
Journal of Applied Mathematics and Physics, 2017, 5, 2354-2359 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2017.512192  Dec. 27, 2017 2354 Journal of Applied Mathematics and Physics 
 

 
 
 

Fully Discrete Orthogonal Collocation Method 
of Sobolev Equations 

Ning Ma, Wenliang Bian, Xiaofei Lu 

College of Science, China University of Petroleum, Beijing, China 

           
 
 

Abstract 
In this paper, the fully discrete orthogonal collocation method for Sobolev equ-
ations is considered, and the equivalence for discrete Garlerkin method is proved. 
Optimal order error estimate is obtained. 
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1. Introduction 

Sobolev equations are a class of mathematical physics equations, which are widely 
used in engineering field. Many numerical methods have been proposed, such as 
the characteristic difference method [1], the H1-Galerkin Finite Element Method [2], 
the mixed finite element [3] and so on. The collocation method now is widely used 
in many fields including engineering technology and computational mathemat-
ics. Many applications have been proved effectively, e.g. the heat conduction eq-
uation [4], stochastic PDEs [5] and reaction diffusion equation [6]. The colloca-
tion method has high convergence order and does not need to calculate numeri-
cal integration so that the calculation is simple. So now we consider the applica-
tion of fully discrete collocation method for Sobolev equations. We consider the 
linear Sobolev equations as follows: 
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In the equations, tu  is the time derivative of u, and u∇  is the gradient of u. 
[ ] [ ]0,1 0,1Ω = × , ∂Ω  is the border of Ω . ( ), ,a a x y t=  and ( ), ,b b x y t=  are 

known bounded differentiable functions. 
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2. Fully-Discrete Collocation Method  

First, time is divided into n equal parts. Let Tt
n

∆ =  be the time step. Then we  

introduce the following notations:  
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Then we discrete the spatial region Ω  into grids by points  

( ), , 0,1, 2, , , 0,1, 2, ,i jx y i M j N= =   and ,i jx y  are satisfied  

0 1 0 10 1,0 1M Nx x x y y y= < < < = = < < < =  . Let [7]  
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The four Gauss points ( ), ; , 1, 2ik jlx y k l =  in ijΩ  are collocation points as 
follows: 1 1, , , 1, 2

i jik i x k jl j y lx x h y y h k lθ θ− −= + = + = , where ( )1 3 3 6θ = − ,  

( )2 3 3 6θ = + . Then the intermediate variable tq a u b u= ∇ + ∇  is introduced 
so that the orthogonal collocation scheme as follows can be established. Seeking 
( ) [ ] 3 3, : 0,U Q T H H→ × , such that  
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Now we set the following notations [4]:  
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Next, we are going to prove existence and uniqueness of collocation solution 
and obtain the error estimate. 

3. Discrete Galerkin Method  

Consider the following discrete Galerkin scheme  
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Theorem 3.1: The solutions of (4) and (2) are equivalent, existent and unique. 

https://doi.org/10.4236/jamp.2017.512192


N. Ma et al. 
 

 

DOI: 10.4236/jamp.2017.512192 2356 Journal of Applied Mathematics and Physics 
 

Proof: From the Equation (3), it is clear that the solution of (2) must be the 
solution of (4). 

Let { } ( ){ }: 1, 2, , 4 , , 1, , , 1, , , , 1, 2l ik jll MN x y i M j N k lζ = = = = =   ,  
{ }4i MN
Z  be a group base of 0

3H . Thereupon ( ) 0
3,nU x y H∀ ∈  can be expressed 

as ( ) ( )4
1, ,MNn n

i iiU x y Z x yβ
=

=∑ . So (2) and (4) can be written in the form as fol-
lows  
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where ,G D  are both matrixs of 4 4MN MN×  and ,R S  are both vectors of 4MN . 
Obviously the solution of equation 0Fτ =  must be satisfied the equation 0Cτ = , 
when τ  is a vectors of 4MN . So F  is nonsingular when C  is nonsingular. Then 
the solutions of (2) and (4) are unique. To get the existence and uniqueness, we 
just need to prove ( )4 4×

= ij MN MN
A A  where ( ) ( ) ,ij j i j i iA Z a Z Zζ ζ= − ∆  is non-

singular when t∆  is sufficiently small. And the nonsingularity of A  has been 
proved [8] in. Thus the theorem is proved. 

Next we will need to analyse the error estimate of (4). 

4. Error Estimate 

Define interpolation operators ( )1 2,P P  which satisfied the following conditions  

1 2, , , , , ,W Pu v W U u W V P q w V Q q Vη ξ= = − = − = = − = −  

( ) 3, 0, ,n nq V z z H∇ − = ∀ ∈  

( ) ( ) 3, 0, ,n n n n n n
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i.e., ,u U v q Q wη ξ− = + − = + . Now we can get the error equations  
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where ,n n n n n n
t t t tr W W r W W= − ∂ ∇ = ∇ − ∂ ∇ . Then there is the theorem as fol-

lows. 
Theorem 4.1: If u(x,y) is the accurate solution of (1), ( ),U x y  is the solution 

of the orthogonal collocation method, and ( ),u x y  satisfies the condition [4] [7] 
( )( ) ( )( )6 60, ; 0, ;u L T H L T H∞ ∞∈ Ω Ω , ( )( )60, ;tu L T H∞∈ Ω , then there is the 

error estimate as follows  
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Proof: First, it is clearly for ,n nr r∇  that  

1 1

2 22 2
d , d .n n

n n

t tn n
tt ttt t

r C t W s r C t W s
− −

≤ ∆ ∇ ≤ ∆ ∇∫ ∫         (6) 

Then let 1 2,n nz v z v= = ∇  in (5), the equations  
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can be got. It is easily calculated to see that  
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The coefficients ,K C  both have nothing to do with ,h t∆  in the upper eq-
uation and following proof. Add the inequality (6) and make summation to the 
series sum from 1n =  to n  and multiply t∆ . Then  
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is obtained. So it follows from discrete Gronwall lemma that  
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if t∆  is small enough. 
Second, let 1 2,n n

t tz v z v= ∂ = ∂ ∇  in (5), the equations  
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Then through Cauchy inequality and ε-inequality, (6) and (7) it leads to the 
inequality  
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if t∆  is sufficiently small. 
At last, let 2

nz w=  in the second equation of (5), it can be expressed as 

( ), , , 0.n n n n n n n n n n
tw w a r v w b v wξ + − ∇ + ∂ ∇ − ∇ =  (7) and (8) implies that  
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The results  
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can be obtained from lemma 1.6 in [4], where u is sufficiently smooth (C is a 
positive constant). Moreover (3) in [7] implies that 3,f H f f C f∀ ∈ ≤ ≤  
is valid. So it follows from (7), (9) and (10) that  
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where 1K  and 2K  are constants which have nothing to do with h  and tη . 
Thus the theorem is proved. 
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