of vegetation cover changes using vegeta-
tion indices, causing errors in the modeling process. The majority of these prob-
lems can be corrected for remote sensing imagery or in situ measurements be-
fore the derivation of vegetation indices. However, the problems of the satura-
tion and linearity and soils’ background artifacts, especially in arid and semi-arid 
environments where the vegetation cover is not dense, are the weaknesses that 
result from the design and the analytical formulation of the vegetation indices. 
To deal with the saturation, the linearity weaknesses, and the soils artefacts effect 
correction, the TDVI was developed [80] to describe the dynamic range of the 
vegetation-soil systems linearly and independently of optical soil proprieties in 
different applications using remotely sensed data. This TDVI index was derived 
using EASI-modeling in PCI-Geomatica [44] and used in this study to analyze 
the impact of salinity on the spatial distribution of vegetation cover over the 
study site. 

( ) 2
OLI-5 OLI-4 OLI-5 OLI-4TDVI 1.5 0.5ρ ρ ρ ρ = − + +  

           (6) 

where: 

OLI-4ρ  = Reflectance in OLI red channel, and  

OLI-5ρ  = Reflectance in OLI near-infrared channel. 

2.6. Soil Sampling and Laboratory Analyses for Validation 

Remote sensing result validation is a crucial step and requires independent pro-
tocols to collect updated and accurate information as ground truth. Pre-existing 
data are often used for validation [81], however, spatiotemporal and attribute 
differences between the actual retrieved map and the pre-existing validation 
documents can result in poor levels of apparent accuracy. Likewise, the use of 
pre-existing validation document data may misrepresent the true accuracy of the 
newly-derived product, while at the same time revealing problems inherent in 
the validation documents [82]. Therefore, new data acquisition for validation is 
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preferred, but logistical and financial constraints often preclude its use, especial-
ly over large territories [9]. Indeed, in practice it is not logistically realistic or 
economically possible to measure the EC uniformly and densely over the King-
dom of Bahrain. To overcome this situation, 120 soil samples were selected 
based on the spatial representativeness of the major soil classes and various de-
grees of salinity.  

The soils of Bahrain are characterized by five different soil classes of moderate 
to shallow depth, and are closely related to the geology and geomorphology of 
the terrain [49]. We distinguish between two classes of Solonchak soils. Note 
that the term “Solonchak” soil class has been used to present salty soils where a 
capillary rise of solutions containing soluble salts occur [83]. The natural Solon-
chak refers to soils with no agricultural activities and which retain a high gyp-
sum content (very high and with high salinity). Moreover, there is the cultivated 
Solonchak soil class, which is located in areas with current or previous agricul-
tural activities. The Regosols soil class with moderate salinity is depicted as a 
mixture of raw mineral, similar to the natural Solonchak soils, with the possibil-
ity for growing scattered halophytic plants. The miscellaneous land class catego-
ry that is a composition of silts and fine sands with a low level of salinity. This 
class is acceptable for agriculture, is very limited and is situated in zones of rela-
tively low altitude and slope. Finally, the non-saline soil class, which is imported 
to build artificial islands.  

Soil sample collection was carried out between 2 and 7 April, 2016. The Ba-
hrain soil map was used as a reference for the sampling data, and 120 samples 
were selected based on the spatial representativeness of the major soil classes as 
discussed above and by considering various degrees of salinity and the 
non-saline soil. Samples were taken from the upper layer (5 cm deep) of the soil, 
in an area of about 50 × 50 cm2. Observations and remarks about each sample 
(color, brightness, texture, etc.) were noted. The location of each point was au-
tomatically labeled and recorded using a 35 mm digital camera equipped with a 
28 mm lens and accurate GPS survey (σ ≤ ±30 cm) connected in real time to the 
GIS database. Then, each sample was analyzed in the laboratory in order to ex-
tract the major exchangeable cations (Ca2+, Mg2+, Na+, K+, Cl− and 2

4SO − ), the 
EC-Lab, pH, and the SAR from a saturated soil paste. These elements were ana-
lyzed using methods that meet the current international standards in soil science 
[84]. Because the electrical conductivity is considered an accurate measure of 
soil salinity [8], the derived values in the lab (EC-Lab) for all sampling points were 
overlaid on the remote sensing predictive salinity map (EC-Predicted) in a GIS en-
vironment in order to obtain spatial correspondences between sampling points 
and their homologous pixels, for validation purposes. The statistical analysis was 
conducted by correlating those values (EC-Lab and EC-Predicted) using linear regres-
sion at the significance level p < 0.05. 

2.7. Statistical Analyses 

Statistical analyses were computed using “Statistica” software. Various statistics 

https://doi.org/10.4236/ars.2017.64019


A. Bannari et al. 
 

 

DOI: 10.4236/ars.2017.64019 272 Advances in Remote Sensing 
 

were calculated for both EC ground sampling points obtained from the laboratory 
analysis (EC-Lab) and the predicted values derived from OLI data (EC-Predicted) us-
ing the semi-empirical model. Standard deviation statistics enabled the evalua-
tion of data variability. This parameter was reported in all cases as an error per-
centage of the average values extracted from the ground sampling point (ECG-Lab) 
and image data (EC-Predicted). For validation purposes, EC-Lab and EC-Predicted were 
compared using the 1:1 line. Ideally, observed and predicted values should have 
a correspondence of 1:1. The index of agreement D reflects the degree to which 
the observed value is accurately estimated by the predicted value. This measure 
was calculated as follows [85]: 

( )

( )
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1
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1

1
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i i
i
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i i
i

P O
D

P O

=

=

 − 
 = −
 ′ ′+  

∑

∑
                      (7) 

where Pi is the predicted value at sample i, Oi is the observed value at sample i, 

iP′  is the difference between Pi and the average of the predicted values, and iO′  
is the difference between Oi and the average of the observed values and n is the 
number of values. This index provides a measure of the degree to which a mod-
el’s predictions are error-free. The index ranges between 0 and 1, with 1 indicat-
ing a perfect match between observed and predicted values. The observed values 
were those calculated from each sampling point at the laboratory (EC-Lab) and 
the predicted values were from the salt-affected soil map using the semi-empirical 
model and OLI image (EC-Predicted). The root mean square error (RMSE) was used 
as an overall error to supplement the index of agreement described above. This 
error also quantifies the 1:1 relationship between observed and predicted values. 
It was calculated as follows [85]: 

( )2

1RMSE

n

i i
i

P O

n
=

−
=
∑

                       (8) 

The relationships between observed and predicted values were also analyzed 
using a linear regression model. The correlation coefficient (R2) of the regression 
model was also used to evaluate the strength of the linear relationship between 
observed (EC-Lab) and predicted values (EC-Predicted). Systematic linear overpre-
dictions or underpredictions generate characteristic variations in the slope and 
intercept values, which can help to interpret the major sources of error and the 
potential of the semi-empirical model for salinity mapping and prediction using 
OLI data.  

3. Results and Discussion  
3.1. Visual Assessment and Statistical Analysis of Soil  

Salinity Maps 

In this section, we present and evaluate the soil salinity maps and relate their 
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accuracy directly to our field observations, laboratory analyses, and statistical va-
lidation. Globally, the results show that the semi-empirical model based on the 
SSSI-2 index provided a satisfactory result in comparison to the ground truth, 
laboratory analyses, as well as good agreement with spatial distribution of vege-
tation cover derived with TDVI index, ancillary data (soils, geology, and geo-
morphology maps), and topographic attributes.  
 

 
Figure 3. Soil salinity map derived using the predictive model based on SSSI-2 index, 
highlighting six major salinity classes: extreme (class 1), very high (class 2), high (class 3), 
moderate (class 4), low (class 5), and non-saline (class 6). 
 

Based on the histogram analysis of the derived salt-affected map, the spatial 
variability of soil salinity was characterized by six classes (Figure 3): extreme 
(class 1 in red), very high (class 2 in orange), high (class 3 in yellow), moderate 
(class 4 in clear green), low (class 5 in cyan or sky-blue-green) and non-saline 
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(class 6 in dark blue). The visual analysis and validation of these classes by ref-
erence to the field visit (ground truth) reveals a good conformity. The extreme 
salinity class is characterized by the presence of high contents of soluble salts 
and the surface salt crust (Figure 4(a)). This class depicts the sabkha position 
reliably based on our GPS field locations. These sabkha zones create a chemically 
aggressive environment and lead to a structurally unstable soil condition. They 
are natural solonchaks and are uncultivated (loamy and sandy, highly gypsifer-
ous) and devoid of any vegetation. Sulfates, chlorides and carbonates of sodium, 
calcium and magnesium dominate the salt content in this sabkha soil. Seawater 
intrusion and subsequent evaporation results in surface crusts, especially in these 
zones of capillary rise, where the terrain elevation is less than a few centimetres 
above mean sea level (very close to ground surface), and where the slope is near 
zero, thus facilitating water catchment and retention. This situation generally 
occurs in a dry climate, such as the case of Middle Eastern countries, where the 
temperature is very high, the rainfall is insufficient to leach salts and excess so-
dium ions out of the soil, and high evaporation rates accelerate the salt accumu-
lation and its concentration at the soil surface.  
 

 
Figure 4. Extreme salinity class (a), very high saline class (b), high saline class (c), and 
moderate saline class (d). 
 

The very high salinity class presents other crustal features including a bare 
level soil surface (class 2, red color in Figure 3), often encrusted with an efflo-
rescence of salt crystals and a well-developed platy structure, which looks like 
the creation of a new sabkha (Figure 4(b)). The high salinity class (class 3, yel-
low spots in Figure 3) is composed of fine, white, sand-sized shell gravel and 
gravelly sand (Figure 4(c)); the surface layers are sometimes cemented by salt, 
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with cementation increasing with depth. The layering is characterized by alter-
nating shell-rich and shell-poor layers. The material of this area is a mixture of 
medium and fine sand-grade quartz with moderate amounts of carbonate. The 
soil surface (~5 cm) becomes cemented, forming a strong, white-brown crust of 
salt. In other places, the immediate top surface becomes indurated into a brittle 
crust, which is ridged into many undulations with an amplitude of 3 to 5 cm. 
Moreover, similar to the two previously described classes, the areas of this class 
are completely devoid of vegetation, as illustrated by the field photos (Figure 4). 
The moderate saline class (class 4, green color in Figure 3) illustrates the domi-
nant class in the southern half of Bahrain island (Figure 4(c)). The soils are 
moderate to shallow in depth, calcareous to highly calcareous, with calcium car-
bonate equivalents ranging from 15% - 30% and dominated by shells and sand 
with fine contents varying from 5% to 30 %. They contain moderate amounts of 
gypsum, mainly in the upper 75 cm of the soil profile [49]. The soils of this class 
are characterized by very poor organic matter content, and are not suitable for 
agricultural production. However, very sparse and scattered clumps of halo-
phytic (salt tolerant) plants are observed in this class area (Figures 5(a)-(d)). 
For instance, we found the “zygophyllum simplex” (Figure 5(a)), which is a de-
licate plant with subsessile to very short petiolate leaves. The “Suaeda vermicu-
lata Forssk” (Figure 5(b)) is a perennial herb, forming huge bushes or shrubs, 
usually with thicker leaves varying from cylindrical to thick and flattened, which 
support a high temperature and growth in saline soil. Moreover, there is the 
“cynomorium coccineum L.” (Figure 5(c)), which grows easily in the desert, 
particularly in sandy places. This plant has no chlorophyll and is unable to pho-
tosynthesize. It is a geophyte, spending most of its life underground, and is a 
salt-tolerant plant. In addition, we found the “Halopeplis perfoliata” (Figure 
5(d)) which is green to brownish in color, has low and woody branches with 
leaves that encircle the branches as swollen beads, and tolerates saline conditions 
[86].  

According to the field visit and ancillary data (soil, geological and geomor-
phological maps), we find that these first four saline classes (extreme, very high, 
high and moderate) are globally characterized by Eocene, Neocene and Miocene 
rocks. They are partly covered by Quaternary sediments and a complex of Pleis-
tocene deposits that are often rich in calcium sulfate and sodium chloride and 
associated with shales and marls, limestone and dolomitic-limestone. Their 
gypso-saline characteristics cause the formation of salt strata that are thrust up-
ward to the surface from the underlying salt bed. These saline formations are of-
ten associated with anhydrite, gypsum, sulfur, and paleo-lagoonary sedimentary 
rocks.  
Furthermore, the spatial distribution of low salinity class was located in the 
northwest part of Bahrain island (class 5, blue-green color in Figure 3), where 
the soils have low fertility potential, i.e. the surface organic matter content is less 
than 2%. The nitrogen content is very low, with soluble nitrate ranging from 1 - 
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5 parts per million (ppm) in the saturation extract of the topsoil. Phosphorus 
availability is relatively low and this is commonly associated with highly calca-
reous soils (P-fixation). The available phosphorus content is very much variable 
(3 - 50 ppm), and the available potassium content ranges from 100 - 360 ppm, as 
demonstrated by Al-Shabaani [87]. These class zones are the only cultivated 
areas in Bahrain and their extent is about 6000 ha (8% of the total area of the 
country), of which about 95% is equipped with irrigation systems. These areas 
are mainly used for growing date palms, alfalfa, vegetables and fodder crops, as 
illustrated in Figure 5(e) and Figure 5(f). According to the last agricultural 
census [88], this agricultural area decreased from 36.96% in 1995 to 33.89% in 
1997 due to the salinity of irrigation water. Finally, the non-saline class (class 6, 
blue color in Figure 3) describes accurately the man-made (artificial) infra-
structure, industrial and urban zones. This accurate visual discrimination analysis 
among different salinity classes demonstrates the robustness of the semi-empirical 
model used and its significant sensitivity to the complexity of salinity classes in 
this arid environment.  

 

 
Figure 5. Moderate saline soil class with halophytic plants that are resistant to saline-soil 
conditions (a) to (d), and agricultural fields with low salinity (e) and (f). 
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Likewise, the major exchangeable cations in the considered soil samples (Ca2+, 
Mg2+, Na+, K+, Cl− and 2

4SO − ), pH, EC-Lab, and SAR values were determined in 
the laboratory from saturated soil paste extract (Table 2), and they corroborate 
the remote sensing results. Table 2 summarizes the average values of these 
chemical elements that are calculated from the sampling points representing 
each soil class separately. These analyses reveal a very high concentration of so-
dium (Na+), which generally exceeds the sum of calcium (Ca2+) and magnesium 
(Mg2+), and dominant chloride anion (Cl−) which exceeds sulfates ( 2

4SO − ). 
Moreover, we see that globally, the values of EC-Lab, Na+, and SAR increase 
gradually and very significantly from non-saline soil to extreme soil salinity 
(sabkha). Indeed, the non-saline and low soil salinity classes (Miscellaneous 
soils), which support the agricultural system in Bahrain, are characterized by low 
EC (2.6 ≤ EC-Lab ≤ 4.4 dS·m−1) and SAR ≤ 10.3. The moderate salinity class 
(EC-Lab ≈ 7.4 dS·m−1 and SAR ≈ 12.7) is the dominant soil class in Bahrain and is 
a part of the Regosols soil category that allows for the growth of halophytic 
plants (Figures 5(a)-(d)). Contrariwise, the other three soil salinity classes with 
extreme, very high and high salinity content show very strong and extreme EC 
(67 ≤ EC-Lab ≤ 600 dS·m−1) and very high SAR (≥99.2) values. These three classes 
describe the natural Solonchak soil category. Obviously, these results are in 
agreement with the predicted salinity classes ascertained by remote sensing me-
thod (Figure 3), and this is illustrated by the photographs acquired during the 
field visit (Figure 4) based on the GPS and GIS locations. Moreover, the pH 
values (7.1 to 8.6) are very informative as regards the preponderance of carbo-
nate and the presence of bicarbonate in the soils and, consequently, contribute 
significantly to the alkalinity aspect of the soil.  

 
Table 2. Laboratory determination of EC-Lab, pH and ions content in the different soil sa-
linity classes. 

Salinity 
class 

EC-Lab 

(dS·m−1) 
pH 

Ca2+ 

(mg·l−1) 
K+ 

(mg·l−1) 
Mg2+ 

(mg·l−1) 
Na+ 

(mg·l−1) 
SAR 

Cl− 

(mg·l−1) 

2
4SO −  

(mg·l−1) 

Extreme 507.0 7.6 1276 843 672.0 154,700 874.0 170,715 11,275 

Very high 170.0 7.2 1878 1454 2874.0 76,373 258.9 100,281 28,020 

High 67.0 7.5 1905 651 1581.0 24,171 99.2 48,546 5488 

Moderate 7.4 8.6 531 67 181.0 1324 12.7 2480 881 

Low 4.4 8.2 284 44 96.0 782 10.3 1329 754 

Non-saline 2.6 7.9 154 28 58.4 530 9.2 886 63 

 
Figure 6 illustrates the relationship between the predicted electrical conduc-

tivity values (EC-Predicted) derived from the OLI data and the ground reference 
values resulting from the laboratory analysis (EC-Lab). Globally, the statistical 
analyses show that the semi-empirical model employed is a good predictor of 
salt-affected soil with a good index of agreement (D = 0.84) and low overall 
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RMSE (11%). The scatter plot, as presented in Figure 6, reveals a good linear re-
lationship between the two variables with a correlation coefficient (R2) of 0.97, at 
significance level p < 0.05. The scatter plot, depicting the relationship between 
EC-Lab and EC-Predicted, illustrates a generally good fit to 1:1 line with an excellent 
spatial variability of soil salinity (2.6 ≤ EC-Lab ≤ 600 dS·m−1). The classes with an 
electrical conductivity of lower than 200 dS·m−1 are appropriately predicted by 
the model, with an RMSE of around 5%. However, the electrical conductivity 
classes between 400 and 600 dS·m−1 were overestimated, resulting in the data not 
fitting the 1:1 line very well. The slope and the intercept corroborate these ob-
servations by expressing a slight deviation from the 1:1 line, with an RMSE of 
around 21%. This is likely because the model was developed for slight and mod-
erate salinity in a semi-arid environment [7] and not for cases of extreme salinity 
in arid land. Moreover, scaling issues between the samples collected in the field 
representing an area of about 50 × 50 cm2 and its homologous points in the OLI 
image, represented by a pixel (900 m2), may contribute to this slight variation. In 
addition, the preprocessing of OLI data is essential and it will affect the integrity 
of the surface reflectance retrieval from the at-sensor radiance data. The sources 
of errors in the data preprocessing were reduced significantly by applying dif-
ferent techniques for the removal of sensor artifacts and atmospheric effects. 
However, it is probable that residual errors persist (because we correct each 
spectral band uniformly and not pixel-by-pixel), causing a small difference be-
tween the EC-Lab measured at the laboratory and their homologous EC-Predicted 
based on the remote sensing image. However, despite these small variations, the 
semi-empirical predictive model used provides satisfactory results in compari-
son to the ground truth.  
 

 
Figure 6. Relationship between electrical conductivity analyzed in the laboratory (EC-Lab 
in dS·m−1) and the predicted values (EC-Predicted in dS·m−1) derive from the semi-empirical 
model. 
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3.2. Spatial Distribution of Vegetation Cover According to Soil  
Salinity Classes 

With reference to ground truth, the vegetation cover map derived using TDVI 
(Figure 7) illustrates an excellent agreement and relationship with the salinity 
map (Figure 3). Indeed, in the southern half of Bahrain island and the entire in-
terior basin where salinity is present, the vegetation cover and agricultural activ-
ities are completely absent. In addition, in the island’s northeast, where the in-
frastructure is developed, the vegetation cover is deficient. Only the northwest 
areas show a relative vegetation cover, where the red color spots in the Figure 7 
illustrate the date-palm clusters, while the dark and clear green colors show the 
agricultural fields (alfalfa, vegetables and fodder crops; see Figure 5(e) and Fig-
ure 5(f)). In these vegetated areas, the soil salinity (2.6 ≤ EC-Lab ≤ 8 dS·m−1) is 
highly heterogeneous from irrigated to non-irrigated sites depending on the 
quality of the groundwater used in irrigation. In fact, the agricultural lands are 
affected by saline water used for the irrigation preprocess. Additionally, the in-
trusion of seawater, the shallow saline water table, the absence of an adequate 
drainage system and inappropriate soil-water management contribute signifi-
cantly to the salinity of the agricultural lands. In addition to the low salinity in 
these areas, the soils also show sodic characteristics, since the soil structure is 
completely absent or poorly defined (dispersion and destruction of clay par-
ticles). These results are in agreement with the soil chemical laboratory analysis, 
as discussed previously (pH between 7.1 and 8.6, see Table 2). 

3.3. Assessment of Topographic Attributes on Soil Salinity Maps 

The topography of Bahrain generally has low variability. Over half of the surface 
lies below 20 m, and is composed mainly of low angle slopes. It is possible to 
identify five major physiographic regions from our map products. These occur 
as concentric units of variable width (Figure 8). The first region is the coastal 
lowlands, with an elevation of less than 10 m above mean sea level and slopes 
less than 0.5% (Figure 8), with the water table (groundwater) from 30 to 60 cm 
below the surface. The second region is the upper Dammam back-slope reflect-
ing the general asymmetrical shape of the main Bahrain dome with an elevation 
between 10 and 20 m, and slopes less than 5.4% (Figure 8). The third region is 
the multiple escarpment zones surrounding the interior basin of the island; this 
is a continuous belt of low multiple enfacing escarpments. From the northwest 
to the southwest of this region, the elevation and slopes vary significantly, from 
20 to 34 m and from 5.4% to 14% respectively. The fourth region is the interior 
basin, which appears as an asymmetrical ring of lowlands surrounding the cen-
tral plateau (fifth region) with relatively higher elevations (34 to 51 m) and stee-
per slope classes (14% to 29.5%, see Figure 8). The central plateau (fifth region) 
has upstanding residual hills and a more mountainous-type terrain, with greater 
variations in elevation (51 to 134 m) and slopes (30% to 81%) and including Jab-
al Dukhan (the highest point in Bahrain). According to this analysis, it is possi-
ble to distinguish among four major groups of drainage (catchments) zones that  
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Figure 7. Derived vegetation map using TDVI. 
 
mimic the major physiographic areas: the coastal lowland, the upper Dammam 
back-slope, the multiple escarpment zones, and the interior-basin and central 
plateau. Consequently, it is apparent that the topographic attributes have a sig-
nificant relationship with the spatial distribution of soil salinity. Indeed, topo-
graphy has a strong impact on controlling flow accumulation and, consequently, 
the development of various levels of soil salinity, as well as more complex rela-
tionships over larger areas that can be discerned from spatial analyses. Terrain 
aspect controls the flow direction and accumulation, whereas the magnitude of 
slope controls the speed of groundwater and mechanical erosion. The ground-
water accumulation and groundwater salinity are strongly controlled by flow di-
rection, slope percentage, aspect, relief catchment area and distance between up-
stream and down streams. In general, the areas of low topography and low slope 
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(Figure 8) are located on highly fractured carbonate rocks and coastal deposits, 
and are in accordance with those areas of high groundwater potential of variable 
salinity that occur close to or at the surface, as shown in our salinity map 
(Figure 3).  

When the elevation and slope maps (Figure 8) are overlaid in GIS on the de-
rived soil salinity map (Figure 3), it can be inferred that the areas with a rela-
tively high altitude, significant slope and/or with hard bedrock are, in general, 
less susceptible to salinity. These areas drain water to the lowland with an in-
adequate drainage system network and concave terrain form. Indeed, these are 
located at low altitude, composed of Quaternary soil (coastal deposit) and, con-
sequently, are prone to salinity formation and accumulation (Figure 3). In these 
areas, the water table is very close to the surface (most of the country is at or 
near sea level, 0 - 5 m) and the slopes are less than 2%, thus facilitating the water  
 

 

https://doi.org/10.4236/ars.2017.64019


A. Bannari et al. 
 

 

DOI: 10.4236/ars.2017.64019 282 Advances in Remote Sensing 
 

 
Figure 8. Elevation map (a) and slope map (b). 
 
catchments. Moreover, the absence of an adequate drainage system and soil-water 
management policy contribute significantly to waterlogging. Therefore, the in-
trusion and emergence of the seawater at the surface coupled with the very high 
temperature and evaporation rate contribute extensively to soil salinity crust. 
This situation characterizes the sabkha formation, where evaporation exceeds 
water influx. Nonetheless, according to the field visits and ancillary data (geolo-
gy and geomorphology maps), the extreme salinity zones located in the south-
east of the island (~20 m altitude and moderate slope) are not related to the 
coastal deposits or to waterlogging. Instead, they are attributed to the carbonate 
formation due to the presence of evaporate salts dissolved from local bedrock, 
geological structures and chemical dissolution. These findings are also in agree-
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ment with other scientists’ results elsewhere in the world [3] [89]-[94]. 

4. Conclusions 

In this research, we carried out salt-affected soil mapping in an arid environ-
ment using Landsat-OLI data, DEM, field soil sampling, a semi-empirical pre-
dictive model, and laboratory and statistical analyses. The OLI data were pre-
processed from the atmosphere, the sensor radiometric drift, the geometric dis-
tortions, and topographic variabilities. Then, the soil salinity map was derived 
using a semi-empirical predictive model based on the SSSI-2, as well as the ve-
getation cover map being extracted from the TDVI. Moreover, topographic 
attributes were derived using accurate DEM of 5-m pixel in size. For statistical 
analysis and validation purposes, fieldwork was organized and 120 soil samples, 
as well as non-saline soil samples, were collected with various degrees of salinity. 
Each sample was automatically labeled using a digital camera and accurate GPS 
survey (σ ≤ ±30 cm) connected in real time to the GIS database, and was then 
analyzed in the laboratory both to measure the major exchangeable cations in 
the considered soil samples (Ca2+, Mg2+, Na+, K+, Cl− and 2

4SO − ), pH, EC-Lab, 
and to calculate the SAR from a saturated soil paste extract.  

Globally, the visual validation step demonstrated a very good conformity be-
tween the derived soil salinity map and the ground truth, highlighting six major 
salinity classes: extreme, very high, high, moderate, low and non-saline. It shows 
the efficacy of the semi-empirical model used to discriminate accurately among 
different and complex salinity classes, from sabkha to non-saline soils. The 
chemical laboratory analyses corroborate these remote sensing results and field 
observations. They reveal a very high concentration of sodium (Na+), which 
generally exceeds the sum of Ca2+ and Mg2+, and dominant Cl− that exceed 

2
4SO −  for the six salinity classes taken into consideration. Moreover, the values 

of EC-Lab, Na+, and SAR increased gradually and very significantly from the 
non-saline soil to the extreme soil salinity (sabkha). Indeed, the non-saline and 
low soil salinity classes, which support the agricultural system in Bahrain, are 
characterized with low EC (2.6 ≤ EC-Lab ≤ 4.4 dS·m−1) and SAR (≤10.3). The 
moderate salinity class with EC-Lab of around 7.4 dS·m−1 and SAR ≤ 12.7 is the 
dominant soil class in Bahrain, allowing for the growth of halophytic plants. 
Contrariwise, the other three soil salinity classes with extreme, very high and 
high salinity content show very strong and extreme EC (67 ≤ EC-Lab ≤ 600 
dS·m−1) and very high SAR (≥99.2) values. Obviously, these results are in agree-
ment with the six classes predicted by the remote sensing method. Furthermore, 
statistical validation of the semi-empirical predictive model used provides satis-
factory results in comparison to the ground truth and the laboratory analyses 
(EC-Lab), with correlation coefficient (R2) of 0.97 and an index of agreement (D) 
of 0.84, at significance level p < 0.05. Overall, the RMSE is approximately 11%, if 
we consider the 120 soil samples in totality. However, this error varies between 5 
and 21%, respectively, if we consider only low-moderate salinity or only strong- 

https://doi.org/10.4236/ars.2017.64019


A. Bannari et al. 
 

 

DOI: 10.4236/ars.2017.64019 284 Advances in Remote Sensing 
 

extreme salinity. Although this model was developed for moderate and slight sa-
linity in irrigated agricultural land in semi-arid regions, it also showed its ability 
to be applicable to different extreme salinity conditions in arid lands. 

Visual analysis and field visits corroborated these results with respect to the 
spatial distribution of vegetation cover, ancillary data (soil, geology and geo-
morphology maps) and topographic attributes. Additionally, the TDVI con-
firmed its high performance for vegetation cover discrimination in arid lands, 
and provided supplementary results for mapping the spatial distribution of sa-
linity over the study site. Furthermore, it is clear that topographic attributes have 
a significant impact on salinity spatial distribution. Our results showed that 
areas at a relatively high altitude and/or with hard bedrock are less susceptible to 
salinity, except for some areas where the evaporate salts were dissolved from lo-
cal bedrock. However, areas at a low altitude and with Quaternary soil are prone 
to salinity, since the water table is very close to the surface at low elevations (≤1 
m a.s.l.) where slopes are insignificant (≤2%). The water table is rarely horizon-
tal, but reflects the surface relief due to the capillary effect in soils and sediments, 
but does not always mimic the topography due to variations in the underlying 
geological structure (e.g., folded, faulted, fractured bedrock). Moreover, the ab-
sence of an adequate drainage network contributes significantly to waterlogging. 
Consequently, the intrusion and emergence of seawater at the surface, coupled 
with poor irrigation water quality (in agricultural areas), a very high temperature 
and high evaporation rate, contribute extensively to soil salinity in The Kingdom 
of Bahrain. In this region, the derived salinity maps also showed important ter-
rain-salinity relationships. For example, soils are saline and calcareous (to highly 
calcareous with high gypsum and calcium carbonate content) and alkaline (or 
neutral) on the surface horizon; coarse to medium texture on upland sites; fine 
texture in closed basins; are usually only weakly developed morphologically; 
poor in organic matter; deficient in micronutrients; and have low fertility poten-
tial. Furthermore, besides its salinity, the soil in Bahrain shows sodic characteris-
tics, since the soil structure is completely absent or poorly defined. The prepon-
derance of carbonate and the presence of bicarbonate in the soils are responsible 
for high pH values (7.1 to 8.6) and, consequently, contribute significantly to the 
alkalinity aspect of the soils.  
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